Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (524)

Search Parameters:
Keywords = stormwater modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8798 KB  
Article
Mitigating Waterlogging in Old Urban Districts with InfoWorks ICM: Risk Assessment and Cost-Aware Grey-Green Retrofits
by Yan Wang, Jin Lin, Tao Ma, Hongwei Liu, Aimin Liao and Peng Liu
Land 2025, 14(10), 1983; https://doi.org/10.3390/land14101983 - 1 Oct 2025
Abstract
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening [...] Read more.
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening flood risk. This study applies InfoWorks ICM Ultimate (version 21.0.284) to simulate flooding in a typical old urban district for six return periods. A risk assessment was carried out, flood causes were analyzed, and mitigation strategies were evaluated to reduce inundation and cost. Results show that all combined schemes outperform single-measure solutions. Among them, the green roof combined with pipe optimization scheme eliminated high-risk and medium-risk areas, while reducing low-risk areas by over 78.23%. It also lowered the ponding depth at key waterlogging points by 70%, significantly improving the flood risk profile. The permeable pavement combined with pipe optimization scheme achieved similar results, reducing low-risk areas by 77.42% and completely eliminating ponding at key locations, although at a 50.8% higher cost. This study underscores the unique contribution of cost-considered gray-green infrastructure retrofitting in old urban areas characterized by land scarcity and aging pipeline networks. It provides a quantitative basis and optimization strategies for refined modeling and multi-strategy management of urban waterlogging in such regions, offering valuable references for other cities facing similar challenges. The findings hold significant implications for urban flood control planning and hydrological research, serving as an important resource for urban planners engaged in flood risk management and researchers in urban hydrology and stormwater management. Full article
Show Figures

Figure 1

20 pages, 3598 KB  
Article
Ecosystem Service Assessment of Campus Street Trees for Urban Resilience: A Case Study from Guangxi Arts University
by Mingxing Xu and Lu Ding
Forests 2025, 16(9), 1465; https://doi.org/10.3390/f16091465 - 15 Sep 2025
Viewed by 276
Abstract
Ecosystem-based adaptation (EbA) provides a practical framework for enhancing urban resilience. This study had three objectives: (i) to quantify the structural attributes and ecosystem services (ESs) of campus street trees, (ii) to integrate LiDAR-derived metrics with the i-Tree Eco model to improve assessment [...] Read more.
Ecosystem-based adaptation (EbA) provides a practical framework for enhancing urban resilience. This study had three objectives: (i) to quantify the structural attributes and ecosystem services (ESs) of campus street trees, (ii) to integrate LiDAR-derived metrics with the i-Tree Eco model to improve assessment accuracy, and (iii) to evaluate how quantified ESs contribute to climate resilience and inform localized EbA strategies. Field surveys were complemented with LiDAR data to enhance estimation of leaf area index (LAI), canopy dimensions, and tree height. Results show that 2643 street trees representing 29 species provide substantial ESs, including carbon storage of 508,230 kg, annual carbon sequestration of 48,580.5 kg, removal of major air pollutants totaling 2132 kg/year, and stormwater runoff reduction of 2351.8 m3/year, with a combined annual economic value of USD 202,822.10. A small number of species dominated ES delivery, with C. camphora and M. indica contributing disproportionately to canopy structure and ecological benefits. These findings highlight the critical role of urban vegetation in carbon mitigation, air-quality regulation, and flood adaptation at the parcel scale. The study provides a replicable framework for integrating LiDAR-enhanced i-Tree assessments into urban greening policies. It also emphasizes the need for species diversification and the inclusion of omitted services (e.g., biodiversity support, microclimate regulation) in future work to deliver more comprehensive EbA planning. Full article
Show Figures

Figure 1

26 pages, 11940 KB  
Article
Modeling the Effectiveness of Alternative Flood Adaptation Strategies Subject to Future Compound Climate Risks
by Fatemeh Nasrollahi, Philip Orton and Franco Montalto
Land 2025, 14(9), 1832; https://doi.org/10.3390/land14091832 - 8 Sep 2025
Cited by 1 | Viewed by 428
Abstract
Climate change is elevating temperatures, shifting weather patterns, and increasing frequency and severity of extreme weather events. Despite the urgency with which solutions are needed, relatively few studies comprehensively investigate the effectiveness of alternative flood risk management options under different climate conditions. Specifically, [...] Read more.
Climate change is elevating temperatures, shifting weather patterns, and increasing frequency and severity of extreme weather events. Despite the urgency with which solutions are needed, relatively few studies comprehensively investigate the effectiveness of alternative flood risk management options under different climate conditions. Specifically, we are interested in a comparison of the effectiveness of resistance, nature-based, and managed retreat strategies. Using an integrated 1D-2D PCSWMM model, this paper presents a comprehensive investigation into the effectiveness of alternative adaptation strategies in reducing flood risks in Eastwick, a community of Philadelphia, PA, subject to fluvial, pluvial, and coastal flood hazards. While addressing the urgent public need to develop local solutions to this community’s flood problems, the research also presents transferable insights into the limitations and opportunities of different flood risk reduction strategies, manifested here by a levee, watershed-scale green stormwater infrastructure (GSI) program, and a land swap. The effectiveness of these options is compared, respectively, under compound climate change conditions, with the spatiotemporal patterns of precipitation and Delaware river tidal conditions based on Tropical Storm Isaias (2020). The hypothesis was that the GSI and managed retreat approaches would be superior to the levee, due to their intrinsic ability to address the compound climate hazards faced by this community. Indeed, the findings illustrate significant differences in the predicted flood extents, depths, and duration of flooding of the various options under both current and future climate scenarios. However, the ideal remedy to flooding in Eastwick is more likely to require an integrated approach, based on more work to evaluate cost-effectiveness, stakeholder preferences, and various logistical factors. The paper concludes with a call for integrating multiple strategies into multifunctional flood risk management. Full article
Show Figures

Figure 1

21 pages, 2881 KB  
Review
Understanding South Africa’s Flood Vulnerabilities and Resilience Pathways: A Comprehensive Overview
by Nicholas Byaruhanga, Daniel Kibirige and Glen Mkhonta
Water 2025, 17(17), 2608; https://doi.org/10.3390/w17172608 - 3 Sep 2025
Viewed by 1625
Abstract
This review examines South Africa’s escalating flood vulnerability through a synthesis of over 80 peer-reviewed articles, historical records, policy reports, and case studies. Using a PRISMA-guided analysis, the study identifies key climatic drivers, including extreme rainfall from tropical–temperate interactions, cut-off lows, and La [...] Read more.
This review examines South Africa’s escalating flood vulnerability through a synthesis of over 80 peer-reviewed articles, historical records, policy reports, and case studies. Using a PRISMA-guided analysis, the study identifies key climatic drivers, including extreme rainfall from tropical–temperate interactions, cut-off lows, and La Niña conditions that interact with structural weaknesses such as inadequate drainage, poorly maintained stormwater systems, and rapid urban expansion. Apartheid-era spatial planning has further entrenched risk by locating marginalised communities in floodplains. Governance failures like weak disaster risk reduction (DRR) policies, fragmented institutional coordination, and insufficient early warning systems intensify flood vulnerabilities. Catastrophic events in KwaZulu-Natal (KZN) and the Western Cape (WC) illustrate the consequences exemplified by the April 2022 KZN floods alone, which caused over 450 deaths, displaced more than 40,000 people, and generated damages exceeding ZAR 17 billion. Nationally, more than 1500 flood-related fatalities have been documented in the past two decades. Emerging resilience pathways include ecosystem-based adaptation, green infrastructure, participatory governance, integration of Indigenous knowledge, improved hydrological forecasting, and stricter land-use enforcement. These approaches can simultaneously reduce physical risks and address entrenched socio-economic inequalities. However, significant gaps remain in spatial flood modelling, gender-sensitive responses, urban–rural disparities, and policy implementation. The review concludes that South Africa urgently requires integrated, multi-scalar strategies that combine scientific innovation, policy reform, and community-based action. Embedding these insights into disaster management policy and planning is essential to curb escalating losses and build long-term resilience in the face of climate change. Full article
Show Figures

Figure 1

21 pages, 6534 KB  
Article
Urban-Scale Quantification of Rainfall Interception Drivers in Tree Communities: Implications for Sponge City Planning
by Chaonan Xu, Xiya Zhu, Xiaoyang Tan, Runxin Zhang, Baoguo Liu, Kun Wang, Enkai Xu, Ang Li, Ho Yi Wan, Peihao Song and Shidong Ge
Sustainability 2025, 17(17), 7793; https://doi.org/10.3390/su17177793 - 29 Aug 2025
Viewed by 448
Abstract
Urban trees play a crucial role in regulating hydrological processes within urban ecosystems by intercepting rainfall to effectively reduce surface runoff and mitigate urban flooding. Current research lacks a systematic quantification of rainfall interception capacity and its community-level impacts at the urban scale. [...] Read more.
Urban trees play a crucial role in regulating hydrological processes within urban ecosystems by intercepting rainfall to effectively reduce surface runoff and mitigate urban flooding. Current research lacks a systematic quantification of rainfall interception capacity and its community-level impacts at the urban scale. This study adopts a city-scale perspective, integrating field survey data with the i-Tree Eco model to systematically explore the contributions of 20 factors to the average annual rainfall interception of tree species and the average annual rainfall interception efficiency of communities. The study revealed that Deciduous broadleaf trees (1.28 m3 year−1) and Pure coniferous forests (90.7 mm year−1) exhibited substantial rainfall interception capacity. Relative Height, Average Tree Height, Average Crown Width, and Planting Density of trees significantly influence interception capacity. Urban planning can optimize the selection of tree species (e.g., Paulownia, Populus tomentosa, etc.) and community structure (e.g., mixed planting of conifers and deciduous broadleaf trees) to improve rainfall interception capacity, thereby effectively reducing stormwater runoff, mitigating the risk of urban flooding. These findings provide a scientific basis for designing urban vegetation to mitigate flooding, support water management, and advance sponge city development. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

19 pages, 2450 KB  
Review
Nature-Based Solutions for Urban Drainage: A Systematic Review of Sizing and Monitoring Methods
by André Ricardo Cansian, Diego A. Guzmán, Altair Rosa and Juliana de Toledo Machado
Water 2025, 17(17), 2524; https://doi.org/10.3390/w17172524 - 25 Aug 2025
Viewed by 1498
Abstract
Urban areas face escalating hydrological risks due to climate change, urban sprawl, and aging stormwater infrastructures. In this context, Nature-Based Solutions (NbSs), especially Sustainable Urban Drainage Systems (SUDSs), have emerged as viable strategies to enhance water resilience and sustainability. However, the literature still [...] Read more.
Urban areas face escalating hydrological risks due to climate change, urban sprawl, and aging stormwater infrastructures. In this context, Nature-Based Solutions (NbSs), especially Sustainable Urban Drainage Systems (SUDSs), have emerged as viable strategies to enhance water resilience and sustainability. However, the literature still lacks standardized and scalable methodologies for their design and performance monitoring. This study conducts a systematic review following the PRISMA protocol, combined with bibliometric and co-occurrence analyses, to identify prevailing approaches in the sizing and monitoring of NbS-based SUDSs. Based on the peer-reviewed literature indexed in Scopus and Web of Science from 2020 to 2024, the findings reveal an increasing integration of hydrological modeling with artificial intelligence, remote sensing, and IoT-based real-time monitoring. Despite this progress, challenges remain in methodology validation, data availability, and system adaptability. The review underscores the need for hybrid, context-sensitive frameworks that integrate empirical and simulated data to support decision-making in urban drainage planning and management. Full article
Show Figures

Figure 1

18 pages, 6445 KB  
Article
Green Stormwater Infrastructure (GSI) Performance Assessment for Climate Change Resilience in Storm Sewer Network
by Teressa Negassa Muleta and Marcell Knolmar
Water 2025, 17(17), 2510; https://doi.org/10.3390/w17172510 - 22 Aug 2025
Viewed by 793
Abstract
Urban flooding and the management of stormwater present significant challenges that necessitate innovative and sustainable solutions. This research examines the effectiveness of green stormwater infrastructure (GSI) for resilient storm sewer systems using the Storm Water Management Model (SWMM), based on customized local climate [...] Read more.
Urban flooding and the management of stormwater present significant challenges that necessitate innovative and sustainable solutions. This research examines the effectiveness of green stormwater infrastructure (GSI) for resilient storm sewer systems using the Storm Water Management Model (SWMM), based on customized local climate scenarios. Daily climate data downscaled by four CMIP6 models—CESM2, GFDL-CM4, GFDL-ESM4, and NorESM2-MM—was used. The daily data was disaggregated into 15 min temporal resolution using the HyetosMinute R-package. Two GSI types—bio-retention and rain gardens—were evaluated with a maximum coverage of 30%. The analysis focuses on two future climate scenarios, SSP2-4.5 and SSP5-8.5, predicted under the Shared Socioeconomic Pathways (SSPs) framework. The performance of the stormwater network was assessed for mid-century (2041–2060) and late century (2081–2100), both before and after integration of GSI. Three performance metrics were applied: node flooding volume, number of nodes flooded, and pipe surcharging duration. The simulation results showed an average reduction in flooding volumes ranging between 86 and 98% over the area after integration of GSI. Similarly, reductions ranging between 78 and 89% and between 75 and 90% were observed in pipe surcharging duration and number of nodes vulnerable to flooding, respectively, following GSI. These findings underscore the potential of GSI in fostering sustainable urban water management and enhancement of sustainable development goals (SDGs). Full article
Show Figures

Figure 1

16 pages, 1481 KB  
Article
Assessing Urban Lake Performance for Stormwater Harvesting: Insights from Two Lake Systems in Western Sydney, Australia
by Sai Kiran Natarajan, Dharmappa Hagare and Basant Maheshwari
Water 2025, 17(17), 2504; https://doi.org/10.3390/w17172504 - 22 Aug 2025
Viewed by 698
Abstract
This study examines the impact of catchment characteristics and design on the performance of urban lakes in terms of water quality and stormwater harvesting potential. Two urban lake systems in Western Sydney, Australia, were selected for comparison: Wattle Grove Lake, a standalone constructed [...] Read more.
This study examines the impact of catchment characteristics and design on the performance of urban lakes in terms of water quality and stormwater harvesting potential. Two urban lake systems in Western Sydney, Australia, were selected for comparison: Wattle Grove Lake, a standalone constructed lake, and Woodcroft Lake, part of an integrated wetland–lake system. Both systems receive runoff from surrounding residential catchments of differing sizes and land uses. Over a one-year period, continuous monitoring was conducted to evaluate water quality parameters, including turbidity, total suspended solids (TSS), nutrients (total nitrogen and total phosphorus), pH, dissolved oxygen, and biochemical oxygen demand. The results reveal that the lake with an integrated wetland significantly outperformed the standalone lake in terms of water quality, particularly in terms of turbidity and total suspended solids (TSS), achieving up to 70% reduction in TSS at the outlet compared to the inlet. The wetland served as an effective pre-treatment system, reducing pollutant loads before water entered the lake. Despite this, nutrient concentrations in both systems remained above the thresholds set by the Australian and New Zealand Environment and Conservation Council (ANZECC) Guidelines (2000), indicating persistent challenges in nutrient retention. Notably, the larger catchment area and shallow depth of Wattle Grove Lake likely contributed to higher turbidity and nutrient levels, resulting from sediment resuspension and algal growth. Hydrological modelling using the Model for Urban Stormwater Improvement Conceptualisation (MUSIC) software (version 6) complemented the field data and highlighted the influence of catchment size, hydraulic retention time, and lake depth on pollutant removal efficiency. While both systems serve important environmental and recreational functions, the integrated wetland–lake system at Woodcroft demonstrated greater potential for safe stormwater harvesting and reuse within urban settings. The findings from the study offer practical insights for urban stormwater management and inform future designs that enhance resilience and water reuse potential in growing cities. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 5183 KB  
Article
Evaluating Ecological Contributions of Tree Assemblages in Urban Expressway Interchange Landscapes: A Case Study from Nanjing, China
by Mingxing Xu and Lu Ding
Forests 2025, 16(8), 1355; https://doi.org/10.3390/f16081355 - 20 Aug 2025
Viewed by 603
Abstract
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using [...] Read more.
Urban expressway interchanges, though primarily engineered for traffic efficiency, also serve as crucial ecological nodes within urban landscapes. This study evaluates the ecological functions of arborous vegetation across four typical interchange configurations—cloverleaf, single trumpet, double trumpet, and irregular—along the Nanjing Ring Expressway. Using the i-Tree Eco model, we quantified key ecosystem services, including carbon sequestration and storage, air pollutant removal, and stormwater mitigation. Field surveys documented 7985 trees from 45 species, with the 10 most abundant accounting for over two-thirds of total individuals. Results revealed that the trees sequester around 115 tons of carbon annually and store nearly 1850 tons in total, equivalent to an estimated economic benefit of ¥5.8 million. Trees also removed more than 1.5 tons of air pollutants and intercepted nearly 2400 cubic meters of stormwater each year. Species such as Sophora japonica, Phoebe zhennan, and Cinnamomum camphora emerged as key contributors to ecological performance. Among interchange types, double trumpet configurations yielded the highest overall service value, while single trumpet interchanges demonstrated superior efficiency per unit area. These findings highlight the underutilized ecological potential of transport-adjacent green spaces and underscore the importance of species selection and spatial design in maximizing multifunctional benefits. Full article
(This article belongs to the Special Issue Ecosystem Services of Urban Forest)
Show Figures

Figure 1

19 pages, 1347 KB  
Article
Enhancing MUSIC’s Capability for Performance Evaluation and Optimization of Established Urban Constructed Wetlands
by Fujia Yang, Shirley Gato-Trinidad and Iqbal Hossain
Hydrology 2025, 12(8), 219; https://doi.org/10.3390/hydrology12080219 - 18 Aug 2025
Viewed by 1052
Abstract
The Model for Urban Stormwater Improvement Conceptualization (MUSIC) serves as a key hydrological tool for simulating urban stormwater runoff pollution and evaluating the treatment performance in Water-Sensitive Urban Designs like constructed wetlands (CWs). However, a significant limitation exists in MUSIC’s current inability to [...] Read more.
The Model for Urban Stormwater Improvement Conceptualization (MUSIC) serves as a key hydrological tool for simulating urban stormwater runoff pollution and evaluating the treatment performance in Water-Sensitive Urban Designs like constructed wetlands (CWs). However, a significant limitation exists in MUSIC’s current inability to model heavy metal contaminants, even though they are commonly found in urban stormwater and pose significant environmental risks. This eventually affects the model’s utility during critical planning phases for urban developments. Thus, there is a need to address this limitation. Field investigations were conducted across established CWs in residential and industrial catchments throughout Greater Melbourne, Australia. Through systematic monitoring and calibration, an approach was developed to extend MUSIC’s predictive capabilities to include several prevalent heavy metals. The results indicate that the enhanced model can generate plausible estimates for targeted metals while differentiating catchment-specific pollutant generation and treatment patterns. This advancement enhances MUSIC’s functionality as a planning support tool, enabling the preliminary assessment of heavy metal dynamics alongside conventional pollutants during both design and operational stages. The findings underscore the value of incorporating metal-specific parameters into stormwater models, offering improved support for urban water management decisions and long-term water quality protection. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

19 pages, 2326 KB  
Article
Effectiveness of Wetlands for Improving Different Water Quality Parameters in Various Climatic Conditions
by Aruna Shrestha, Rohan Benjankar, Ajay Kalra and Amrit Bhusal
Hydrology 2025, 12(8), 216; https://doi.org/10.3390/hydrology12080216 - 15 Aug 2025
Viewed by 711
Abstract
Engineered wetland has been used as a Best Management Practice (BMP) to remove pollutants and maintain water quality in watersheds. This study is focused on developing models to analyze the impacts of discharges on the efficiency of wetlands to improve water quality downstream. [...] Read more.
Engineered wetland has been used as a Best Management Practice (BMP) to remove pollutants and maintain water quality in watersheds. This study is focused on developing models to analyze the impacts of discharges on the efficiency of wetlands to improve water quality downstream. The watershed hydrological Soil & Water Assessment Tool (SWAT) and wetland (Personal Computer Storm Water Management Model—PCSWMM) models were developed to analyze the efficiency of engineered wetlands to remove the pollutants for different basins under three different climatic conditions (i.e., dry, average and wet year). The SWAT was calibrated and validated to simulate discharge and water quality parameters. The wetland model was developed using inflow hydrographs and concentrations of the water quality parameters biochemical oxygen demand (BOD), total suspended solids (TSSs), total nitrogen (TN) and total phosphorous (TP), simulated from a Soil & Water Assessment Tool (SWAT) model. A PCSWMM (wetland) was developed based on the physical and first order decay process within the wetland system for three basins in Prairie du Pont watershed in Illinois, USA. The results showed that pollutant removal efficiencies decreased from low to high discharges (dry to wet climatic conditions) for all watersheds and pollutants (except for BOD) based on trendline analysis. Nevertheless, the efficiencies were highly variable, specifically during low discharges. Furthermore, the sensitivity of the k-parameter (areal rate constant) was pollutant dependent. Overall, this study is helpful to understand the efficacy of wetlands’ pollutant removal as a function of discharge. The approach can be used in watersheds located in other geographic regions for the preliminary design of engineered wetlands to remove non-point source pollution and treat stormwater runoff. Full article
Show Figures

Figure 1

34 pages, 4629 KB  
Article
Evaluation of Infiltration Swale Media Using Small-Scale Testing Techniques and Its SWMM Modeling Considerations
by Diego Armando Ramírez Flórez, Yuting Ji, Parker J. Austin, Michael A. Perez, Xing Fang and Wesley N. Donald
Water 2025, 17(16), 2390; https://doi.org/10.3390/w17162390 - 12 Aug 2025
Viewed by 600
Abstract
Impervious surfaces reduce natural infiltration, leading to increased runoff, erosion, and pollutant transport. The Alabama Department of Transportation (ALDOT) relies on implementing infiltration swales, a linear bioretention-based practice, along roadside drainage channels to reduce surface runoff. This study developed and constructed modified permeameters [...] Read more.
Impervious surfaces reduce natural infiltration, leading to increased runoff, erosion, and pollutant transport. The Alabama Department of Transportation (ALDOT) relies on implementing infiltration swales, a linear bioretention-based practice, along roadside drainage channels to reduce surface runoff. This study developed and constructed modified permeameters and infiltrometers to evaluate and optimize media used to construct infiltration swales. The average measured falling head infiltration rate of sandy topsoil used in the media matrix was 0.63 ft/day (0.19 m/day). A series of amended topsoil mixtures were tested to improve the infiltration rate of the media. In particular, the mixture of 80% topsoil and 20% pine bark fines (by weight) significantly improved the infiltration rates of the swale media. Through iterative testing, the F3 design with 6 in. (15.2 cm) mixture and 10 in. (25.4 cm) sand achieved up to 13.73 ft/day (4.18 m/day) of infiltration rate under constant head, far surpassing the infiltration rate of the current ALDOT design. SWMM bioretention cell models were developed to understand the swale infiltration process and revealed that the infiltration rates obtained from column tests were the saturated hydraulic conductivities of the soil layer when there was no other restriction on vertical flow. The simulated swale hydrological performance depends not only on variations in soil conductivity but also on other swale characteristics under field conditions. Findings from this research can be used to enhance the performance of infiltration-based stormwater practices. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

25 pages, 6730 KB  
Article
Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District
by Yongqi Liu, Ziheng Xiong, Mo Wang, Menghan Zhang, Rana Muhammad Adnan, Weicong Fu, Chuanhao Sun and Soon Keat Tan
Water 2025, 17(15), 2325; https://doi.org/10.3390/w17152325 - 5 Aug 2025
Viewed by 687
Abstract
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West [...] Read more.
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West Street Historic Reserve, China. Using a multi-objective optimization framework integrating SWMM simulations, life-cycle cost (LCC) modeling, and resilience metrics, we found that the decentralized CGGI layouts reduced the total LCC by up to 29.6% and required 60.7% less green infrastructure (GI) area than centralized schemes. Under nine extreme rainfall scenarios, the GREI-only systems showed slightly higher technical resilience (Tech-R: max 99.6%) than CGGI (Tech-R: max 99.1%). However, the CGGI systems outperformed GREI in operational resilience (Oper-R), reducing overflow volume by up to 22.6% under 50% network failure. These findings demonstrate that decentralized CGGI provides a more resilient and cost-effective drainage solution, well-suited for heritage districts with spatial and cultural constraints. Full article
Show Figures

Figure 1

20 pages, 5967 KB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 480
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

24 pages, 6552 KB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Cited by 1 | Viewed by 773
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

Back to TopTop