Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,312)

Search Parameters:
Keywords = stability investigation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2601 KB  
Article
Determinants of Financial Stability and Development in South Africa: Insights from a Quantile ARDL Model of the South African Financial Cycle
by Khwazi Magubane
J. Risk Financial Manag. 2025, 18(9), 495; https://doi.org/10.3390/jrfm18090495 (registering DOI) - 4 Sep 2025
Abstract
This study investigates the short-run and long-run dynamics of the financial cycle in South Africa, focusing on its macroeconomic drivers and their asymmetric effects across different phases. It addresses the persistent challenge in emerging market economies of balancing financial development and stability amidst [...] Read more.
This study investigates the short-run and long-run dynamics of the financial cycle in South Africa, focusing on its macroeconomic drivers and their asymmetric effects across different phases. It addresses the persistent challenge in emerging market economies of balancing financial development and stability amidst volatile conditions. Using monthly data from 2000 to 2024, the research employs a quantile autoregressive distributed lag (QARDL) model to capture the heterogeneity and persistence of macro-financial linkages across the financial cycle’s distribution. The use of the QARDL model in this study allows for capturing asymmetric and quantile-specific relationships that traditional linear models might overlook. Findings reveal that monetary policy, and the housing sector are key drivers of long-term financial development in South Africa, showing positive effects. Conversely, exchange rate movements, inflation, money supply, and macroprudential policy dampen financial development. Short-term financial booms are associated with GDP growth, credit, share, and housing prices. Money supply and inflation are more closely linked to burst phases. These results underscore the importance of policy coordination, particularly between monetary and macroprudential authorities, to balance promoting financial development and ensuring stability in emerging markets. This study contributes to the empirical literature and offers practical insights for policymakers. Full article
(This article belongs to the Special Issue Advanced Studies in Empirical Macroeconomics and Finance)
Show Figures

Figure 1

30 pages, 2595 KB  
Article
Choline Acetate-, L-Carnitine- and L-Proline-Based Deep Eutectic Solvents: A Comparison of Their Physicochemical and Thermal Properties in Relation to the Nature and Molar Ratios of HBAs and HBDs
by Luca Guglielmero, Angelica Mero, Spyridon Koutsoumpos, Sotiria Kripotou, Konstantinos Moutzouris, Lorenzo Guazzelli and Andrea Mezzetta
Int. J. Mol. Sci. 2025, 26(17), 8625; https://doi.org/10.3390/ijms26178625 (registering DOI) - 4 Sep 2025
Abstract
The search for more sustainable alternatives to traditional organic solvents, in the frame of the green chemistry approach, is leading to an increasing interest toward the exploration of deep eutectic solvents (DESs), especially natural-based ones (NADESs). The great ferment in the use of [...] Read more.
The search for more sustainable alternatives to traditional organic solvents, in the frame of the green chemistry approach, is leading to an increasing interest toward the exploration of deep eutectic solvents (DESs), especially natural-based ones (NADESs). The great ferment in the use of DESs as innovative media for many applications and in the research of novel types of DESs is not matched by an equal rigor in their characterization and in the study of their physico-chemical characteristics. Nevertheless, it is evident how comparative studies encompassing the investigation of a wide range of properties in relationship with the DESs structures would be beneficial for a rational development of the field. In this work a panel of DESs featuring choline acetate, L-carnitine and L-proline as hydrogen bond acceptor constituents (HBAs) and ethylene glycol, glycerol and levulinic acid as hydrogen bond donor constituents (HBDs) in 1:2 and 1:3 molar ratios have been prepared and characterized. Their density, viscosity and optical properties have been thoroughly investigated at various temperatures, analyzing the influence of their composition in terms of type of HBA, type of HBD and molar ratio on their properties. All the proposed DESs have also been thermally characterized by TGA and DSC, providing a description of their thermal behavior in a wide range of temperature and determining their thermal stability and thermal degradation profile. Full article
21 pages, 3261 KB  
Article
The Mechanism of the Effect of FCC Slurry Oil Blending Ratio on the Colloidal Stability and Asphaltene Aggregation Behavior of Low-Sulfur Marine Fuel Oil
by Aigang Li, Shengjun Guo, Jianwen Deng, Hong Chen, Jinxuan Wu, Ru Jiang, Jing Tan, Lihua Cheng, Libo Zhang and Qinzhen Fan
J. Mar. Sci. Eng. 2025, 13(9), 1713; https://doi.org/10.3390/jmse13091713 (registering DOI) - 4 Sep 2025
Abstract
Addressing IMO 2020 compliance, this study investigates marine fuel oil production from hydrotreated residues, focusing on mitigating excessive total sediment potential (TSP) caused by over-hydrotreatment. This study systematically investigates the impact of blending ratios of Fluid Catalytic Cracking (FCC) slurry oil with Residue [...] Read more.
Addressing IMO 2020 compliance, this study investigates marine fuel oil production from hydrotreated residues, focusing on mitigating excessive total sediment potential (TSP) caused by over-hydrotreatment. This study systematically investigates the impact of blending ratios of Fluid Catalytic Cracking (FCC) slurry oil with Residue Desulfurization (RDS) heavy oil on TSP, colloidal stability, and asphaltene structure evolution. Techniques such as XRD, SEM, and XPS were employed to analyze the structural changes in asphaltenes during the TSP exceeding process. The results indicate that as the FCC slurry oil blending ratio increases, TSP in the blended oil initially rises and then decreases. The peak TSP value of 0.41% occurs at a 10% FCC slurry oil blending ratio, primarily due to high-saturation hydrocarbons in RDS heavy oil disrupting the colloidal stability of asphaltenes in FCC slurry oil. When the blending ratio reaches 25%, TSP significantly decreases to 0.09%, attributed to the solubilizing effect of high aromatic compounds in the FCC slurry oil on the asphaltenes. The ω(Asp)/ω(Res) ratio mirrors the TSP trend, and the colloidal solubilizing capacity of asphaltenes increases with the blending ratio. Asphaltenes in RDS heavy oil exhibit a spherical structure, whereas those in FCC slurry oil show a layered structure. The precipitated asphaltenes in the blends primarily result from the aggregation of asphaltenes in FCC slurry oil, with heteroatoms (N, S, O) mainly originating from RDS heavy oil asphaltenes. During the early stage of blending, TSP formation is dominated by FCC slurry oil asphaltenes, but increasing the aromatic content in the system can significantly reduce TSP. This work provides theoretical and technical support for optimizing marine fuel blending processes in petrochemical enterprises. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 22552 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 (registering DOI) - 4 Sep 2025
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

20 pages, 2517 KB  
Article
Fabrication of Zein Nanoparticle-Functionalized Wheat Gluten Amyloid Fibril/Methyl Cellulose Hybrid Membranes with Efficient Performance for Water-in-Oil Emulsion Separation
by You-Ren Lai, Jun-Ying Lin, Jou-Ting Hsu, Ta-Hsien Lin, Su-Chun How and Steven S.-S. Wang
Polymers 2025, 17(17), 2409; https://doi.org/10.3390/polym17172409 (registering DOI) - 4 Sep 2025
Abstract
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to [...] Read more.
Considering the high stability of water-in-oil (W/O) emulsions, contamination from emulsified pollutants poses a long-term risk to the environment. In this study, hybrid membranes composed of wheat gluten amyloid fibrils (WGAFs) and zein nanoparticles (ZNPs) were prepared and used as a separator to remove emulsified W/O droplets from the oily phase. ZNPs and WGAFs were synthesized through antisolvent method and fibrillation process. Next, a ZNP-functionalized wheat gluten AF/methyl cellulose (ZNP-WGAF/MC) hybrid membrane was fabricated, and its properties were investigated via various analytical techniques. Lastly, the separation efficiency of the ZNP-WGAF/MC hybrid membrane for various W/O emulsions was assessed using microscopy and light scattering. The formation of ZNPs or WGAFs was first verified via spectroscopic and microscopic methods. Our results indicated that the ZNP-WGAF/MC hybrid membranes were synthesized via chemical crosslinking coupled with the casting method. Furthermore, the incorporation of either WGAFs or ZNPs was found to improve the thermal stability and surface hydrophobicity of membranes. Finally, the separation efficiency of the ZNP-WGAF/MC hybrid membranes for various W/O emulsions was determined to be ~87–99%. This research demonstrates the potential of harnessing three-dimensional membranes composed of plant protein-based fibrils and nanoparticles to separate emulsified W/O mixtures. Full article
(This article belongs to the Special Issue Functional Polymer Membranes for Advanced Separation Technologies)
10 pages, 2606 KB  
Article
Investigating the Stability of Cu2Se Superionic Thermoelectric Material in Air Atmosphere
by Paweł Nieroda, Małgorzata Rudnik, Marzena Mitoraj-Królikowska, Ewa Drożdż, Dawid Kozień, Juliusz Leszczyński and Andrzej Koleżyński
Materials 2025, 18(17), 4152; https://doi.org/10.3390/ma18174152 (registering DOI) - 4 Sep 2025
Abstract
Copper selenide (Cu2Se) has garnered significant attention as an exceptional thermoelectric material due to its high thermoelectric figure of merit (ZT values > 2). This remarkable efficiency makes it a strong candidate for various applications. However, the practical deployment of [...] Read more.
Copper selenide (Cu2Se) has garnered significant attention as an exceptional thermoelectric material due to its high thermoelectric figure of merit (ZT values > 2). This remarkable efficiency makes it a strong candidate for various applications. However, the practical deployment of thermoelectrics often requires operation in an oxygen-containing atmosphere, which poses a significant challenge for Cu2Se due to its environmental instability. This work investigates the environmental behavior of high-purity Cu2Se, which was synthesized via a direct high-temperature reaction and spark plasma sintering (SPS). Our Temperature-Programmed Oxidation (TPO) studies determined that the onset of oxidation occurs at a temperature as low as 623 K. Further analysis using SEM–EDS confirmed the formation of copper oxides, Cu2O and CuO. Critically, thermogravimetric analysis (TGA) revealed that the SeO2 formation and sublimation process is an equally profound degradation mechanism, alongside copper oxidation, particularly within the optimal 673–973 K temperature range. Complementary XRD studies of samples annealed in air underscore this severe material degradation, which is especially devastating between 873 and 973 K. Ironically, this is the precise temperature window where Cu2Se’s highest ZT values have been reported. Our findings demonstrate that the direct application of Cu2Se in air is impractical, highlighting the urgent need for developing robust protective layers to unlock its full potential. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

27 pages, 12060 KB  
Article
AI-Enhanced Surrounding Rock Parameter Determination of Deeply Buried Underground Laboratory in Jinping, China
by Zejie Feng, Shaojun Li, Hongbo Zhao, Manbin Shen, Minzong Zheng, Jinzhong Yang, Yaxun Xiao and Pengzhi Pan
Buildings 2025, 15(17), 3187; https://doi.org/10.3390/buildings15173187 (registering DOI) - 4 Sep 2025
Abstract
Rock mechanical parameters are essential to design, stability analysis, and safety construction in rock underground engineering. Inverse analysis is an effective tool for determining the mechanical properties of rock masses in deep underground engineering. Given that conventional methods cannot accurately solve such problems, [...] Read more.
Rock mechanical parameters are essential to design, stability analysis, and safety construction in rock underground engineering. Inverse analysis is an effective tool for determining the mechanical properties of rock masses in deep underground engineering. Given that conventional methods cannot accurately solve such problems, proxy models are widely used. This study proposes a novel inverse analysis framework integrating the CatBoost algorithm and Simplicial Homology Global Optimization (SHGO) to overcome limitations of conventional methods. CatBoost efficiently constructs a proxy model, replacing time-consuming numerical simulations. SHGO then searches for optimal rock parameters using this proxy. The method was validated in the D2 laboratory of the second phase project of the Jinping Underground Laboratory (CJPL–II) in China and applied to invert surrounding rock parameters using field displacement monitoring data and numerical simulations. Investigations examined inversion accuracy under varying excavation steps, numbers of monitoring points, and wider parameter ranges. Results show inverted parameters converge towards true values as excavation steps and monitoring points increase. Crucially, even within the most extensive parameter range, relative errors between inversion results and true values remain below 20%. This integrated CatBoost–SHGO framework provides a feasible, scientific, and promising approach for determining rock mechanical parameters. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

17 pages, 1006 KB  
Article
Long-Term Production Performance and Stability of Alfalfa/Grass Mixtures in the Longdong Loess Plateau of China: Subjected to Various Species Combinations and Seeding Ratios
by Xiaojuan Wu, Junyu Zhang, Jiaojiao Zhang, Yixiao Lu, Ting Ye and Huimin Yang
Agriculture 2025, 15(17), 1884; https://doi.org/10.3390/agriculture15171884 - 4 Sep 2025
Abstract
Stable productivity is the basis for efficient and sustainable use of perennial grasslands, holding both ecological and economic importance. Alfalfa-based mixtures have great potential to achieve this goal. There was limited information on the impact of species combination and seeding ratio on their [...] Read more.
Stable productivity is the basis for efficient and sustainable use of perennial grasslands, holding both ecological and economic importance. Alfalfa-based mixtures have great potential to achieve this goal. There was limited information on the impact of species combination and seeding ratio on their long-term production performance and stability. We investigated forage yield, quality, and temporal stability over six years in alfalfa (Medicago sativa)/timothy (Phleum pretense) and alfalfa/smooth bromegrass (Bromus inermis) mixtures at varying seeding ratios. Alfalfa/grass mixtures showed a yield advantage over grass monocultures with greater yield at higher alfalfa seeding proportions (50% or more). The mixtures showed advantages in crude protein and neutral detergent fiber. Crude protein content tended to increase with increasing alfalfa seeding proportion, while fiber contents barely changed. As stands grew older, forage yield increased and then declined and showed greater stability in mixtures compared with monocultures. The percentage of alfalfa yield tended to increase over the life of the stand. In contrast, forage quality varied over the life of the stand, with greater variability in mixtures than monocultures. Considering forage yield, quality, and stability across years, smooth bromegrass would be more compatible with alfalfa in a mixture compared to timothy for the Longdong Loess Plateau of China and areas with similar climates. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

13 pages, 1180 KB  
Review
Polo-like Kinase 4: A Molecular Culprit in Skin Cancer Pathogenesis
by Tanya Jaiswal, Durdana Muntaqua and Nihal Ahmad
Cells 2025, 14(17), 1381; https://doi.org/10.3390/cells14171381 - 4 Sep 2025
Abstract
Skin cancer remains a significant global health challenge, with rising incidence and associated mortality in late-stage and drug-resistant cases. This underscores a continuing need for more effective novel therapeutic options that can be utilized for efficient management of skin cancers. A promising approach [...] Read more.
Skin cancer remains a significant global health challenge, with rising incidence and associated mortality in late-stage and drug-resistant cases. This underscores a continuing need for more effective novel therapeutic options that can be utilized for efficient management of skin cancers. A promising approach involves exploiting novel targets, which are dysregulated in skin cancer, either alone or in combination with existing therapeutics. Among these, polo-like kinases (PLKs), a family of serine/threonine kinases, has emerged as promising candidates due to their essential role in cell cycle and maintaining genomic stability, key hallmarks of cancer. Within this family, polo-like kinase 4 (PLK4) stands out as a structurally distinct member and the master regulator of centriole duplication, ensuring this process occurs only once per cell division. Dysregulation of PLK4 can disrupt genomic integrity, contributing to tumorigenesis, thus making it a promising target for cancer management. Notably, PLK4 is frequently overexpressed in several cancers, including skin cancer, and its precise role in skin cancer is an area of current investigation. Further, several small-molecule PLK4 inhibitors such as centrinone, YLZ-F5, CFI-400945, and RP-1664 have demonstrated efficacy in targeting PLK4. Among these, CFI-400945 has advanced to clinical trials, where it has shown modest anti-cancer activity. In this review, we provide a comprehensive overview of the known functions of PLK4 in skin cancer. Additionally, we discuss potential mechanistic insights into PLK4′s involvement in skin cancer progression by extrapolating evidence from studies in other cancer types including colorectal cancer, thyroid cancer, lymphomas, leukemia, etc., while identifying gaps for future research. Full article
Show Figures

Figure 1

13 pages, 4544 KB  
Article
Anodic Catalytic Oxidation of Sulfamethoxazole: Efficiency and Mechanism on Co3O4 Nanowire Self-Assembled CoFe2O4 Nanosheet Heterojunction
by Han Cui, Qiwei Zhang and Shan Qiu
Catalysts 2025, 15(9), 854; https://doi.org/10.3390/catal15090854 - 4 Sep 2025
Abstract
By modulating the mass ratio of hydrothermal agents to cobalt/iron precursors, Co3O4 nanowires were successfully integrated into spinel-type Co/Fe@NF, forming a heterojunction anode for alkaline water electrolysis (AWE) hydrogen production. This Co3O4 nanowire-assembled CoFe2O4 [...] Read more.
By modulating the mass ratio of hydrothermal agents to cobalt/iron precursors, Co3O4 nanowires were successfully integrated into spinel-type Co/Fe@NF, forming a heterojunction anode for alkaline water electrolysis (AWE) hydrogen production. This Co3O4 nanowire-assembled CoFe2O4 nanosheet anode (Co/Fe(5:1)@NF) exhibits exceptional electrochemical oxygen evolution reaction (OER) performance, requiring only 221 mV overpotential to achieve 10 mA cm−2. Sulfamethoxazole (SMX) was employed as a model pollutant to investigate the anode sacrificial material; it achieved approximately 95% SMX degradation efficiency, reducing the OER potential of 50 mV/10 mA cm−2. SMX oxidation coupled with Co/Fe heterojunction structure partially substitutes the OER. Co/Fe heterojunction generates an internal magnetic field, which induces the formation of novel active species within the system. ·O2 is the newly formed active oxygen species, which enhanced the proportion of indirect SMX oxidation. Quantitative analysis reveals that superoxide radical-mediated indirect oxidation of SMX accounts for approximately 38.5%, Fe(VI) for 9.4%, other active species for 6.1%, and direct oxidation for 46.0%. The nanowire–nanosheet assembly stabilizes a high-spin configuration on the catalyst surface, redirecting oxygen intermediate pathways toward triplet oxygen (3O2) generation. Subsequent electron transfer from nanowire tips facilitates rapid 3O2 reduction, forming superoxide radicals (·O2). This study effectively driven by indirect oxidation, with cathodic hydrogen production, providing a novel strategy for utilizing renewable electricity and reducing OER while offering insights into the design of Co/Fe-based catalyst. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

14 pages, 3237 KB  
Article
Dimensional Engineering of 1D/2D Synergistic TiO2 Nanostructures for High-Efficiency Photocatalytic CO2 Reduction
by Xiang Liu, Fujiang Huang, Xiang Shi, Hangmin Xu, Jian Xu and Xingwang Zhu
Materials 2025, 18(17), 4148; https://doi.org/10.3390/ma18174148 - 4 Sep 2025
Abstract
Alongside the gradual progress of industrialization and the continuous development of human society, the problems of environmental pollution and energy crisis have become increasingly prominent. Semiconductor photocatalysis is a promising solution to these challenges. The photocatalytic reduction of CO2 by TiO2 [...] Read more.
Alongside the gradual progress of industrialization and the continuous development of human society, the problems of environmental pollution and energy crisis have become increasingly prominent. Semiconductor photocatalysis is a promising solution to these challenges. The photocatalytic reduction of CO2 by TiO2 to produce carbon monoxide and methane is a process which has been identified as a means of developing clean energy. In this paper, two-dimensional TiO2 (2D-TiO2) was synthesized via a one-step solvothermal method, and one-dimensional TiO2 (1D-TiO2) was obtained through a hydrothermal process. Their photocatalytic CO2 reduction performances were systematically investigated. The results show that 2D-TiO2 exhibits superior catalytic activity compared to 1D-TiO2, which can be attributed to its lamellar structure, larger specific surface area, and improved hydrophilicity, providing more active sites and faster reaction kinetics. To further reveal the reaction mechanism, density functional theory (DFT) calculations were carried out using VASP with the GGA–PBE functional, PAW potentials, and a plane-wave cutoff energy of 520 eV. A 3 × 3 × 1 Monkhorst–Pack grid was used for Brillouin zone integration, and all possible adsorption configurations of CO2*, COOH*, and CO* intermediates on the 2D-TiO2 surface were evaluated. The results confirm that 2D-TiO2 stabilizes key intermediates more effectively, thereby lowering the energy barrier and facilitating CO2 reduction. These findings demonstrate that structural modulation of TiO2 significantly influences its photocatalytic performance and highlight the great potential of 2D-TiO2 for efficient CO2 conversion and clean energy applications. Full article
(This article belongs to the Special Issue Emerging Materials for Photonic and Solar-Driven Applications)
Show Figures

Figure 1

24 pages, 1104 KB  
Article
Muffins Enriched with the Polysaccharide Fraction Residue After Isolation of Starch from Unripe Apples—Nutritional Composition, Profile of Phenolic Compounds, and Oxidation Stability
by Dorota Gumul, Marek Kruczek, Eva Ivanišová and Ivona Jančo
Appl. Sci. 2025, 15(17), 9720; https://doi.org/10.3390/app15179720 - 4 Sep 2025
Abstract
Apple by-products are a valuable raw material due to their high content of dietary fiber, minerals, and bioactive compounds, making them a promising functional ingredient in food products. The aim of this study was to evaluate the effect of adding a residue obtained [...] Read more.
Apple by-products are a valuable raw material due to their high content of dietary fiber, minerals, and bioactive compounds, making them a promising functional ingredient in food products. The aim of this study was to evaluate the effect of adding a residue obtained from the isolation of starch from unripe apples of the Pyros and Oliwka varieties on the nutritional composition, mineral content, polyphenol and fiber levels, and color of wheat muffins. Additionally, the oxidative stability was analyzed. The results showed that the addition of the residue significantly increased the total, soluble, and insoluble fiber content, as well as the protein content. The polysaccharide fraction residue from unripe Oliwka apples had a stronger impact on enhancing the fiber content of the muffins. In contrast, muffins enriched with the polysaccharide fraction residue from unripe Pyros apples exhibited higher levels of calcium, potassium, and magnesium, while the Oliwka residue increased the contents of sodium, strontium, and iron. The addition of the polysaccharide fraction residue significantly increased the levels of chlorogenic acid, phloridzin, quercetin, and procyanidin B1. Color analysis revealed a darkening effect in the muffins after the addition of the residue, and the oxidative stability decreased with increasing levels of the polysaccharide fraction residue. This study demonstrated that apple residues obtained after starch isolation can effectively enrich muffins with nutrients and health-promoting compounds; however, their impact on oxidative stability requires further investigation. Full article
(This article belongs to the Special Issue Food Polysaccharides: Chemistry, Technology and Applications)
Show Figures

Figure 1

18 pages, 2663 KB  
Article
A Novel Approach Coupling Optimized Enzymatic Hydrolysis Conditions with Spray Drying to Produce Functional Acheta domesticus Protein Powder Ingredients
by Jade Schlamb, Fábio Gonçalves Macêdo de Medeiros, Roberta Targino Hoskin, Kathya Wainwright and Marvin Moncada
Appl. Sci. 2025, 15(17), 9721; https://doi.org/10.3390/app15179721 - 4 Sep 2025
Abstract
As the global population continues to grow, so does the demand for alternative protein sources. Entomophagy, the consumption of insects, has long been practiced in many cultures worldwide and is now gaining increasing interest in Western countries. In this work, we developed novel, [...] Read more.
As the global population continues to grow, so does the demand for alternative protein sources. Entomophagy, the consumption of insects, has long been practiced in many cultures worldwide and is now gaining increasing interest in Western countries. In this work, we developed novel, functional insect-based ingredients from the house cricket (Acheta domesticus) by utilizing optimized enzymatic hydrolysis, using two enzymes (Alcalase® or Flavourzyme®) coupled with spray drying. A Box–Behnken experimental design was used to optimize enzymatic treatments and maximize spray-drying performance and product solubility. Under optimized conditions, spray-dried hydrolyzed cricket protein (HCP) produced using Alcalase® achieved a solids recovery of 51.44% and a solubility of 58.28 ± 0.5%. In comparison, Flavourzyme®–HCP, under optimized conditions, exhibited a higher solubility of 61.25 ± 0.8%. Additional functional properties were improved for Alcalase®–HCP and Flavourzyme®–HCP, respectively, including foaming capacity at pH 4 (26.80 ± 4.0%, 36.27 ± 1.0%) and 10 (50.98 ± 2.8%, 47.06 ± 1.6%), and foaming stability in acidic conditions at pH 4 (24.18 ± 4.0%, 30.39 ± 2.9%). Moreover, the emulsion stability, especially at pH 7 (74.70 ± 3.5%, 52.04 ± 2.8%) and 10 (68.20 ± 11.3%, 69.72 ± 3.2%), was also enhanced. To the best of our knowledge, this is the first study to investigate optimized enzymatic hydrolysis coupled with spray drying to enhance the functional properties of A. domesticus protein powder. Overall, we established optimized processing conditions to produce spray-dried functional insect ingredients with desirable functional attributes. Full article
(This article belongs to the Special Issue Advanced Food Processing Technologies and Approaches)
Show Figures

Figure 1

21 pages, 6049 KB  
Article
Goals and Strategies for Open Fan Design
by Carola Rovira Sala, Thomas Dygutsch, Christian Frey, Rainer Schnell and Raul Martinez Luque
Int. J. Turbomach. Propuls. Power 2025, 10(3), 28; https://doi.org/10.3390/ijtpp10030028 - 4 Sep 2025
Abstract
This paper highlights recent activities associated with the design of an uninstalled open fan propulsor for next-generation civil aircraft in the high-subsonic flight regime. The concept comprises a transonic propeller–rotor and a subsequent guide vane, which are both subject to pitch-variability in order [...] Read more.
This paper highlights recent activities associated with the design of an uninstalled open fan propulsor for next-generation civil aircraft in the high-subsonic flight regime. The concept comprises a transonic propeller–rotor and a subsequent guide vane, which are both subject to pitch-variability in order to account for the strong variations in flight conditions over the entire mission profile. The engine-scale design aimed for high technological maturity and to comply with a high number of industrially relevant requirements to ensure a competitive design, meeting performance requirements in terms of high efficiency levels at cruise and maximum climb conditions, operability in terms of stability margins, good acoustic characteristics, and structural integrity. During the design iterations, rapid 3D-RANS-based optimisations were only used as a conceptual design tool to derive sensitivities, which were used to support and justify major design choices in addition to established relations from propeller theory and common design practice. These design-driven optimisation efforts were complemented with more sophisticated CFD analysis focusing on rotor tip vortex trajectories and resulting in unsteady blade row interaction to optimise the guide vane clipping, as well as investigations of the entire propulsor under angle-of-attack conditions. The resulting open fan design will be the very basis for wind tunnel experiments of a downscaled version at low and high speed. Full article
Show Figures

Figure 1

12 pages, 889 KB  
Systematic Review
The Efficacy of Clear Aligners in Leveling the Curve of Spee: A Systematic Review
by Serena Zanatta, Maria Francesca Errica, Stefano Cubeddu, Fabio Curreli, Nour Salman, Teresa Cobo, Alessio Verdecchia and Enrico Spinas
Appl. Sci. 2025, 15(17), 9719; https://doi.org/10.3390/app15179719 - 4 Sep 2025
Abstract
This systematic review aimed to evaluate the efficacy of clear aligner therapy (CAT) in leveling the curve of Spee (CoS) in adult patients with permanent dentition. The clinical relevance of CoS correction lies in its impact on overbite reduction, occlusal function, and overall [...] Read more.
This systematic review aimed to evaluate the efficacy of clear aligner therapy (CAT) in leveling the curve of Spee (CoS) in adult patients with permanent dentition. The clinical relevance of CoS correction lies in its impact on overbite reduction, occlusal function, and overall treatment outcomes. A comprehensive literature search was conducted across five electronic databases (PubMed, Scopus, Cochrane Library, Embase, and Web of Science), supplemented by grey literature. Eligible studies were retrospective clinical investigations assessing changes in CoS with CAT. Two reviewers independently performed data extraction and risk of bias assessment using the ROBINS-I tool, while the quality of evidence was graded using the GRADE approach. Seven retrospective studies met the inclusion criteria. All reported a reduction in CoS depth after CAT, ranging from 0.01 mm to 2.2 mm. Anterior intrusion was achieved to a limited extent, while posterior extrusion was inconsistent and often poorly expressed. Overbite reduction was observed in some studies, but none provided data on long-term stability. The predictability of CoS correction varied widely from 35% to 72%. All studies were judged to have a serious risk of bias, and the certainty of evidence was rated as low to very low. CAT appears capable of reducing CoS depth with outcomes comparable to fixed appliances; however, vertical control, especially posterior extrusion, remains unpredictable. In clinical practice, aligners may be considered for mild to moderate CoS correction, provided limitations are acknowledged. Further high-quality prospective trials with standardized protocols and long-term follow-up are required to strengthen the evidence base. Full article
(This article belongs to the Special Issue Advanced Studies in Orthodontics)
Show Figures

Figure 1

Back to TopTop