Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = sub-terahertz wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 912 KB  
Review
Convergence of Integrated Sensing and Communication (ISAC) and Digital-Twin Technologies in Healthcare Systems: A Comprehensive Review
by Youngboo Kim, Seungmin Oh and Gayoung Kim
Signals 2025, 6(4), 51; https://doi.org/10.3390/signals6040051 - 29 Sep 2025
Abstract
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet [...] Read more.
Modern healthcare systems are under growing strain from aging populations, urbanization, and rising chronic disease burdens, creating an urgent need for real-time monitoring and informed decision-making. This survey examines how the convergence of Integrated Sensing and Communication (ISAC) and digital-twin technologies can meet that need by analyzing how ISAC unifies sensing and communication to gather and transmit data with high timeliness and reliability and how digital-twin platforms use these streams to maintain continuously updated virtual replicas of patients, devices, and care environments. Our synthesis compares ISAC frequency options across sub-6 GHz, millimeter-wave, and terahertz bandswith respect to resolution, penetration depth, exposure compliance, maturity, and cost, and it discusses joint waveform design and emerging 6G architectures. It also presents reference architecture patterns that connect heterogeneous clinical sensors to ISAC links, data ingestion, semantic interoperability pipelines using Fast Healthcare Interoperability Resources (FHIR) and IEEE 11073, and digital-twin synchronization, and it catalogs clinical and operational applications, together with validation and integration requirements. We conduct a targeted scoping review of peer-reviewed literature indexed in major scholarly databases between January 2015 and July 2025, with inclusion restricted to English-language, peer-reviewed studies already cited by this survey, and we apply a transparent screening and data extraction procedure to support reproducibility. The survey further reviews clinical opportunities enabled by data-synchronized twins, including personalized therapy planning, proactive early-warning systems, and virtual intervention testing, while outlining the technical, clinical, and organizational hurdles that must be addressed. Finally, we examine workflow adaptation; governance and ethics; provider training; and outcome measurement frameworks such as length of stay, complication rates, and patient satisfaction, and we conclude that by highlighting both the integration challenges and the operational upside, this survey offers a foundation for the development of safe, ethical, and scalable data-driven healthcare models. Full article
Show Figures

Figure 1

30 pages, 1641 KB  
Review
Sensing-Assisted Communication for mmWave Networks: A Review of Techniques, Applications, and Future Directions
by Ruba Mahmoud, Daniel Castanheira, Adão Silva and Atílio Gameiro
Electronics 2025, 14(19), 3787; https://doi.org/10.3390/electronics14193787 - 24 Sep 2025
Viewed by 48
Abstract
The emergence of 6G wireless systems marks a paradigm shift toward intelligent, context-aware networks that can adapt in real-time to their environment. Within this landscape, Sensing-Assisted Communication (SAC) emerges as a key enabler, integrating perception into the communication control loop to enhance reliability, [...] Read more.
The emergence of 6G wireless systems marks a paradigm shift toward intelligent, context-aware networks that can adapt in real-time to their environment. Within this landscape, Sensing-Assisted Communication (SAC) emerges as a key enabler, integrating perception into the communication control loop to enhance reliability, beamforming accuracy, and system responsiveness. Unlike prior surveys that treat SAC as a subfunction of Integrated Sensing and Communication (ISAC), this work offers the first dedicated review of SAC in Millimeter-Wave (mmWave) and Sub-Terahertz (Sub-THz) systems, where directional links and channel variability present core challenges. SAC encompasses a diverse set of methods that enable wireless systems to dynamically adapt to environmental changes and channel conditions in real time. Recent studies demonstrate up to 80% reduction in beam training overhead and significant gains in latency and mobility resilience. Applications include predictive beamforming, blockage mitigation, and low-latency Unmanned Aerial Vehicle (UAV) and vehicular communication. This review unifies the SAC landscape and outlines future directions in standardization, Artificial Intelligence (AI) integration, and cooperative sensing for next-generation wireless networks. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

5 pages, 1159 KB  
Abstract
Experimental Study on Estimation of Water Content and Chloride Ion Content of Concrete by Sub-Terahertz Wave
by Shun Aoki, Hitoshi Hamasaki, Tadao Tanabe, Kazuma Iwasaki, Kento Toshiro, Tomoya Nishiwaki, Riku Kurashina, Akio Tanaka and Daisuke Sato
Proceedings 2025, 129(1), 46; https://doi.org/10.3390/proceedings2025129046 - 12 Sep 2025
Viewed by 181
Abstract
The application of sub-terahertz waves is being considered as a method to view the corrosion status of internal steel bars. In this study, reflectance intensities were measured for six specimens with different moisture contents using electromagnetic waves from 7.5 to 17.5 GHz. The [...] Read more.
The application of sub-terahertz waves is being considered as a method to view the corrosion status of internal steel bars. In this study, reflectance intensities were measured for six specimens with different moisture contents using electromagnetic waves from 7.5 to 17.5 GHz. The results showed that the differential reflectance intensity decreased with increasing water content. An equation for estimating the water content at a cover thickness of 10 mm was also calculated. Regarding chloride ion content, no common trend was observed, and it was confirmed that there was a trend in the amount of chloride ions at each cover thickness. Full article
Show Figures

Figure 1

5 pages, 1330 KB  
Abstract
Understanding and Controlling Interference in Sub-Terahertz Wave Measurements
by Tomoaki Date, Seiya Miyazaki and Tadao Tanabe
Proceedings 2025, 129(1), 51; https://doi.org/10.3390/proceedings2025129051 - 12 Sep 2025
Viewed by 208
Abstract
Interference caused by multiple reflections is a critical issue in transmission measurements using continuous wave (CW) terahertz and sub-terahertz radiation. This study proposes a practical method to reduce interference effects and improve the stability of transmittance measurements. By deriving analytical expressions for interference [...] Read more.
Interference caused by multiple reflections is a critical issue in transmission measurements using continuous wave (CW) terahertz and sub-terahertz radiation. This study proposes a practical method to reduce interference effects and improve the stability of transmittance measurements. By deriving analytical expressions for interference patterns under both normal and oblique incidence conditions, we demonstrate that oblique incidence simplifies the interference behavior and allows the reliable extraction of transmittance values from maximum and minimum signal intensities. Using a 95 GHz CW oscillator (Model SFD-753114-103-10SF-P1, Eravant, Torrance, CA, USA) and a 1 mm-thick PET sample, we conducted transmission measurements while varying the detector position. The derived method enabled the calculation of interference-free transmittance values that were consistent across different sample positions. This approach offers a practical technique for material characterization, especially in applications such as nondestructive testing and plastic recycling. Full article
Show Figures

Figure 1

4 pages, 491 KB  
Abstract
Sub-Terahertz Wave Detection of Foreign Matter in Filling Containers
by Dai Otsuka and Tadao Tanabe
Proceedings 2025, 129(1), 23; https://doi.org/10.3390/proceedings2025129023 - 12 Sep 2025
Viewed by 141
Abstract
In recent years, electromagnetic waves (terahertz waves) with frequencies between 0.1 and 10 THz, which exist between radio waves and light waves, have attracted much attention. These electromagnetic waves have both the linearity of light waves and the transparency of radio waves and [...] Read more.
In recent years, electromagnetic waves (terahertz waves) with frequencies between 0.1 and 10 THz, which exist between radio waves and light waves, have attracted much attention. These electromagnetic waves have both the linearity of light waves and the transparency of radio waves and are expected to be applied to the field of human non-destructive testing. While it is known that terahertz waves can be used to detect foreign matter inside an object, we thought that by irradiating terahertz waves to the object to be measured from various directions, it would be possible to analyze the location and direction of contamination by comparing the scattering of the terahertz waves irradiated to the foreign matter. The samples were biomass resources in a jar with an opening of 53 mm and a diameter of 66.8 mm, and an aluminum plate 76 × 50 mm. When terahertz waves were irradiated from the side of the jar with the biomass resources in it, and the aluminum plate inserted, the transmission was higher when the metal plate was parallel to the light source and detector. This indicates that the transmission tendency of terahertz waves changes depending on the position and angle of the metal strip inside with respect to the direction of terahertz wave irradiation. This transmission tendency enables us to locate the position of a foreign object by irradiating terahertz waves from multiple directions, which is expected to be applied not only to the removal of foreign objects but also to various non-destructive inspections. Full article
Show Figures

Figure 1

5 pages, 1583 KB  
Abstract
Non-Contact Detection of Steel Corrosion Using Sub-Terahertz Waves
by Riku Kurashina, Chihiro Kobayashi, Tomoya Nishiwaki, Akio Tanaka, Tadao Tanabe, Hitoshi Hamasaki, Daisuke Sato and Koji Arita
Proceedings 2025, 129(1), 32; https://doi.org/10.3390/proceedings2025129032 - 12 Sep 2025
Viewed by 183
Abstract
A feasibility study was conducted on the detection of corroded rebars inside concrete using sub-THz waves. In this study, spectral measurements were performed with a reflection-type system in the 20–50 GHz frequency range. Measurements were conducted on steel plates corroded in salt water [...] Read more.
A feasibility study was conducted on the detection of corroded rebars inside concrete using sub-THz waves. In this study, spectral measurements were performed with a reflection-type system in the 20–50 GHz frequency range. Measurements were conducted on steel plates corroded in salt water and on concrete specimens containing these corroded plates. The results confirmed that reflectance decreases as corrosion progresses. Furthermore, it was demonstrated that the presence or absence of internal steel plates and corrosion can be detected up to a cover thickness of 20 mm. The frequency spectral peaks and their periodicity also provided a means to estimate the cover thickness. Full article
Show Figures

Figure 1

4 pages, 831 KB  
Abstract
Proposal for a Compact Reflective Measurement System for Corrosion Detection Using Sub-Terahertz Waves
by Koshi Ikeda, Ryohei Kiyoshi, Hitoshi Hamasaki and Tadao Tanabe
Proceedings 2025, 129(1), 14; https://doi.org/10.3390/proceedings2025129014 - 12 Sep 2025
Viewed by 200
Abstract
Many of Japan’s infrastructures are more than 50 years old, and more old infrastructures are expected in the future. Therefore, the challenge is to inspect the deteriorated condition of those infrastructures. This study focuses on the use of electromagnetic waves in NDT as [...] Read more.
Many of Japan’s infrastructures are more than 50 years old, and more old infrastructures are expected in the future. Therefore, the challenge is to inspect the deteriorated condition of those infrastructures. This study focuses on the use of electromagnetic waves in NDT as an inspection method for infrastructure. One issue with this method is that the device is not suitable for actual infrastructure inspections. We constructed a portable reflection measurement system that utilizes sub-terahertz waves among electromagnetic waves. Reflection measurements were conducted on corroded and uncorroded steel plates using this compact system. It may be possible to identify samples using peak shift with a horn antenna. With a probe antenna, identification is based on reflectance. Full article
Show Figures

Figure 1

5 pages, 1265 KB  
Abstract
Cover Thickness Prediction for Steel Inside Concrete by Sub-Terahertz Wave Using Deep Learning
by Ken Koyama, Tomoya Nishiwaki and Katsufumi Hashimoto
Proceedings 2025, 129(1), 40; https://doi.org/10.3390/proceedings2025129040 - 12 Sep 2025
Viewed by 217
Abstract
Deep learning techniques are increasingly being incorporated into the inspection and maintenance of social infrastructure. In this study, we show that when supervised deep learning was applied to imaging data obtained from sub-THz waves, the average recall exceeded 80% for all cover thicknesses [...] Read more.
Deep learning techniques are increasingly being incorporated into the inspection and maintenance of social infrastructure. In this study, we show that when supervised deep learning was applied to imaging data obtained from sub-THz waves, the average recall exceeded 80% for all cover thicknesses of steel plate inside concrete and more than 90% for rebar inside concrete with a cover thickness of up to 20 mm. Unsupervised deep learning enabled the classification for both steel plate and rebar, even at large cover thicknesses. These results are expected to improve the exploration depth, which has been limited in previous studies. Full article
Show Figures

Figure 1

13 pages, 4367 KB  
Article
Non-Destructive Characterization of Drywall Moisture Content Using Terahertz Time-Domain Spectroscopy
by Habeeb Foluso Adeagbo and Binbin Yang
Sensors 2025, 25(17), 5576; https://doi.org/10.3390/s25175576 - 6 Sep 2025
Viewed by 1018
Abstract
Despite its wide acceptance, one of the most critical limitations of Terahertz wave technology is its high sensitivity to moisture. This limitation can, in turn, be exploited for use in moisture detection applications. This work presents a quantitative, non-invasive characterization of moisture content [...] Read more.
Despite its wide acceptance, one of the most critical limitations of Terahertz wave technology is its high sensitivity to moisture. This limitation can, in turn, be exploited for use in moisture detection applications. This work presents a quantitative, non-invasive characterization of moisture content in standard gypsum drywall using Terahertz Time-Domain Spectroscopy (THz-TDS). With an increase in the moisture content of the drywall sample, experimental results indicated an increase in the dielectric properties such as the refractive index, permittivity, absorption coefficient, extinction coefficient, and dissipation factor. The demonstrated sensitivity to moisture establishes THz-TDS as a powerful tool for structural monitoring, hidden defect detection, and electromagnetic modeling of real-world building environments. Beyond material diagnostics, these findings have broader implications for THz indoor propagation studies, especially for emerging sub-THz and low THz communication technologies in 5G/6G and THz imaging of objects hidden behind the wall. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 3942 KB  
Article
Experimental Demonstration of Terahertz-Wave Signal Generation for 6G Communication Systems
by Yazan Alkhlefat, Amr M. Ragheb, Maged A. Esmail, Sevia M. Idrus, Farabi M. Iqbal and Saleh A. Alshebeili
Optics 2025, 6(3), 34; https://doi.org/10.3390/opt6030034 - 28 Jul 2025
Viewed by 977
Abstract
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while [...] Read more.
Terahertz (THz) frequencies, spanning from 0.1 to 1 THz, are poised to play a pivotal role in the development of future 6G wireless communication systems. These systems aim to utilize photonic technologies to enable ultra-high data rates—on the order of terabits per second—while maintaining low latency and high efficiency. In this work, we present a novel photonic method for generating sub-THz vector signals within the THz band, employing a semiconductor optical amplifier (SOA) and phase modulator (PM) to create an optical frequency comb, combined with in-phase and quadrature (IQ) modulation techniques. We demonstrate, both through simulation and experimental setup, the generation and successful transmission of a 0.1 THz vector. The process involves driving the PM with a 12.5 GHz radio frequency signal to produce the optical comb; then, heterodyne beating in a uni-traveling carrier photodiode (UTC-PD) generates the 0.1 THz radio frequency signal. This signal is transmitted over distances of up to 30 km using single-mode fiber. The resulting 0.1 THz electrical vector signal, modulated with quadrature phase shift keying (QPSK), achieves a bit error ratio (BER) below the hard-decision forward error correction (HD-FEC) threshold of 3.8 × 103. To the best of our knowledge, this is the first experimental demonstration of a 0.1 THz photonic vector THz wave based on an SOA and a simple PM-driven optical frequency comb. Full article
(This article belongs to the Section Photonics and Optical Communications)
Show Figures

Figure 1

16 pages, 6052 KB  
Article
W-Band Transverse Slotted Frequency Scanning Antenna for 6G Wireless Communication and Space Applications
by Hurrem Ozpinar, Sinan Aksimsek and Nurhan Türker Tokan
Aerospace 2025, 12(6), 493; https://doi.org/10.3390/aerospace12060493 - 30 May 2025
Viewed by 700
Abstract
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces [...] Read more.
Terahertz (THz) antennas are among the critical components required for enabling the transition to sixth-generation (6G) wireless networks. Although research on THz antennas for 6G communication systems has garnered significant attention, a standardized antenna design has yet to be established. This study introduces the modeling of a full-metal transverse slotted waveguide antenna (TSWA) for 6G and beyond. The proposed antenna operates across the upper regions of the V-band and the entire W-band. Designed and simulated using widely adopted full-wave analysis tools, the antenna achieves a peak gain of 17 dBi and a total efficiency exceeding 90% within the band. Additionally, it exhibits pattern-reconfigurable capabilities, enabling main lobe beam steering between 5° and 68° with low side lobe levels. Simulations are conducted to assess the power handling capability (PHC) of the antenna, including both the peak (PPHC) and average (APHC) values. The results indicate that the antenna can handle 17 W of APHC within the W-band and 3.4 W across the 60–160 GHz range. Furthermore, corona discharge and multipaction analyses are performed to evaluate the antenna’s power handling performance under extreme operating conditions. These features make the proposed TSWA a strong candidate for high-performance space applications, 6G communication systems, and beyond. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

11 pages, 1948 KB  
Article
One-Dimensional Four-Layered Photonic Heterostructures: Analysis of Transmittance
by Amita Biswal, Harekrushna Behera, Dah-Jing Jwo and Tai-Wen Hsu
Materials 2025, 18(7), 1433; https://doi.org/10.3390/ma18071433 - 24 Mar 2025
Viewed by 543
Abstract
The transmittance characteristics and the band structure of photonic heterostructures consisting of four distinct dielectric materials are analyzed using the transfer matrix method. An enhanced band structure of such crystals is discovered. It is shown that the band structure is strongly influenced by [...] Read more.
The transmittance characteristics and the band structure of photonic heterostructures consisting of four distinct dielectric materials are analyzed using the transfer matrix method. An enhanced band structure of such crystals is discovered. It is shown that the band structure is strongly influenced by the arrangement of unit cells in the periodic building blocks of the crystals. The transmission spectra are evaluated for varying layer thicknesses and incident angles to investigate their impact on wave propagation. The symmetrical results for periodicities, sub-layer thickness, and oblique incident angles indicate robust bandgaps with blue shifting and enhanced transmission. Moreover, the periodicity in different cases, followed by the period, has also shown to have a great impact on the emergence of multiple bandgaps. The photonic bandgap and frequency are associated with the lattice elements of the unit cell, shifting naturally as a fundamental property of the structure, which has been achieved by the alteration of unit cells. Hence, the proposed photonic heterostructures offer significant potential for developing efficient band-stop and band-pass filters, facilitating their use in multi-functional integrated optical circuits within the Terahertz spectrum. Full article
(This article belongs to the Special Issue Advanced Materials in Photoelectrics and Photonics)
Show Figures

Figure 1

22 pages, 626 KB  
Article
Channel Characterization and Comparison in Industrial Scenario from Sub-6 GHz to Visible Light Bands for 6G
by Yue Yin, Pan Tang, Jianhua Zhang, Zheng Hu, Tao Jiang, Liang Xia and Guangyi Liu
Photonics 2025, 12(3), 257; https://doi.org/10.3390/photonics12030257 - 13 Mar 2025
Viewed by 848
Abstract
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but [...] Read more.
The industrial scenario is indispensable for ubiquitous 6G coverage, which demands hyper-reliable and low-latency communication for full automation, control, and operation. To meet these demands, it is widely believed that it is necessary to introduce not only the conventional sub-6 GHz bands but also high-frequency technologies, such as millimeter wave (mmWave), terahertz (THz), and visible light bands. In this paper, we conduct a channel characterization and comparison in the industrial scenario from the sub-6 GHz to visible light bands. The channel characteristics, including the path loss (PL), root mean square (RMS) delay spread (DS), and angle spread (AS), were analyzed with respect to the frequency dependence and the distance dependence. On the one hand, the visible light band exhibited significant differences in channel characteristics compared to the electronic wave band. Due to the line-of-sight transmission of VLC, the visible light band had a higher path loss, and the path loss exponent reached 3.84. Due to the Lambertian radiation pattern, which has a wide range of reflection angles, the AS of the visible light band was much larger than that of the electronic wave band, which were 1.73 and 0.80 for the visible light and THz bands, respectively. On the other hand, the blockage effect of the metal instruments in the industrial scenario will greatly affect the channel characteristics. As the transceiver distance grows large, signals from both sides of the receiver will be blocked by metal instruments, resulting in a decreasing trend in the RMS DS for the electronic wave band. Moreover, the statistical characteristics of the channel properties were modeled and compared with the 3GPP TR 38.901 standard. It was found that the height of the receiver caused the difference between the proposed model and the 3GPP model and needs to be taken into account when modeling. Furthermore, we extended the 3GPP model to the THz and VLC bands and provided the statistical parameters of the channel characteristics for all frequency bands. This study can provide insights for the evaluation and standardization of multi-frequency communication technology in the industrial scenario. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

11 pages, 3230 KB  
Article
Weyl Semimetal-Based Terahertz Chips for the Determination of Nickel Metal Particle Concentration in Sewage
by Chao Lin, Hao Xu and Yang Ping
Photonics 2025, 12(3), 255; https://doi.org/10.3390/photonics12030255 - 13 Mar 2025
Cited by 4 | Viewed by 936
Abstract
A novel terahertz-responsive chip was developed for rapid, non-contact detection of nickel metal particle concentrations in aqueous solutions. The chip integrates a Weyl semimetal thin film as the active layer and a sub-wavelength metallic structure as the substrate. Upon terahertz wave irradiation, distinct [...] Read more.
A novel terahertz-responsive chip was developed for rapid, non-contact detection of nickel metal particle concentrations in aqueous solutions. The chip integrates a Weyl semimetal thin film as the active layer and a sub-wavelength metallic structure as the substrate. Upon terahertz wave irradiation, distinct responses were observed in liquids containing varying nickel concentrations, enabling the establishment of a robust correlation between concentration and terahertz signal. Experimental results demonstrate the chip’s capability to quantify nickel particles (10–30 μm), with a detection limit below 0.01 mg/L and a relative standard deviation of <3% across repeatability tests. This technology offers a high-speed, precise, and low-limit solution for water quality monitoring, with significant potential for environmental applications. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

20 pages, 18423 KB  
Article
Advancing Microscale Electromagnetic Simulations for Liquid Crystal Terahertz Phase Shifters: A Diagnostic Framework for Higher-Order Mode Analysis in Closed-Source Simulators
by Haorong Li and Jinfeng Li
Micro 2025, 5(1), 3; https://doi.org/10.3390/micro5010003 - 25 Jan 2025
Cited by 4 | Viewed by 1170
Abstract
This work addresses a critical challenge in microscale computational electromagnetics for liquid crystal-based reconfigurable components: the inadequate capability of current software to accurately identify and simulate higher-order modes (HoMs) in complex electromagnetic structures. Specifically, commercial simulators often fail to capture modes such as [...] Read more.
This work addresses a critical challenge in microscale computational electromagnetics for liquid crystal-based reconfigurable components: the inadequate capability of current software to accurately identify and simulate higher-order modes (HoMs) in complex electromagnetic structures. Specifically, commercial simulators often fail to capture modes such as Transverse Electric (TE11) beyond the fundamental transverse electromagnetic (TEM) mode in coaxial liquid crystal phase shifters operating in the terahertz (THz) regime, leading to inaccurate performance predictions and suboptimal designs for telecommunication engineering applications. To address this limitation, we propose a novel diagnostic methodology incorporating three lossless assumptions to enhance the identification and analysis of pseudo-HoMs in full-wave simulators. Our approach theoretically eliminates losses associated with metallic conductivity, dielectric dissipation, and reflection effects, enabling precise assessment of frequency-dependent HoM power propagation alongside the primary TEM mode. We validate the methodology by applying it to a coaxially filled liquid crystal variable phase shifter device structure, underscoring its effectiveness in advancing the design and characterization of THz devices. This work provides valuable insights for researchers and engineers utilizing closed-source commercial simulators in micro- and nano-electromagnetic device development. The findings are particularly relevant for microscale engineering applications, including millimeter-wave (mmW), sub-mmW, and THz systems, with potential impacts on next-generation communication technologies. Full article
(This article belongs to the Section Microscale Engineering)
Show Figures

Figure 1

Back to TopTop