Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (152)

Search Parameters:
Keywords = sodium iodide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1454 KiB  
Article
A Comprehensive Equilibrium Analysis of Tartronate with Proton and Major Cations in Natural Fluids
by Gabriele Lando, Clemente Bretti, Paola Cardiano, Anna Irto, Demetrio Milea and Concetta De Stefano
Molecules 2025, 30(7), 1497; https://doi.org/10.3390/molecules30071497 - 27 Mar 2025
Viewed by 85
Abstract
This study presents a detailed thermodynamic investigation on the protonation behavior of tartronic acid in aqueous solutions of various ionic media, including sodium chloride, potassium chloride, tetramethylammonium chloride, and tetraethylammonium iodide. Specifically, potentiometric measurements were performed at temperatures ranging from 288.15 to 310.15 [...] Read more.
This study presents a detailed thermodynamic investigation on the protonation behavior of tartronic acid in aqueous solutions of various ionic media, including sodium chloride, potassium chloride, tetramethylammonium chloride, and tetraethylammonium iodide. Specifically, potentiometric measurements were performed at temperatures ranging from 288.15 to 310.15 K and ionic strengths between 0.1 and 1.0 mol dm−3 to determine stoichiometric protonation constants in different ionic media. The formation of weak complexes between tartronate and alkaline metal cations was obtained by means of the ΔpK method. Moreover, data were modeled using the Debye–Hückel equation and Specific Ion Interaction Theory (SIT), allowing for the calculation of standard thermodynamic parameters and the assessment of the dependence of protonation constants on ionic strength. Additionally, the protonation behavior of tartronic acid was compared with that of structurally related acids, such as malonic and mesoxalic acids, providing insights into the role of molecular structure in acid dissociation. The results emphasize the significant role of entropic contributions in the protonation process and provide a comprehensive model for the thermodynamic properties of tartronic acid across a wide range of experimental conditions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Analytical Chemistry)
Show Figures

Figure 1

11 pages, 2539 KiB  
Article
The Human Thyroid-Derived CI-huThyrEC Cell Line Expresses the Thyrotropin (TSH) Receptor and Thyroglobulin but Lacks Other Essential Characteristics of Thyroid Follicular Cells
by Mathias Halbout and Peter A. Kopp
Biomolecules 2025, 15(3), 375; https://doi.org/10.3390/biom15030375 - 5 Mar 2025
Viewed by 211
Abstract
Background: Thyroid hormone synthesis requires the normal function of thyroid follicular cells and adequate nutritional intake of iodine. For in vitro studies on thyroid cell pathophysiology, the immortalized FRTL5 rat thyroid cell line and a derivative thereof, the PCCL3 cell line, are widely [...] Read more.
Background: Thyroid hormone synthesis requires the normal function of thyroid follicular cells and adequate nutritional intake of iodine. For in vitro studies on thyroid cell pathophysiology, the immortalized FRTL5 rat thyroid cell line and a derivative thereof, the PCCL3 cell line, are widely used. However, a permanent human thyroid cell line is currently lacking. A recent report described a cell line obtained from human thyroid cells designated as Cl-huThyrEC. Methods: Four clones of Cl-huThyrEC cells were obtained and cultured in the presence of thyroid stimulating hormone (TSH). The expression of key genes defining the thyroid follicular cell phenotype was determined by reverse-transcription PCR (RT-PCR) in FRTL5, PCCL3, and Cl-huThyrEC cells. The latter were cultured as monolayers and as organoids in Matrigel. Iodide uptake was measured and compared among the cell lines. Results: Gene expression analysis reveals that Cl-huThyrEC cells express the thyroid-restricted transcription factors (PAX8, NKX2.1, FOXE1), the TSH receptor (TSHR), and thyroglobulin (TG), but they do not express the sodium-iodide symporter (NIS), thyroid peroxidase (TPO), and pendrin (SLC26A4). In functional studies, Cl-huThyrEC cells are unable to concentrate iodide. Conclusions: Despite the expression of certain key genes that are limited or restricted to thyroid follicular cells, Cl-huThyrEC cells lack some of the essential characteristics of thyroid follicular cells, in particular, NIS. Hence, their utility as a model system for thyroid follicular cells is limited. Full article
(This article belongs to the Special Issue Biosynthesis and Function of Thyroid Hormones)
Show Figures

Figure 1

13 pages, 1533 KiB  
Article
Protocol for the Determination of Total Iodine in Iodized Table Salts Using Ultra-High-Performance Liquid Chromatography
by Mohd Azerulazree Jamilan, Aswir Abd Rashed and Mohd Fairulnizal Md Noh
Chemosensors 2025, 13(2), 46; https://doi.org/10.3390/chemosensors13020046 - 3 Feb 2025
Cited by 1 | Viewed by 654
Abstract
Potassium iodate and potassium iodide are commonly fortified in iodized table salt, which must be continuously monitored to maintain quality. Our study reported an optimized detection method for total iodine in iodized table salt using 0.5 M sodium bisulfite as the reducing agent. [...] Read more.
Potassium iodate and potassium iodide are commonly fortified in iodized table salt, which must be continuously monitored to maintain quality. Our study reported an optimized detection method for total iodine in iodized table salt using 0.5 M sodium bisulfite as the reducing agent. The iodized table salt (0.5 g) was dissolved in 0.5 M sodium bisulfite solution prior to injection in ultra-high-performance liquid chromatography (UHPLC) coupled with a diode array detector using a weak anion-exchange column (2.1 mm × 150 mm, 5 μm). Iodide was eluted at 9.92 ± 0.06 min (λ = 223 nm) when an isocratic mobile phase of 1:1 (v/v) methanol/120 mM phosphate buffer mixed with tetrasodium pyrophosphate (pH 3.0) was running at 0.20 mL/min (15 min). Iodide was detected as total iodine from 10.0 to 50.0 mg/kg with a limit of detection (LOD) of 1.2 mg/kg and a limit of quantification (LOQ) of 3.7 mg/kg. The method was validated with relative standard deviations (RSDs) of 4.2%, 0.4%, 1.6%, and 0.8% for accuracy, repeatability, intermediate precision, and robustness, respectively. The determination of total iodine was successful on six (6) samples (n = 3), which recovered 87.2–106.9% of iodate and iodide spike. Thus, this study provides a validated protocol for the determination of total iodine in iodized table salt using 0.5 M sodium bisulfite. Full article
(This article belongs to the Special Issue Green Analytical Chemistry: Current Trends and Future Developments)
Show Figures

Figure 1

14 pages, 2442 KiB  
Article
Histological Evaluation of Sodium Iodide-Based Root Canal Filling Materials in Canine Teeth
by Jae Hee Lee, Sak Lee, Hye-shin Park, Yu-Jin Kim, Hae-Hyoung Lee, Mi-Ran Han, Jun-Haeng Lee, Jong-Bin Kim, Ji-Sun Shin, Jong-Soo Kim and Jung-Hwan Lee
Materials 2024, 17(24), 6082; https://doi.org/10.3390/ma17246082 - 12 Dec 2024
Viewed by 779
Abstract
A novel water-soluble root canal filling material based on sodium iodide (NaI) has been developed to overcome the limitations of existing iodine-based formulations. However, the biological stability of this approach in animal studies remains unverified. This study evaluated the biocompatibility of NaI compared [...] Read more.
A novel water-soluble root canal filling material based on sodium iodide (NaI) has been developed to overcome the limitations of existing iodine-based formulations. However, the biological stability of this approach in animal studies remains unverified. This study evaluated the biocompatibility of NaI compared to commercial root canal filling materials (Calcipex II and Vitapex®) in pulpectomized canine teeth to assess its clinical applicability. Following a four-week observation period, none of the experimental groups exhibited tooth mobility or fistula formation. Radiographic and micro-CT analyses revealed no radiolucency in periapical lesions. Histopathologic evaluation demonstrated the absence of inflammatory responses in periapical regions across all material groups, with histological inflammation scoring 0. High-magnification histological examination of periapical areas showed well-preserved periodontal ligament tissue in all groups. Despite certain limitations of NaI-based fillings in the pulp cavity, including loss of radiopacity and tooth discoloration, NaI demonstrates potential as a safe and effective alternative for pulp filling material, particularly due to its minimal risk of root resorption and inflammatory response. Full article
Show Figures

Figure 1

16 pages, 6230 KiB  
Review
Redifferentiation Therapies in Thyroid Oncology: Molecular and Clinical Aspects
by Petra Petranović Ovčariček, Murat Tuncel, Atena Aghaee, Alfredo Campennì and Luca Giovanella
J. Clin. Med. 2024, 13(23), 7021; https://doi.org/10.3390/jcm13237021 - 21 Nov 2024
Viewed by 1482
Abstract
Since the 1940s, 131-I radioiodine therapy (RIT) has been the primary treatment for metastatic differentiated thyroid cancer (DTC). Approximately half of these patients respond favorably to RIT, achieving partial or complete remission or maintaining long-term stable disease, while the other half develop radioiodine-refractory [...] Read more.
Since the 1940s, 131-I radioiodine therapy (RIT) has been the primary treatment for metastatic differentiated thyroid cancer (DTC). Approximately half of these patients respond favorably to RIT, achieving partial or complete remission or maintaining long-term stable disease, while the other half develop radioiodine-refractory DTC (RAI-R DTC). The main genomic alteration involved in radioiodine resistance is the activated mitogen-activated protein kinase (MAPK) pathway, which results in the loss of sodium iodide symporters (NIS). Therefore, RAI-R DTC requires alternative treatment options such as tyrosine kinase inhibitors. Over the past decade, several studies have investigated pharmacological induction or enhancement of NIS expression through “redifferentiation” therapies, mainly targeting the MAPK pathway. These novel approaches can restore radioiodine sensitivity in previously refractory patients and, therefore, potentially reestablish the efficacy of RIT. This review discusses various redifferentiation strategies, including their molecular mechanisms and clinical implications. Full article
(This article belongs to the Special Issue Thyroid Disease: Updates from Diagnosis to Treatment)
Show Figures

Figure 1

16 pages, 829 KiB  
Article
A New Mathematical Approach for Hashimoto’s Thyroiditis in Children
by Marcello Pompa, Andrea De Gaetano, Alessandro Borri, Antonella Farsetti, Simona Nanni, Laura D’Orsi and Simona Panunzi
Mathematics 2024, 12(22), 3452; https://doi.org/10.3390/math12223452 - 5 Nov 2024
Viewed by 916
Abstract
Hashimoto’s thyroiditis (HT) is a prevalent autoimmune disorder marked by chronic inflammation of the thyroid gland, predominantly affecting children and adolescents. In a previous study, we developed a “maximal” mathematical model of thyroid physiology to simulate the complex interactions within the thyroid gland. [...] Read more.
Hashimoto’s thyroiditis (HT) is a prevalent autoimmune disorder marked by chronic inflammation of the thyroid gland, predominantly affecting children and adolescents. In a previous study, we developed a “maximal” mathematical model of thyroid physiology to simulate the complex interactions within the thyroid gland. The present research introduces an enhanced version of the “maximal” model, integrating the pathophysiological impacts of HT. It specifically models the adverse effects of thyroid peroxidase (TPO) and thyroglobulin (Tg) antibodies (TPOAb and TgAb) on TPO, Tg, sodium iodide symporter (NIS), albeit indirectly, and thyroid volume. Additionally, we present a new “minimal” model offering a streamlined interpretation of thyroid physiology and pathophysiology, designed for faster computational analysis while maintaining essential physiological interactions. Both models were fitted against longitudinal clinical data from patients with HT, assessing the concentrations of Thyroid Stimulating Hormone (TSH), Thyroxine (T4), and thyroid volume over 36 months, in both untreated patients and those receiving levothyroxine (LT4) treatment. The adaptation of the models to data shows that both of them accurately reproduce the available observed clinical outcomes, with the “maximal” model providing more detailed physiological insights but requiring extensive data and longer computation times. In contrast, the “minimal” model, despite exhibiting less realistic TSH oscillations, offers rapid parameter estimation and may be more feasible in clinical settings. These models hold significant potential as tools for detailed study and management of HT, enabling simulations of disease progression and therapeutic responses, thus paving the way for personalized treatment strategies. Full article
(This article belongs to the Section E3: Mathematical Biology)
Show Figures

Figure 1

11 pages, 2367 KiB  
Article
High-Affinity Plasma Membrane Ca2+ Channel Cch1 Modulates Adaptation to Sodium Dodecyl Sulfate-Triggered Rise in Cytosolic Ca2+ Concentration in Ogataea parapolymorpha
by Maria Kulakova, Maria Pakhomova, Victoria Bidiuk, Alexey Ershov, Alexander Alexandrov and Michael Agaphonov
Int. J. Mol. Sci. 2024, 25(21), 11450; https://doi.org/10.3390/ijms252111450 - 25 Oct 2024
Viewed by 870
Abstract
The cytosolic calcium concentration ([Ca2+]cyt) in yeast cells is maintained at a low level via the action of different transporters sequestrating these cations in the vacuole. Among them, the vacuolar Ca2+ ATPase Pmc1 crucially contributes to this process. [...] Read more.
The cytosolic calcium concentration ([Ca2+]cyt) in yeast cells is maintained at a low level via the action of different transporters sequestrating these cations in the vacuole. Among them, the vacuolar Ca2+ ATPase Pmc1 crucially contributes to this process. Its inactivation in Ogataea yeasts was shown to cause sodium dodecyl sulfate (SDS) hypersensitivity that can be alleviated by the inactivation of the plasma membrane high-affinity Ca2+ channel Cch1. Here, we show that SDS at low concentrations induces a rapid influx of external Ca2+ into cells, while the plasma membrane remains impermeable for propidium iodide. The inactivation of Pmc1 disturbs efficient adaptation to this activity of SDS. The inactivation of Cch1 partially restores the ability of pmc1 mutant cells to cope with an increased [Ca2+]cyt that correlates with the suppression of SDS hypersensitivity. At the same time, Cch1 is unlikely to be directly involved in SDS-induced Ca2+ influx, since its inactivation does not decrease the amplitude of the rapid [Ca2+]cyt elevation in the pmc1-Δ mutant. The obtained data suggest that the effects of CCH1 inactivation on SDS sensitivity and coping with increased [Ca2+]cyt are related to an additional Cch1 function beyond its direct involvement in Ca2+ transport. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

13 pages, 1556 KiB  
Article
Assessing the Effects of Surgical Irrigation Solutions on Human Neutrophil Interactions with Nascent Staphylococcus aureus Biofilms
by Gauri Gaur, Maria Predtechenskaya, Jovanka M. Voyich, Garth James, Philip S. Stewart and Timothy R. Borgogna
Microorganisms 2024, 12(10), 1951; https://doi.org/10.3390/microorganisms12101951 - 27 Sep 2024
Cited by 1 | Viewed by 1163
Abstract
Staphylococcus aureus (S. aureus) is the leading cause of surgical site infections (SSIs) and is capable of biofilm growth on implanted foreign devices. The use of surgical irrigation solutions has become a common strategy to combat bacterial contamination events that occur [...] Read more.
Staphylococcus aureus (S. aureus) is the leading cause of surgical site infections (SSIs) and is capable of biofilm growth on implanted foreign devices. The use of surgical irrigation solutions has become a common strategy to combat bacterial contamination events that occur during surgery. Despite their antimicrobial activity, SSI rates remain consistent, suggesting that low-level contamination persists. In these cases, circulating neutrophils must traffic from the blood to contamination sites to aid in bacterial clearance. The influence of irrigation solutions on neutrophils’ ability to engage with bacteria has not been explored. The effects of three commonly used irrigation solutions: Xperience (sodium lauryl sulfate), Irrisept (chlorhexidine gluconate), and Betadine® (povidone-iodine) on nascent S. aureus biofilms alone and in the presence of human neutrophils were assessed at manufactured and diluted concentrations. All three solutions, at a 10% dilution, inhibited bacterial growth as demonstrated by culture assays and confocal video microscopy of bacterial aggregate formation. The effects of 10% dilutions of each of these solutions on neutrophil membrane integrity (by flow cytometry and propidium iodide staining) and motility (by confocal video microscopy of neutrophil track length) were investigated with differing outcomes for each irrigation solution. At this concentration only Irrisept preserved neutrophil membrane integrity and motility. Together, this study examines an overlooked aspect of surgical irrigation solutions by investigating their impact on innate immunity and highlights the feasibility of formulations wherein solution effectiveness is complemented by neutrophil function to reduce risks of infection. Full article
(This article belongs to the Special Issue New Strategies for Pathogenic Biofilms)
Show Figures

Figure 1

17 pages, 17260 KiB  
Essay
Preliminary Study of the Characterization of the Viable but Noncultivable State of Yersinia enterocolitica Induced by Chloride and UV Irradiation
by Xueyu Hu, Xiaoxu Wang, Honglin Ren, Chengwei Li, Bo Zhang, Ruoran Shi, Yuzhu Wang, Shiying Lu, Yansong Li, Qiang Lu, Zengshan Liu and Pan Hu
Microorganisms 2024, 12(9), 1778; https://doi.org/10.3390/microorganisms12091778 - 28 Aug 2024
Cited by 1 | Viewed by 1065
Abstract
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in [...] Read more.
The viable but non-culturable (VBNC) state is a survival strategy for many foodborne pathogens under adverse conditions. Yersinia enterocolitica (Y. enterocolitica) as a kind of primary foodborne pathogen, and it is crucial to investigate its survival strategies and potential risks in the food chain. In this study, the effectiveness of ultraviolet (UV) irradiation and chlorine treatment in disinfecting the foodborne pathogen Y. enterocolitica was investigated. The results indicated that both UV irradiation and chlorine treatment can induce the VBNC state in Y. enterocolitica. The bacteria completely lost culturability after being treated with 25 mg/L of NaClO for 30 min and a UV dose of 100 mJ/cm². The number of culturable and viable cells were detected using plate counting and a combination of fluorescein and propidium iodide (live/dead cells). Further research found that these VBNC cells exhibited reduced intracellular Adenosine Triphosphate (ATP) levels, and increased levels of reactive oxygen species (ROS) compared to non-induced cells. Morphologically, the cells changed from a rod shape to a shorter, coccobacillary shape with small vacuoles forming at the edges, indicating structural changes. Both condition-induced VBNC-state cells were able to resuscitate in tryptic soy broth (TSB) medium supplemented with Tween 80, sodium pyruvate, and glucose. These findings contribute to a better understanding of the survival mechanisms of Y. enterocolitica in the environment and are of significant importance for the development of effective disinfection strategies. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms (2nd Edition))
Show Figures

Figure 1

8 pages, 1576 KiB  
Article
No Correlation between PD-L1 and NIS Expression in Lymph Node Metastatic Papillary Thyroid Carcinoma
by Lévay Bernadett, Kiss Alexandra, Fröhlich Georgina, Tóth Erika, Slezák András, Péter Ilona, Oberna Ferenc and Dohán Orsolya
Diagnostics 2024, 14(17), 1858; https://doi.org/10.3390/diagnostics14171858 - 26 Aug 2024
Viewed by 1179
Abstract
Approximately 90% of thyroid cancers are differentiated thyroid cancers (DTCs), originating from follicular epithelial cells. Out of these, 90% are papillary thyroid cancer (PTC), and 10% are follicular thyroid cancer (FTC). The standard care procedure for PTC includes surgery, followed by radioiodine (RAI) [...] Read more.
Approximately 90% of thyroid cancers are differentiated thyroid cancers (DTCs), originating from follicular epithelial cells. Out of these, 90% are papillary thyroid cancer (PTC), and 10% are follicular thyroid cancer (FTC). The standard care procedure for PTC includes surgery, followed by radioiodine (RAI) ablation and thyroid-stimulating hormone (TSH) suppressive therapy. Globally, treating radioiodine-refractory DTC poses a challenge. During malignant transformation, thyroid epithelial cells often lose their ability to absorb radioiodine due to impaired membrane targeting or lack of NIS (sodium/iodide symporter) expression. Recent reports show an increase in PD-L1 (programmed death ligand 1) expression in thyroid cancer cells during dedifferentiation. However, no research exists wherein NIS and PD-L1 expression are analyzed together in thyroid cancer. Therefore, we aimed to investigate and correlate PD-L1 and NIS expression within primary tumor samples of lymph node metastatic PTC. We analyzed the expression of hNIS (human sodium/iodide symporter) and PD-L1 in primary tumor samples from metastatic PTC patients using immunohistochemistry. Immunohistochemistry analysis of PD-L1 and NIS was conducted in 89 and 86 PTC cases, respectively. Any subcellular NIS localization was counted as a positive result. PD-L1 expression was absent in 25 tumors, while 58 tumors displayed PD-L1 expression in 1–50% of their cells; in 6 tumors, over 50% of the cells tested positive for PD-L1. NIS immunohistochemistry was performed for 86 primary papillary carcinomas, with 51 out of 86 tumors showcasing NIS expression. Only in seven cases was NIS localized in the plasma membrane; in most tumors, NIS was primarily found in the intracytoplasmic membrane compartments. In the case of PD-L1 staining, cells showing linear membrane positivity of any intensity were counted as positive. The evaluation of NIS immunostaining was simpler: cells showing staining of any intensity of cytoplasmic or membranous fashion were counted as positive. The number of NIS positive cells can be further divided into cytoplasmic and membrane positive compartments. There was no observed correlation between PD-L1 and NIS expression. We can speculate that the manipulation of the PD-1/PD-L1 axis using anti-PD-L1 or anti-PD-1 antibodies could reinstate the functional expression of NIS. However, based on our study, the only conclusion that can be drawn is that there is no correlation between the percentage of NIS- or PD-L1-expressing tumor cells in the primary tumor of lymph node metastatic PTC. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Thyroid Cancer)
Show Figures

Figure 1

19 pages, 847 KiB  
Review
Image-Guided Mesenchymal Stem Cell Sodium Iodide Symporter (NIS) Radionuclide Therapy for Glioblastoma
by Siddharth Shah and Brandon Lucke-Wold
Cancers 2024, 16(16), 2892; https://doi.org/10.3390/cancers16162892 - 20 Aug 2024
Cited by 2 | Viewed by 1439
Abstract
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive, invasive, and growth factor-independent grade IV glioma. Survival following the diagnosis is generally poor, with a median survival of approximately 15 months, and it is considered the most aggressive and lethal central nervous system tumor. Conventional treatments based on surgery, chemotherapy, and radiation therapy only delay progression, and death is inevitable. Malignant glioma cells are resistant to traditional therapies, potentially due to a subpopulation of glioma stem cells that are invasive and capable of rapid regrowth. Methods: This is a literature review. The systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used in PubMed and the articles retrieved were published in peer-reviewed scientific journals and were associated with brain GBM cancer and the sodium iodide symporter (NIS). Additionally, the words ‘radionuclide therapy OR mesenchyma, OR radioiodine OR iodine-131 OR molecular imaging OR gene therapy OR translational imaging OR targeted OR theranostic OR symporter OR virus OR solid tumor OR combined therapy OR pituitary OR plasmid AND glioblastoma OR GBM OR GB OR glioma’ were also used in the appropriate literature databases of PubMed and Google Scholar. A total of 68,244 articles were found in this search on Mesenchymal Stem Cell Sodium Iodide Symporter and GBM. These articles were found till 2024. To study recent advances, a filter was added to include articles only from 2014 to 2024, duplicates were removed, and articles not related to the title were excluded. These came out to be 78 articles. From these, nine were not retrieved and only seven were selected after the removal of keyword mismatched articles. Appropriate studies were isolated, and important information from each of them was understood and entered into a database from which the information was used in this article. Results: As a result of their natural capacity to identify malignancies, MSCs are employed as tumor therapy vehicles. Because MSCs may be transplanted using several methods, they have been proposed as the ideal vehicles for NIS gene transfer. MSCs have been used as a delivery vector for anticancer drugs in many tumor models due to their capacity to move precisely to malignancies. Also, by directly injecting radiolabeled MSCs into malignant tumors, a therapeutic dosage of beta radiation may be deposited, with the added benefit that the tumor would only localize and not spread to the surrounding healthy tissues. Conclusion: The non-invasive imaging-based detection of glioma stem cells presents an alternate means to monitor the tumor and diagnose and evaluate recurrence. The sodium iodide symporter gene is a specific gene in a variety of human thyroid diseases that functions to move iodine into the cell. In recent years, an increasing number of studies related to the sodium iodide symporter gene have been reported in a variety of tumors and as therapeutic vectors for imaging and therapy. Gene therapy and nuclear medicine therapy for GBM provide a new direction. In all the preclinical studies reviewed, image-guided cell therapy led to greater survival benefits and, therefore, has the potential to be translated into techniques in glioblastoma treatment trials. Full article
(This article belongs to the Special Issue Radiopharmaceuticals for Cancers)
Show Figures

Figure 1

15 pages, 4196 KiB  
Article
Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents
by Neil Rosenfeld, Mara P. Alonso, Courtney Humphries and David E. Bergbreiter
Technologies 2024, 12(8), 138; https://doi.org/10.3390/technologies12080138 - 20 Aug 2024
Viewed by 2415
Abstract
Trace concentrations of dyes are often present in textile wastewater streams and present a serious environmental problem. Thus, these dyes must be removed from wastewater either by degradation or sequestration prior to discharge of the wastewater into the environment. Existing processes to remove [...] Read more.
Trace concentrations of dyes are often present in textile wastewater streams and present a serious environmental problem. Thus, these dyes must be removed from wastewater either by degradation or sequestration prior to discharge of the wastewater into the environment. Existing processes to remove these wastewater contaminants include the use of solid sorbents to sequester dyes or the use of biochemical or chemical methods of dye degradation. However, these processes typically generate their own waste products, are not necessarily rapid because of the low dye concentration, and often use expensive or non-recyclable sequestrants or reagents. This paper describes a simple, recyclable, liquid–liquid extraction scheme where ionic dyes can be sequestered into poly(α-olefin) (PAO) solvent systems. The partitioning of anionic and cationic dyes from water into PAOs is facilitated by ionic PAO-phase anchored sequestering agents that are readily prepared from commercially available vinyl-terminated polyisobutylene (PIB). This is accomplished by a sequence of reactions involving hydroboration/oxidation, conversion of an alcohol into an iodide, and conversion of the resulting primary alkyl iodide into a cationic nitrogen derivative. The products of this synthetic sequence are cationic nitrogen iodide salts which serve as anionic sequestrants that are soluble in PAO. These studies showed that the resulting series of cationic PIB-bound cationic sequestering agents facilitated efficient extraction of anionic, azo, phthalein, and sulfonephthalein dyes from water into a hydrocarbon PAO phase. Since the hydrocarbon PAO phase is completely immiscible with water and the PIB derivatives are also insoluble in water, neither the sequestration solvent nor the sequestrants contaminate wastewater. The effectiveness and efficiency of these sequestrations were assayed by UV–visible spectroscopy. These spectroscopic studies showed that extraction efficiencies were in most cases >99%. These studies also involved procedures that allowed for the regeneration and recycling of these PAO sequestration systems. This allowed us to recycle the PAO solvent system for at least 10 sequential batch extractions where we sequestered sodium salts of methyl red and 4′,5′-dichlorofluorescein dyes from water with extraction efficiencies of >99%. These studies also showed that a PIB-bound derivative of the sodium salt of 1,1,1-trifluoromethylpentane-2,4-dione could be prepared from a PIB-bound carboxylic acid ester by a Claisen-like reaction and that the sodium salt of this β-diketone could be used to sequester cationic dyes from water. This PIB-bound anion rapidly and efficiently extracted >99% of methylene blue, malachite green, and safranine O from water based on UV–visible and 1H NMR spectroscopic assays. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

13 pages, 3748 KiB  
Article
Influence of Metamizole on Antitumour Activity of Risedronate Sodium in In Vitro Studies on Canine (D-17) and Human (U-2 OS) Osteosarcoma Cell Lines
by Dominik Poradowski, Aleksander Chrószcz, Radosław Spychaj, Joanna Wolińska and Vedat Onar
Biomedicines 2024, 12(8), 1869; https://doi.org/10.3390/biomedicines12081869 - 15 Aug 2024
Viewed by 1490
Abstract
The availability of metamizole varies greatly around the world. There are countries such as the USA, UK, or Australia where the use of metamizole is completely forbidden, and there are also countries where this drug is available only on prescription (e.g., Greece, Italy, [...] Read more.
The availability of metamizole varies greatly around the world. There are countries such as the USA, UK, or Australia where the use of metamizole is completely forbidden, and there are also countries where this drug is available only on prescription (e.g., Greece, Italy, Spain, etc.) and those in which it is sold OTC—over the counter (e.g., most Asian and South American countries). Metamizole, as a drug with a strong analgesic effect, is used as an alternative to other non-steroidal anti-inflammatory drugs, alone or in combination with opioid drugs. Risedronate sodium is a third-generation bisphosphonate commonly used in orthopaedic and metabolic diseases of the musculoskeletal system, including hypercalcemia, postmenopausal osteoporosis, Paget’s disease, etc. The aim of this study was to check whether there were any pharmacological interactions between metamizole and risedronate sodium in in vitro studies. Cell viability was assessed using the MTT method, the number of apoptotic cells was assessed using the labelling TUNEL method, and the cell cycle assessment was performed with a flow cytometer and propidium iodide. This was a pilot study, which is why only two cancer cell lines were tested: D-17 of canine osteosarcoma and U-2 OS of human osteosarcoma. Exposure of the canine osteosarcoma cell line to a combination of risedronate sodium (100 µg/mL) and metamizole (50, 5, and 0.5 µg/mL) resulted in the complete abolition of the cytoprotective activity of metamizole. In the human osteosarcoma cell line, the cytotoxic effect of risedronate sodium was entirely eliminated in the presence of 50 µg/mL of metamizole. The cytoprotective and anti-apoptotic effect of metamizole in combination with risedronate sodium in the tested human and canine osteosarcoma cell lines indicates an urgent need for further in vivo studies to confirm or disprove the potential dose-dependent undesirable effect of such a therapy. Full article
(This article belongs to the Special Issue Molecular Insights into Osteosarcoma)
Show Figures

Figure 1

18 pages, 1525 KiB  
Article
Contrastive Machine Learning with Gamma Spectroscopy Data Augmentations for Detecting Shielded Radiological Material Transfers
by Jordan R. Stomps, Paul P. H. Wilson and Kenneth J. Dayman
Mathematics 2024, 12(16), 2518; https://doi.org/10.3390/math12162518 - 15 Aug 2024
Viewed by 1001
Abstract
Data analysis techniques can be powerful tools for rapidly analyzing data and extracting information that can be used in a latent space for categorizing observations between classes of data. Machine learning models that exploit learned data relationships can address a variety of nuclear [...] Read more.
Data analysis techniques can be powerful tools for rapidly analyzing data and extracting information that can be used in a latent space for categorizing observations between classes of data. Machine learning models that exploit learned data relationships can address a variety of nuclear nonproliferation challenges like the detection and tracking of shielded radiological material transfers. The high resource cost of manually labeling radiation spectra is a hindrance to the rapid analysis of data collected from persistent monitoring and to the adoption of supervised machine learning methods that require large volumes of curated training data. Instead, contrastive self-supervised learning on unlabeled spectra can enhance models that are built on limited labeled radiation datasets. This work demonstrates that contrastive machine learning is an effective technique for leveraging unlabeled data in detecting and characterizing nuclear material transfers demonstrated on radiation measurements collected at an Oak Ridge National Laboratory testbed, where sodium iodide detectors measure gamma radiation emitted by material transfers between the High Flux Isotope Reactor and the Radiochemical Engineering Development Center. Label-invariant data augmentations tailored for gamma radiation detection physics are used on unlabeled spectra to contrastively train an encoder, learning a complex, embedded state space with self-supervision. A linear classifier is then trained on a limited set of labeled data to distinguish transfer spectra between byproducts and tracked nuclear material using representations from the contrastively trained encoder. The optimized hyperparameter model achieves a balanced accuracy score of 80.30%. Any given model—that is, a trained encoder and classifier—shows preferential treatment for specific subclasses of transfer types. Regardless of the classifier complexity, a supervised classifier using contrastively trained representations achieves higher accuracy than using spectra when trained and tested on limited labeled data. Full article
Show Figures

Figure 1

25 pages, 8740 KiB  
Article
Open-Source Optimization of Hybrid Monte Carlo Methods for Fast Response Modeling of NaI (Tl) and HPGe Gamma Detectors
by Matthew Niichel and Stylianos Chatzidakis
J. Nucl. Eng. 2024, 5(3), 274-298; https://doi.org/10.3390/jne5030019 - 5 Aug 2024
Viewed by 1213
Abstract
Modeling the response of gamma detectors has long been a challenge within the nuclear community. Significant research has been conducted to digitally replicate instruments that can cost over USD 100,000 and are difficult to operate outside of a laboratory setting. The large cost [...] Read more.
Modeling the response of gamma detectors has long been a challenge within the nuclear community. Significant research has been conducted to digitally replicate instruments that can cost over USD 100,000 and are difficult to operate outside of a laboratory setting. The large cost and availability prevent some from making use of such equipment. Subsequently, there have been multiple attempts to create cost-effective codes that replicate the response of sodium-iodide and high-purity germanium detectors for data derivation related to gamma-ray interaction with matter. While robust programs do exist, they are often subject to export controls and/or they are not intuitive to use. Through the use of hybrid Monte Carlo methods, MATLAB can be used to produce a fast first-order response of various gamma-ray detectors. The combination of a graphical user interface with a numerical-based script allows for open-source and intuitive code. When benchmarked with experimental data from Co-60, Cs-137, and Na-22, the code can numerically calculate a response comparable to experimental and industry-standard response codes. Evidence supports both savings in computational requirements and the inclusion of an intuitive user experience that does not heavily compromise data when compared to other standard codes, such as MCNP and GADRAS, or experimental results. When the application is installed on a Dell Intel i7 computer with 16 cores, the average time to simulate the benchmarked isotopes is 0.26 s. Installation on an HP Intel i7 four-core machine runs the same isotopes in 1.63 s. The results indicate that simple gamma detectors can be modeled in an open-source format. The anticipation for the MATLAB application is to be a tool that can be easily accessible and provide datasets for use in an academic setting requiring gamma-ray detectors. Ultimately, this article provides evidence that hybrid Monte Carlo codes in an open-source format can benefit the nuclear community in both computational time and up-front cost for access. Full article
(This article belongs to the Special Issue Monte Carlo Simulation in Reactor Physics)
Show Figures

Figure 1

Back to TopTop