Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (107)

Search Parameters:
Keywords = sustainable wireless connectivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 5827 KB  
Review
A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions
by Tharuka Govinda Waduge, Yang Yang and Boon-Chong Seet
J. Sens. Actuator Netw. 2025, 14(5), 97; https://doi.org/10.3390/jsan14050097 - 26 Sep 2025
Abstract
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater [...] Read more.
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater environment. Of the three main practicable UWC technologies (acoustic, optical, and radiofrequency), acoustic methods are best for far-reaching links, while optical is best for high-bandwidth communication. Recently, utilizing reconfigurable intelligent surfaces (RISs) has become a hot topic in terrestrial applications, underscoring significant benefits for extending coverage, providing connectivity to blind spots, wireless power transmission, and more. However, the potential for further research works in underwater RIS is vast. Here, for the first time, we conduct an extensive survey of state-of-the-art of RIS and metasurfaces with a focus on underwater applications. Within a holistic perspective, this survey systematically evaluates acoustic, optical, and hybrid RIS, showing that environment-aware channel switching and joint communication architectures could deliver holistic gains over single-domain RIS in the distance–bandwidth trade-off, congestion mitigation, security, and energy efficiency. Additional focus is placed on the current challenges from research and realization perspectives. We discuss recent advances and suggest design considerations for coupling hybrid RIS with optical energy and piezoelectric acoustic energy harvesting, which along with distributed relaying, could realize self-sustainable underwater networks that are highly reliable, long-range, and high throughput. The most impactful future directions seem to be in applying RIS for enhancing underwater links in inhomogeneous environments and overcoming time-varying effects, realizing RIS hardware suitable for the underwater conditions, and achieving simultaneous transmission and reflection (STAR-RIS), and, particularly, in optical links—integrating the latest developments in metasurfaces. Full article
Show Figures

Figure 1

15 pages, 1698 KB  
Article
AI-Driven Energy-Efficient Data Aggregation and Routing Protocol Modeling to Maximize Network Lifetime in Wireless Sensor Networks
by R. Arun Chakravarthy, C. Sureshkumar, M. Arun and M. Bhuvaneswari
NDT 2025, 3(4), 22; https://doi.org/10.3390/ndt3040022 - 25 Sep 2025
Abstract
The research work presents an artificial intelligence-driven, energy-aware data aggregation and routing protocol for wireless sensor networks (WSNs) with the primary objective of extending overall network lifetime. The proposed scheme leverages reinforcement learning in conjunction with deep Q-networks (DQNs) to adaptively optimize both [...] Read more.
The research work presents an artificial intelligence-driven, energy-aware data aggregation and routing protocol for wireless sensor networks (WSNs) with the primary objective of extending overall network lifetime. The proposed scheme leverages reinforcement learning in conjunction with deep Q-networks (DQNs) to adaptively optimize both Cluster Head (CH) selection and routing decisions. An adaptive clustering mechanism is introduced wherein factors such as residual node energy, spatial proximity, and traffic load are jointly considered to elect suitable CHs. This approach mitigates premature energy depletion at individual nodes and promotes balanced energy consumption across the network, thereby enhancing node sustainability. For data forwarding, the routing component employs a DQN-based strategy to dynamically identify energy-efficient transmission paths, ensuring reduced communication overhead and reliable sink connectivity. Performance evaluation, conducted through extensive simulations, utilizes key metrics including network lifetime, total energy consumption, packet delivery ratio (PDR), latency, and load distribution. Comparative analysis with baseline protocols such as LEACH, PEGASIS, and HEED demonstrates that the proposed protocol achieves superior energy efficiency, higher packet delivery reliability, and lower packet losses, while adapting effectively to varying network dynamics. The experimental outcomes highlight the scalability and robustness of the protocol, underscoring its suitability for diverse WSN applications including environmental monitoring, surveillance, and Internet of Things (IoT)-oriented deployments. Full article
Show Figures

Figure 1

33 pages, 4561 KB  
Review
Smartphone-Integrated Electrochemical Devices for Contaminant Monitoring in Agriculture and Food: A Review
by Sumeyra Savas and Seyed Mohammad Taghi Gharibzahedi
Biosensors 2025, 15(9), 574; https://doi.org/10.3390/bios15090574 - 2 Sep 2025
Cited by 2 | Viewed by 1063
Abstract
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site [...] Read more.
Recent progress in microfluidic technologies has led to the development of compact and highly efficient electrochemical platforms, including lab-on-a-chip (LoC) systems, that integrate multiple testing functions into a single, portable device. Combined with smartphone-based electrochemical devices, these systems enable rapid and accurate on-site detection of food contaminants, including pesticides, heavy metals, pathogens, and chemical additives at farms, markets, and processing facilities, significantly reducing the need for traditional laboratories. Smartphones improve the performance of these platforms by providing computational power, wireless connectivity, and high-resolution imaging, making them ideal for in-field food safety testing with minimal sample and reagent requirements. At the core of these systems are electrochemical biosensors, which convert specific biochemical reactions into electrical signals, ensuring highly sensitive and selective detection. Advanced nanomaterials and integration with Internet of Things (IoT) technologies have further improved performance, delivering cost-effective, user-friendly food monitoring solutions that meet regulatory safety and quality standards. Analytical techniques such as voltammetry, amperometry, and impedance spectroscopy increase accuracy even in complex food samples. Moreover, low-cost engineering, artificial intelligence (AI), and nanotechnology enhance the sensitivity, affordability, and data analysis capabilities of smartphone-integrated electrochemical devices, facilitating their deployment for on-site monitoring of food and agricultural contaminants. This review explains how these technologies address global food safety challenges through rapid, reliable, and portable detection, supporting food quality, sustainability, and public health. Full article
Show Figures

Figure 1

28 pages, 1858 KB  
Article
Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network
by Alexis Barrios-Ulloa, Andrés Solano-Barliza, Wilson Arrubla-Hoyos, Adelaida Ojeda-Beltrán, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos and Alejandro Cama-Pinto
Sustainability 2025, 17(15), 6664; https://doi.org/10.3390/su17156664 - 22 Jul 2025
Viewed by 1588
Abstract
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the [...] Read more.
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the evolution of wireless technologies to sixth-generation networks (6G) can support innovation in Colombia’s agricultural sector and foster rural advancement. The study follows three main phases: search, analysis, and selection of information. In the search phase, key government policies, spectrum management strategies, and the relevant literature from 2020 to 2025 were reviewed. The analysis phase addresses challenges such as spectrum regulation and infrastructure deployment within the context of a developing country. Finally, the selection phase evaluates technological readiness and policy frameworks. Findings suggest that 6G could revolutionize Colombian agriculture by improving connectivity, enabling real-time monitoring, and facilitating precision farming, especially in rural areas with limited infrastructure. Successful 6G deployment could boost agricultural productivity, reduce socioeconomic disparities, and foster sustainable rural development, contingent on aligned public policies, infrastructure investments, and human capital development. Full article
(This article belongs to the Special Issue Sustainable Precision Agriculture: Latest Advances and Prospects)
Show Figures

Figure 1

20 pages, 1949 KB  
Review
Sustainable Management of Energy Storage in Electric Vehicles Involved in a Smart Urban Environment
by Adel Razek
Energy Storage Appl. 2025, 2(2), 7; https://doi.org/10.3390/esa2020007 - 17 Jun 2025
Viewed by 466
Abstract
Electric vehicles are increasingly being used for green transportation in smart urban mobility, thus protecting environmental biodiversity and the ecosystem. Energy storage by electric vehicle batteries is a critical point of this ecologically responsible transportation. This storage is strongly linked to the different [...] Read more.
Electric vehicles are increasingly being used for green transportation in smart urban mobility, thus protecting environmental biodiversity and the ecosystem. Energy storage by electric vehicle batteries is a critical point of this ecologically responsible transportation. This storage is strongly linked to the different external managements related to its capacity state. The latter concerns the interconnection of storage to energy resources, charging strategies, and their complexity. In an ideal urban context, charging strategies would use wireless devices. However, these may involve complex frames and unwanted electromagnetic field interferences. The sustainable management of wireless devices and battery state conditions allows for optimized operation and minimized adverse effects. Such management includes the sustainable design of devices and monitoring of complex connected procedures. The present study aims to analyze this management and to highlight the mathematical routines enabling the design and control tasks involved. The investigations involved are closely related to responsible attitude, “One Health”, and twin supervision approaches. The different sections of the article examine the following: electric vehicle in smart mobility, sustainable design and control, electromagnetic exposures, governance of physical and mathematical representation, charging routines, protection against adverse effects, and supervision of complex connected vehicles. The research presented in this article is supported by examples from the literature. Full article
Show Figures

Figure 1

26 pages, 2568 KB  
Article
Unified Framework for RIS-Enhanced Wireless Communication and Ambient RF Energy Harvesting: Performance and Sustainability Analysis
by Sunday Enahoro, Sunday Ekpo, Yasir Al-Yasir, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan and Stephen Alabi
Technologies 2025, 13(6), 244; https://doi.org/10.3390/technologies13060244 - 12 Jun 2025
Viewed by 997
Abstract
The increasing demand for high-capacity, energy-efficient wireless networks poses significant challenges in maintaining spectral efficiency, minimizing interference, and ensuring sustainability. Traditional direct-link communication suffers from signal degradation due to path loss, multipath fading, and interference, limiting overall performance. To mitigate these challenges, this [...] Read more.
The increasing demand for high-capacity, energy-efficient wireless networks poses significant challenges in maintaining spectral efficiency, minimizing interference, and ensuring sustainability. Traditional direct-link communication suffers from signal degradation due to path loss, multipath fading, and interference, limiting overall performance. To mitigate these challenges, this paper proposes a unified RIS framework that integrates passive and active Reconfigurable Intelligent Surfaces (RISs) for enhanced communication and ambient RF energy harvesting. Our methodology optimizes RIS-assisted beamforming using successive convex approximation (SCA) and adaptive phase shift tuning, maximizing desired signal reception while reducing interference. Passive RIS efficiently reflects signals without external power, whereas active RIS employs amplification-assisted reflection for superior performance. Evaluations using realistic urban macrocell and mmWave channel models reveal that, compared to direct links, passive RIS boosts SNR from 3.0 dB to 7.1 dB, and throughput from 2.6 Gbps to 4.6 Gbps, while active RIS further enhances the SNR to 10.0 dB and throughput to 6.8 Gbps. Energy efficiency increases from 0.44 to 0.67 (passive) and 0.82 (active), with latency reduced from 80 ms to 35 ms. These performance metrics validate the proposed approach and highlight its potential applications in urban 5G networks, IoT systems, high-mobility scenarios, and other next-generation wireless environments. Full article
(This article belongs to the Special Issue Microwave/Millimeter-Wave Future Trends and Technologies)
Show Figures

Figure 1

51 pages, 4952 KB  
Review
Energy-Efficient Near-Field Beamforming: A Review on Practical Channel Models
by Haoran Ni, Mahnoor Anjum, Deepak Mishra and Aruna Seneviratne
Energies 2025, 18(11), 2966; https://doi.org/10.3390/en18112966 - 4 Jun 2025
Cited by 2 | Viewed by 2750
Abstract
The unprecedented expansion of wireless networks has resulted in spectrum sharing between numerous connected devices, demanding advanced interference management and higher energy consumption, which exacerbates the carbon footprint. Near-field communication emerges as a promising solution to these challenges as it enables precise signal [...] Read more.
The unprecedented expansion of wireless networks has resulted in spectrum sharing between numerous connected devices, demanding advanced interference management and higher energy consumption, which exacerbates the carbon footprint. Near-field communication emerges as a promising solution to these challenges as it enables precise signal focusing which reduces power consumption by providing higher spatial multiplexing gains. This review explores how near-field (NF) multiple-input multiple-output (MIMO) beamforming can enhance energy efficiency by optimizing beamfocusing and minimizing unnecessary energy expenditure. We discuss the latest advancements in near-field beamforming, emphasizing energy-efficient strategies and sustainable practices. Recognizing which practical channel models are better suited for near-field communication, we delve into the integration of Electromagnetic Information Theory (EIT) as a joint model for realistic applications. We also discuss the channel models for near-field beamforming, incorporating EIT to provide a comprehensive overview of current methodologies. We further analyze the strengths and limitations of existing channel models and discuss the state-of-the-art models which address existing gaps. We also explore opportunities for the practical deployment of energy-efficient near-field beamforming systems. By summarizing future research directions, this review aims to advance the understanding and application of sustainable energy practices in near-field communication technologies. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting Systems)
Show Figures

Figure 1

17 pages, 9601 KB  
Article
Flexible Rectenna on an Eco-Friendly Substrate for Application in Next-Generation IoT Devices
by Nikolay Atanasov, Blagovest Atanasov and Gabriela Atanasova
Appl. Sci. 2025, 15(11), 6303; https://doi.org/10.3390/app15116303 - 4 Jun 2025
Viewed by 812
Abstract
Globally, there are now more than 19 billion connected Internet of Things (IoT) devices, which are fostering innovation across various sectors, including industry, healthcare, education, energy, and agriculture. With the rapid expansion of IoT devices, there is an increasing demand for sustainable, self-powered, [...] Read more.
Globally, there are now more than 19 billion connected Internet of Things (IoT) devices, which are fostering innovation across various sectors, including industry, healthcare, education, energy, and agriculture. With the rapid expansion of IoT devices, there is an increasing demand for sustainable, self-powered, eco-friendly solutions for next-generation IoT devices. Harvesting and converting radio frequency (RF) energy through rectennas is being explored as a potential solution for next-generation self-powered wireless devices. This paper presents a methodology for designing, optimizing, and fabricating a flexible rectenna for RF energy harvesting in the 5G lower mid-band and ISM 2.45 GHz band. The antenna element has a tree form based on a fractal structure, which provides a small size for the rectenna. Furthermore, to reduce the rectenna’s environmental impact, we fabricated the rectenna on a substrate from biodegradable materials—natural rubber filled with rice husk ash. The rectifier circuit was also designed and fabricated on the flexible substrate, facilitating the seamless integration of the rectenna in next-generation low-power IoT devices. The numerical analysis of the parameters and characteristics of rectenna elements, based on the finite-difference time-domain method, demonstrates a high degree of agreement with the experimental results. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

20 pages, 3398 KB  
Article
A Novel Bio-Inspired Bird Flocking Node Scheduling Algorithm for Dependable Safety-Critical Wireless Sensor Network Systems
by Issam Al-Nader, Rand Raheem and Aboubaker Lasebae
J 2025, 8(2), 19; https://doi.org/10.3390/j8020019 - 20 May 2025
Viewed by 1108
Abstract
The Multi-Objective Optimization Problem (MOOP) in Wireless Sensor Networks (WSNs) is a challenging issue that requires balancing multiple conflicting objectives, such as maintaining coverage, connectivity, and network lifetime all together. These objectives are important for a functioning WSN safety-critical applications, whether in environmental [...] Read more.
The Multi-Objective Optimization Problem (MOOP) in Wireless Sensor Networks (WSNs) is a challenging issue that requires balancing multiple conflicting objectives, such as maintaining coverage, connectivity, and network lifetime all together. These objectives are important for a functioning WSN safety-critical applications, whether in environmental monitoring, military surveillance, or smart cities. To address these challenges, we propose a novel bio-inspired Bird Flocking Node Scheduling algorithm, which takes inspiration from the natural flocking behavior of birds migrating over long distance to optimize sensor node activity in a distributed and energy-efficient manner. The proposed algorithm integrates the Lyapunov function to maintain connected coverage while optimizing energy efficiency, ensuring service availability and reliability. The effectiveness of the algorithm is evaluated through extensive simulations, namely MATLAB R2018b simulator coupled with a Pareto front, comparing its performance with our previously developed BAT node scheduling algorithm. The results demonstrate significant improvements across key performance metrics, specifically, enhancing network coverage by 8%, improving connectivity by 10%, and extending network lifetime by an impressive 80%. These findings highlight the potential of bio-inspired Bird Flocking optimization techniques in advancing WSN dependability, making them more sustainable and suitable for real-world WSN safety-critical systems. Full article
(This article belongs to the Section Computer Science & Mathematics)
Show Figures

Figure 1

30 pages, 1955 KB  
Article
Revolutionising Educational Management with AI and Wireless Networks: A Framework for Smart Resource Allocation and Decision-Making
by Christos Koukaras, Euripides Hatzikraniotis, Maria Mitsiaki, Paraskevas Koukaras, Christos Tjortjis and Stavros G. Stavrinides
Appl. Sci. 2025, 15(10), 5293; https://doi.org/10.3390/app15105293 - 9 May 2025
Cited by 1 | Viewed by 2142
Abstract
Educational institutions face growing challenges. Rising enrolment, limited budgets, and sustainability goals demand more efficient resource management and administrative decision-making. To address challenges like these, this work proposes a conceptual framework for smart campus management which integrates Artificial Intelligence (AI) and advanced wireless [...] Read more.
Educational institutions face growing challenges. Rising enrolment, limited budgets, and sustainability goals demand more efficient resource management and administrative decision-making. To address challenges like these, this work proposes a conceptual framework for smart campus management which integrates Artificial Intelligence (AI) and advanced wireless networks based on 5G. The framework’s design outlines layers for campus data collection (via sensors and connected devices), high-speed communication, and AI-driven analytics for decision support. By leveraging data-driven insights enabled by reliable wireless connectivity, institutions can make more informed decisions, use resources more effectively, and automate routine tasks. Envisioned AI capabilities include forecasting (for predictive maintenance and demand planning), anomaly detection (for fault or irregularity identification), and optimisation (for resource scheduling). Rather than reporting empirical results, the framework is illustrated through hypothetical scenarios (e.g., anticipating equipment maintenance, dynamically scheduling classrooms, or reallocating resources) to present potential benefits and tools for researchers. The discussion also highlights how the framework incorporates data privacy, security, and accessibility considerations to ensure inclusive adoption. Eventually, this conceptual proposal provides a roadmap for administrators and planners, guiding the adoption of AI and wireless innovations in educational management to enable more responsive, efficient governance and, ultimately, improve outcomes for students and staff. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 7147 KB  
Article
A Novel Sustainable and Cost-Effective Triboelectric Nanogenerator Connected to the Internet of Things for Communication with Deaf–Mute People
by Enrique Delgado-Alvarado, Muhammad Waseem Ashraf, Shahzadi Tayyaba, José Amir González-Calderon, Ricardo López-Esparza, Ma. Cristina Irma Pérez-Pérez, Victor Champac, José Hernandéz-Hernández, Maximo Alejandro Figueroa-Navarro and Agustín Leobardo Herrera-May
Technologies 2025, 13(5), 188; https://doi.org/10.3390/technologies13050188 - 7 May 2025
Viewed by 1546
Abstract
Low-cost and sustainable technological systems are required to improve communication between deaf–mute and non-deaf–mute people. Herein, we report a novel low-cost and eco-friendly triboelectric nanogenerator (TENG) composed of recycled and waste components. This TENG can be connected to a smartphone using the internet [...] Read more.
Low-cost and sustainable technological systems are required to improve communication between deaf–mute and non-deaf–mute people. Herein, we report a novel low-cost and eco-friendly triboelectric nanogenerator (TENG) composed of recycled and waste components. This TENG can be connected to a smartphone using the internet of things (IoT), which allows the transmission of information from deaf–mute to non-deaf–mute people. The proposed TENG can harness kinetic energy to convert it into electrical energy with advantages such as a compact portable design, a light weight, cost-effective fabrication, good voltage stability, and easy signal processing. In addition, this nanogenerator uses recycled and waste materials composed of radish leaf, polyimide tape, and a polyethylene terephthalate (PET) sheet. This TENG reaches an output power density of 340.3 µWm−2 using a load resistance of 20.5 MΩ at 23 Hz, respectively. This nanogenerator achieves a stable performance even after 41,400 working cycles. Also, this device can power a digital calculator and chronometer, as well as light 116 ultra-bright blue commercial LEDs. This TENG can convert the movements of the fingers of a deaf–mute person into electrical signals that are transmitted as text messages to a smartphone. Thus, the proposed TENG can be used as a low-cost wireless communication device for deaf–mute people, contributing to an inclusive society. Full article
(This article belongs to the Special Issue Technological Advances in Science, Medicine, and Engineering 2024)
Show Figures

Graphical abstract

15 pages, 3536 KB  
Article
A Low-Cost Wireless Monitoring System for Photovoltaic Systems: Performance Analysis and Potential Application in Direct-Current Nanogrids
by Norman J. Beltrán Castañón, Fredy Chura Acero, José Ramos Cutipa, Omar Chayña Velásquez, Henry Shuta Lloclla and Edisson Cruz Ticona
Energies 2025, 18(9), 2279; https://doi.org/10.3390/en18092279 - 29 Apr 2025
Cited by 1 | Viewed by 760
Abstract
The unique challenges posed by the high altitude and extreme-irradiance variability in the Peruvian Altiplano necessitate innovative and cost-effective monitoring solutions for photovoltaic (PV) systems. This study presents a low-cost wireless monitoring system for PV systems, designed for performance analysis and with potential [...] Read more.
The unique challenges posed by the high altitude and extreme-irradiance variability in the Peruvian Altiplano necessitate innovative and cost-effective monitoring solutions for photovoltaic (PV) systems. This study presents a low-cost wireless monitoring system for PV systems, designed for performance analysis and with potential application in DC nanogrids. The system, based on an Arduino Nano and Raspberry Pi architecture, captures real-time data on key electrical parameters such as voltage, current, and power, as well as environmental conditions like temperature and irradiance, which are critical factors influencing PV system performance. Deployed on a 3 kW grid-connected PV system in the Peruvian Altiplano, the system reveals significant irradiance variability, with fluctuations exceeding 20% within a single day and extreme events surpassing 1500 W/m2. This variability resulted in an average daily energy generation fluctuation of 15%, underscoring the importance of continuous monitoring for optimizing PV system operation. This variability impacts energy generation and underscores the importance of continuous monitoring for optimizing PV system operation. The study analyzes the system’s performance under different irradiance conditions and discusses its adaptability for use in DC nanogrids, which offer enhanced efficiency and accessibility in remote areas like the Altiplano. This research contributes a practical and versatile tool for advancing sustainable energy solutions, with implications for improving the efficiency and reliability of both grid-connected PV systems and the emerging field of DC nanogrids in remote areas. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 1566 KB  
Article
Opportunistic Allocation of Resources for Smart Metering Considering Fixed and Random Wireless Channels
by Christian Jara, Juan Inga and Esteban Inga
Sensors 2025, 25(8), 2570; https://doi.org/10.3390/s25082570 - 18 Apr 2025
Viewed by 657
Abstract
This paper presents an optimization model for wireless channel allocation in cellular networks, specifically designed for the transmission of smart meter (SM) data through a mobile virtual network operator (MVNO). The model efficiently allocates transmission channels, minimizing smart grid (SG) costs. The MVNO [...] Read more.
This paper presents an optimization model for wireless channel allocation in cellular networks, specifically designed for the transmission of smart meter (SM) data through a mobile virtual network operator (MVNO). The model efficiently allocates transmission channels, minimizing smart grid (SG) costs. The MVNO manages fixed and random channels through a shared access scheme, optimizing meter connectivity. Channel allocation is based on a Markovian approach and optimized through the Hungarian algorithm that minimizes the weight in a bipartite network between meters and channels. In addition, cumulative tokens are introduced that weight transmissions according to channel availability and network congestion. Simulations show that dynamic allocation in virtual networks improves transmission performance, contributing to sustainability and cost reduction in cellular networks. This study highlights the importance of inefficient resource management by cognitive mobile virtual network and cognitive radio virtual network operators (C-MVNOs), laying a solid foundation for future applications in intelligent networks. This work is motivated by the increasing demand for efficient and scalable data transmission in smart metering systems. The novelty lies in integrating cumulative tokens and a Markovian-based bipartite graph matching algorithm, which jointly optimize channel allocation and transmission reliability under heterogeneous wireless conditions. Full article
(This article belongs to the Special Issue AI and Smart Sensors for Intelligent Transportation Systems)
Show Figures

Graphical abstract

29 pages, 3403 KB  
Review
A Review of Physical Layer Security in Aerial–Terrestrial Integrated Internet of Things: Emerging Techniques, Potential Applications, and Future Trends
by Yixin He, Jingwen Wu, Lijun Zhu, Fanghui Huang, Baolei Wang, Deshan Yang and Dawei Wang
Drones 2025, 9(4), 312; https://doi.org/10.3390/drones9040312 - 16 Apr 2025
Viewed by 1596
Abstract
The aerial–terrestrial integrated Internet of Things (ATI-IoT) utilizes both aerial platforms (e.g., drones and high-altitude platform stations) and terrestrial networks to establish comprehensive and seamless connectivity across diverse geographical regions. The integration offers significant advantages, including expanded coverage in remote and underserved areas, [...] Read more.
The aerial–terrestrial integrated Internet of Things (ATI-IoT) utilizes both aerial platforms (e.g., drones and high-altitude platform stations) and terrestrial networks to establish comprehensive and seamless connectivity across diverse geographical regions. The integration offers significant advantages, including expanded coverage in remote and underserved areas, enhanced reliability of data transmission, and support for various applications such as emergency communications, vehicular ad hoc networks, and intelligent agriculture. However, due to the inherent openness of wireless channels, ATI-IoT faces potential network threats and attacks, and its security issues cannot be ignored. In this regard, incorporating physical layer security techniques into ATI-IoT is essential to ensure data integrity and confidentiality. Motivated by the aforementioned factors, this review presents the latest advancements in ATI-IoT that facilitate physical layer security. Specifically, we elucidate the endogenous safety and security of wireless communications, upon which we illustrate the current status of aerial–terrestrial integrated architectures along with the functions of their components. Subsequently, various emerging techniques (e.g., intelligent reflective surfaces-assisted networks, device-to-device communications, covert communications, and cooperative transmissions) for ATI-IoT enabling physical layer security are demonstrated and categorized based on their technical principles. Furthermore, given that aerial platforms offer flexible deployment and high re-positioning capabilities, comprehensive discussions on practical applications of ATI-IoT are provided. Finally, several significant unresolved issues pertaining to technical challenges as well as security and sustainability concerns in ATI-IoT enabling physical layer security are outlined. Full article
(This article belongs to the Special Issue Physical-Layer Security in Drone Communications—2nd Edition)
Show Figures

Figure 1

50 pages, 7835 KB  
Article
Enhancing Connected Health Ecosystems Through IoT-Enabled Monitoring Technologies: A Case Study of the Monit4Healthy System
by Marilena Ianculescu, Victor-Ștefan Constantin, Andreea-Maria Gușatu, Mihail-Cristian Petrache, Alina-Georgiana Mihăescu, Ovidiu Bica and Adriana Alexandru
Sensors 2025, 25(7), 2292; https://doi.org/10.3390/s25072292 - 4 Apr 2025
Cited by 8 | Viewed by 1823
Abstract
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, [...] Read more.
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, photoplethysmography, and EKG, to allow for the remote gathering and evaluation of health information. In order to decrease network load and enable the quick identification of abnormalities, edge computing is used for real-time signal filtering and feature extraction. Flexible data transmission based on context and available bandwidth is provided through a hybrid communication approach that includes Bluetooth Low Energy and Wi-Fi. Under typical monitoring scenarios, laboratory testing shows reliable wireless connectivity and ongoing battery-powered operation. The Monit4Healthy system is appropriate for scalable deployment in connected health ecosystems and portable health monitoring due to its responsive power management approaches and structured data transmission, which improve the resiliency of the system. The system ensures the reliability of signals whilst lowering latency and data volume in comparison to conventional cloud-only systems. Limitations include the requirement for energy profiling, distinctive hardware miniaturizing, and sustained real-world validation. By integrating context-aware processing, flexible design, and effective communication, the Monit4Healthy system complements existing IoT health solutions and promotes better integration in clinical and smart city healthcare environments. Full article
Show Figures

Figure 1

Back to TopTop