Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = ten-eleven translocation (TET) protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 514 KiB  
Review
Induction of DNA Demethylation: Strategies and Consequences
by Pietro Salvatore Carollo and Viviana Barra
Epigenomes 2025, 9(2), 11; https://doi.org/10.3390/epigenomes9020011 - 12 Apr 2025
Viewed by 583
Abstract
DNA methylation is an important epigenetic modification with a plethora of effects on cells, ranging from the regulation of gene transcription to shaping chromatin structure. Notably, DNA methylation occurs thanks to the activity of DNA methyltransferases (DNMTs), which covalently add a methyl group [...] Read more.
DNA methylation is an important epigenetic modification with a plethora of effects on cells, ranging from the regulation of gene transcription to shaping chromatin structure. Notably, DNA methylation occurs thanks to the activity of DNA methyltransferases (DNMTs), which covalently add a methyl group to the cytosine in position 5′ in CpG dinucleotides. Different strategies have been developed to study the effects of DNA methylation in cells, involving either DNMTs inhibition (passive DNA demethylation) or the use of Ten-eleven translocation protein (TET) family enzymes, which directly demethylate DNA (active DNA demethylation). In this manuscript, we will briefly cover the most commonly used strategies in the last two decades to achieve DNA demethylation, along with their effects on cells. We will also discuss some of the newest inducible ways to inhibit DNMTs without remarkable side effects, as well as the effect of non-coding RNAs on DNA methylation. Lastly, we will briefly examine the use of DNA methylation inhibition in biomedical research. Full article
(This article belongs to the Special Issue Features Papers in Epigenomes 2025)
Show Figures

Graphical abstract

9 pages, 1403 KiB  
Article
Upregulation of TET2 and Resistance to DNA Methyltransferase (DNMT) Inhibitors in DNMT1-Deleted Cancer Cells
by Angelo B. A. Laranjeira, Dat Nguyen, Lorraine C. Pelosof, James H. Doroshow and Sherry X. Yang
Diseases 2024, 12(7), 163; https://doi.org/10.3390/diseases12070163 - 18 Jul 2024
Cited by 2 | Viewed by 2083
Abstract
Background: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT [...] Read more.
Background: Ten-eleven-translocation (TET) 2 is a member of the TET family of proteins (TET1-3). DNMT1 gene deletion confers resistance to DNA methyltransferase (DNMT) inhibitors in colorectal, breast, and ovarian cancer cells. Currently, the effect of DNMT1 gene status on TET2 phenotype following DNMT inhibitor treatment is unclear in human malignancies. Methods: Human colorectal carcinoma HCT116 cells (DNMT+/+) and their isogenic DNMT1 knockout (DNMT1–/–) counterpart were treated with DNMT inhibitors. Expression of TET2 and tumor suppressor (p16ink4A and p15ink4B) proteins were examined by Western blot. Apoptosis and CDKN2A promoter demethylation following drug treatment were detected by Annexin-V apoptosis assay and methylation-specific PCR. Results: TET2 expression was robustly increased in DNMT1−/− cells by 0.5 µM and 5 µM decitabine and azacitidine treatment. Augmentation of TET2 expression was accompanied by re-expression of p16ink4A and p15ink4B proteins and CDKN2A promoter demethylation. TET2 upregulation and tumor suppressor re-expression were associated with resistance conferred by DNMT1 deletion. Treatment with 5-aza-4′-thio-2′-deoxycytidine at a low 0.5 µM dose only upregulated TET2 and reduced CDKN2A promoter methylation, and re-expression of p16ink4A in DNMT1−/− cells. DNMT inhibitors showed minimal effects on TET2 upregulation and re-expression of tumor suppressor proteins in cells with intact DNMT1. Conclusions: DNMT1 gene deletion made cancer cells prone to TET2 upregulation and activation of tumor suppressor expression upon DNMT inhibitor challenge. TET2 augmentation is concomitant with resistance to DNMT inhibitors in a DNMT1-deleted state. Full article
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
AMPK Deficiency Increases DNA Methylation and Aggravates Colorectal Tumorigenesis in AOM/DSS Mice
by Qi Sun, Qiyu Tian, Alejandro Bravo Iniguez, Xiaofei Sun, Hui Zhang, Jeanene Deavila, Min Du and Mei-Jun Zhu
Genes 2024, 15(7), 835; https://doi.org/10.3390/genes15070835 - 25 Jun 2024
Cited by 1 | Viewed by 2018
Abstract
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium [...] Read more.
The incidence of colorectal cancer (CRC) is closely linked to metabolic diseases. Accumulating evidence suggests the regulatory role of AMP-activated protein kinase (AMPK) in cancer metabolic reprogramming. In this study, wild-type and AMPK knockout mice were subjected to azoxymethane-induced and dextran sulfate sodium (AOM/DSS)-promoted colitis-associated CRC induction. A stable AMPK-deficient Caco-2 cell line was also established for the mechanistic studies. The data showed that AMPK deficiency accelerated CRC development, characterized by increased tumor number, tumor size, and hyperplasia in AOM/DSS-treated mice. The aggravated colorectal tumorigenesis resulting from AMPK ablation was associated with reduced α-ketoglutarate production and ten-eleven translocation hydroxylase 2 (TET2) transcription, correlated with the reduced mismatch repair protein mutL homolog 1 (MLH1) protein. Furthermore, in AMPK-deficient Caco-2 cells, the mRNA expression of mismatch repair and tumor suppressor genes, intracellular α-ketoglutarate, and the protein level of TET2 were also downregulated. AMPK deficiency also increased hypermethylation in the CpG islands of Mlh1 in both colonic tissues and Caco-2 cells. In conclusion, AMPK deficiency leads to reduced α-ketoglutarate concentration and elevates the suppressive epigenetic modifications of tumor suppressor genes in gut epithelial cells, thereby increasing the risk of colorectal tumorigenesis. Given the modifiable nature of AMPK activity, it holds promise as a prospective molecular target for the prevention and treatment of CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 1211 KiB  
Review
TET Enzymes and 5hmC Levels in Carcinogenesis and Progression of Breast Cancer: Potential Therapeutic Targets
by Eric Genaro Salmerón-Bárcenas, Ana Elvira Zacapala-Gómez, Francisco Israel Torres-Rojas, Verónica Antonio-Véjar, Pedro Antonio Ávila-López, Christian Johana Baños-Hernández, Hober Nelson Núñez-Martínez, Roberto Dircio-Maldonado, Dinorah Nashely Martínez-Carrillo, Julio Ortiz-Ortiz and Hilda Jiménez-Wences
Int. J. Mol. Sci. 2024, 25(1), 272; https://doi.org/10.3390/ijms25010272 - 24 Dec 2023
Cited by 9 | Viewed by 3544
Abstract
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body [...] Read more.
Breast Cancer (BC) was the most common female cancer in incidence and mortality worldwide in 2020. Similarly, BC was the top female cancer in the USA in 2022. Risk factors include earlier age at menarche, oral contraceptive use, hormone replacement therapy, high body mass index, and mutations in BRCA1/2 genes, among others. BC is classified into Luminal A, Luminal B, HER2-like, and Basal-like subtypes. These BC subtypes present differences in gene expression signatures, which can impact clinical behavior, treatment response, aggressiveness, metastasis, and survival of patients. Therefore, it is necessary to understand the epigenetic molecular mechanism of transcriptional regulation in BC, such as DNA demethylation. Ten-Eleven Translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) on DNA, which in turn inhibits or promotes the gene expression. Interestingly, the expression of TET enzymes as well as the levels of the 5hmC epigenetic mark are altered in several types of human cancers, including BC. Several studies have demonstrated that TET enzymes and 5hmC play a key role in the regulation of gene expression in BC, directly (dependent or independent of DNA de-methylation) or indirectly (via interaction with other proteins such as transcription factors). In this review, we describe our recent understanding of the regulatory and physiological function of the TET enzymes, as well as their potential role as biomarkers in BC biology. Full article
(This article belongs to the Special Issue Interrelation between MicroRNA & Cancer)
Show Figures

Figure 1

18 pages, 3156 KiB  
Article
Development of Novel Epigenetic Anti-Cancer Therapy Targeting TET Proteins
by Hyejin Kim, Inkyung Jung, Chan Hyeong Lee, Jungeun An and Myunggon Ko
Int. J. Mol. Sci. 2023, 24(22), 16375; https://doi.org/10.3390/ijms242216375 - 15 Nov 2023
Cited by 8 | Viewed by 2494
Abstract
Epigenetic dysregulation, particularly alterations in DNA methylation and hydroxymethylation, plays a pivotal role in cancer initiation and progression. Ten-eleven translocation (TET) proteins catalyze the successive oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized methylcytosines in DNA, thereby serving as central modulators [...] Read more.
Epigenetic dysregulation, particularly alterations in DNA methylation and hydroxymethylation, plays a pivotal role in cancer initiation and progression. Ten-eleven translocation (TET) proteins catalyze the successive oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidized methylcytosines in DNA, thereby serving as central modulators of DNA methylation–demethylation dynamics. TET loss of function is causally related to neoplastic transformation across various cell types while its genetic or pharmacological activation exhibits anti-cancer effects, making TET proteins promising targets for epigenetic cancer therapy. Here, we developed a robust cell-based screening system to identify novel TET activators and evaluated their potential as anti-cancer agents. Using a carefully curated library of 4533 compounds provided by the National Cancer Institute, Bethesda, MD, USA, we identified mitoxantrone as a potent TET agonist. Through rigorous validation employing various assays, including immunohistochemistry and dot blot studies, we demonstrated that mitoxantrone significantly elevated 5hmC levels. Notably, this elevation manifested only in wild-type (WT) but not TET-deficient mouse embryonic fibroblasts, primary bone marrow-derived macrophages, and leukemia cell lines. Furthermore, mitoxantrone-induced cell death in leukemia cell lines occurred in a TET-dependent manner, indicating the critical role of TET proteins in mediating its anti-cancer effects. Our findings highlight mitoxantrone’s potential to induce tumor cell death via a novel mechanism involving the restoration of TET activity, paving the way for targeted epigenetic therapies in cancer treatment. Full article
(This article belongs to the Special Issue Molecular Mechanism of Leukemia 2.0)
Show Figures

Figure 1

15 pages, 2991 KiB  
Article
Pharmacologic Ascorbate and DNMT Inhibitors Increase DUOX Expression and Peroxide-Mediated Toxicity in Pancreatic Cancer
by Garett J. Steers, Brianne R. O’Leary, Juan Du, Brett A. Wagner, Rory S. Carroll, Frederick E. Domann, Prabhat C. Goswami, Garry R. Buettner and Joseph J. Cullen
Antioxidants 2023, 12(9), 1683; https://doi.org/10.3390/antiox12091683 - 29 Aug 2023
Cited by 3 | Viewed by 2025
Abstract
Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) [...] Read more.
Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC. Full article
(This article belongs to the Special Issue Current Insights and Trends in Vitamin C Research)
Show Figures

Figure 1

15 pages, 5834 KiB  
Article
TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis
by Fan Chen, Ming-Guo Li, Zai-Dong Hua, Hong-Yan Ren, Hao Gu, An-Feng Luo, Chang-Fan Zhou, Zhe Zhu, Tao Huang and Yan-Zhen Bi
Int. J. Mol. Sci. 2023, 24(15), 12455; https://doi.org/10.3390/ijms241512455 - 5 Aug 2023
Cited by 3 | Viewed by 2187
Abstract
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is [...] Read more.
The ten-eleven translocation (TET) enzyme family, which includes TET1/2/3, participates in active DNA demethylation in the eukaryotic genome; moreover, TET1/2/3 are functionally redundant in mice embryos. However, the combined effect of TET1/2/3 triple-gene knockdown or knockout on the porcine oocytes or embryos is still unclear. In this study, using Bobcat339, a specific small-molecule inhibitor of the TET family, we explored the effects of TET enzymes on oocyte maturation and early embryogenesis in pigs. Our results revealed that Bobcat339 treatment blocked porcine oocyte maturation and triggered early apoptosis. Furthermore, in the Bobcat339-treated oocytes, spindle architecture and chromosome alignment were disrupted, probably due to the huge loss of 5-hydroxymethylcytosine (5hmC)and concurrent increase in 5-methylcytosine (5mC). After Bobcat339 treatment, early parthenogenetic embryos exhibited abnormal 5mC and 5hmC levels, which resulted in compromised cleavage and blastocyst rate. The mRNA levels of EIF1A and DPPA2 (ZGA marker genes) were significantly decreased, which may explain why the embryos were arrested at the 4-cell stage after Bobcat339 treatment. In addition, the mRNA levels of pluripotency-related genes OCT4 and NANOG were declined after Bobcat339 treatment. RNA sequencing analysis revealed differentially expressed genes in Bobcat339-treated embryos at the 4-cell stage, which were significantly enriched in cell proliferation, cell component related to mitochondrion, and cell adhesion molecule binding. Our results indicated that TET proteins are essential for porcine oocyte maturation and early embryogenesis, and they act by mediating 5mC/5hmC levels and gene transcription. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 1999 KiB  
Review
Melatonin: A Potential Regulator of DNA Methylation
by Kinga Linowiecka, Andrzej T. Slominski, Russel J. Reiter, Markus Böhm, Kerstin Steinbrink, Ralf Paus and Konrad Kleszczyński
Antioxidants 2023, 12(6), 1155; https://doi.org/10.3390/antiox12061155 - 25 May 2023
Cited by 21 | Viewed by 6983
Abstract
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed [...] Read more.
The pineal gland-derived indoleamine hormone, melatonin, regulates multiple cellular processes, ranging from chronobiology, proliferation, apoptosis, and oxidative damage to pigmentation, immune regulation, and mitochondrial metabolism. While melatonin is best known as a master regulator of the circadian rhythm, previous studies also have revealed connections between circadian cycle disruption and genomic instability, including epigenetic changes in the pattern of DNA methylation. For example, melatonin secretion is associated with differential circadian gene methylation in night shift workers and the regulation of genomic methylation during embryonic development, and there is accumulating evidence that melatonin can modify DNA methylation. Since the latter one impacts cancer initiation, and also, non-malignant diseases development, and that targeting DNA methylation has become a novel intervention target in clinical therapy, this review discusses the potential role of melatonin as an under-investigated candidate epigenetic regulator, namely by modulating DNA methylation via changes in mRNA and the protein expression of DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) proteins. Furthermore, since melatonin may impact changes in the DNA methylation pattern, the authors of the review suggest its possible use in combination therapy with epigenetic drugs as a new anticancer strategy. Full article
(This article belongs to the Special Issue Melatonin and Vitamin D in Diseases and Health)
Show Figures

Figure 1

33 pages, 1951 KiB  
Review
Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on?
by Marina G. Gladkova, Este Leidmaa and Elmira A. Anderzhanova
Cells 2023, 12(11), 1464; https://doi.org/10.3390/cells12111464 - 24 May 2023
Cited by 16 | Viewed by 3833
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the [...] Read more.
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia. Full article
Show Figures

Figure 1

27 pages, 1854 KiB  
Review
Targeted DNA Demethylation: Vectors, Effectors and Perspectives
by Naohiro Yano and Alexey V. Fedulov
Biomedicines 2023, 11(5), 1334; https://doi.org/10.3390/biomedicines11051334 - 30 Apr 2023
Cited by 11 | Viewed by 4801
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a [...] Read more.
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy. Full article
(This article belongs to the Special Issue Molecular Tools for Epigenetic Engineering)
Show Figures

Figure 1

18 pages, 1795 KiB  
Article
Examination of the Functional Relationship between PD-L1 DNA Methylation and mRNA Expression in Non-Small-Cell Lung Cancer
by Trine V. Larsen, Nina Dybdal, Tina F. Daugaard, Johanne Lade-Keller, Lin Lin, Boe S. Sorensen and Anders L. Nielsen
Cancers 2023, 15(6), 1909; https://doi.org/10.3390/cancers15061909 - 22 Mar 2023
Cited by 6 | Viewed by 3438
Abstract
Immunotherapy targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) is a treatment option for patients with non-small-cell lung cancer (NSCLC). The expression of PD-L1 by the NSCLC cells determines treatment effectiveness, but the relationship between PD-L1 [...] Read more.
Immunotherapy targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) is a treatment option for patients with non-small-cell lung cancer (NSCLC). The expression of PD-L1 by the NSCLC cells determines treatment effectiveness, but the relationship between PD-L1 DNA methylation and expression has not been clearly described. We investigated PD-L1 DNA methylation, mRNA expression, and protein expression in NSCLC cell lines and tumor biopsies. We used clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) to modify PD-L1 genetic contexts and endonuclease deficient Cas9 (dCas9) fusions with ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) to manipulate PD-L1 DNA methylation. In NSCLC cell lines, we identified specific PD-L1 CpG sites with methylation levels inversely correlated with PD-L1 mRNA expression. However, inducing PD-L1 mRNA expression with interferon-γ did not decrease the methylation level for these CpG sites, and using CRISPR-Cas9, we found that the CpG sites did not directly confer a negative regulation. dCas9-TET1 and dCas9-DNMT3A could induce PD-L1 hypo- and hyper-methylation, respectively, with the latter conferring a decrease in expression showing the functional impact of methylation. In NSCLC biopsies, the inverse correlation between the methylation and expression of PD-L1 was weak. We conclude that there is a regulatory link between PD-L1 DNA methylation and expression. However, since these measures are weakly associated, this study highlights the need for further research before PD-L1 DNA methylation can be implemented as a biomarker and drug target for measures to improve the effectiveness of PD-1/PD-L1 immunotherapy in NSCLC. Full article
(This article belongs to the Special Issue Cancer Epigenetic Biomarkers)
Show Figures

Figure 1

15 pages, 4939 KiB  
Article
Titanium-Enriched Medium Promotes Environment-Induced Epigenetic Machinery Changes in Human Endothelial Cells
by Célio Júnior da C. Fernandes, Rodrigo A. Foganholi da Silva, Patrícia F. Wood, Marcel Rodrigues Ferreira, Gerson S. de Almeida, Julia Ferreira de Moraes, Fábio J. Bezerra and Willian F. Zambuzzi
J. Funct. Biomater. 2023, 14(3), 131; https://doi.org/10.3390/jfb14030131 - 27 Feb 2023
Cited by 3 | Viewed by 1943
Abstract
It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation [...] Read more.
It is important to understand whether endothelial cells are epigenetically affected by titanium-enriched media when angiogenesis is required during bone development and it is expected to be recapitulated during osseointegration of biomaterials. To better address this issue, titanium-enriched medium was obtained from incubation of titanium discs for up to 24 h as recommended by ISO 10993-5:2016, and further used to expose human umbilical vein endothelial cells (HUVECs) for up to 72 h, when the samples were properly harvested to allow molecular analysis and epigenetics. In general, our data show an important repertoire of epigenetic players in endothelial cells responding to titanium, reinforcing protein related to the metabolism of acetyl and methyl groups, as follows: Histone deacetylases (HDACs) and NAD-dependent deacetylase sirtuin-1 (Sirt1), DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases, which in conjunction culminate in driving chromatin condensation and the methylation profile of DNA strands, respectively. Taking our data into consideration, HDAC6 emerges as important player of this environment-induced epigenetic mechanism in endothelial cells, while Sirt1 is required in response to stimulation of reactive oxygen species (ROS) production, as its modulation is relevant to vasculature surrounding implanted devices. Collectively, all these findings support the hypothesis that titanium keeps the surrounding microenvironment dynamically active and so affects the performance of endothelial cells by modulating epigenetics. Specifically, this study shows the relevance of HDAC6 as a player in this process, possibly correlated with the cytoskeleton rearrangement of those cells. Furthermore, as those enzymes are druggable, it opens new perspectives to consider the use of small molecules to modulate their activities as a biotechnological tool in order to improve angiogenesis and accelerate bone growth with benefits of a fast recovery time for patients. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

21 pages, 1360 KiB  
Review
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation
by Jungeun An and Myunggon Ko
Int. J. Mol. Sci. 2023, 24(2), 1727; https://doi.org/10.3390/ijms24021727 - 15 Jan 2023
Cited by 11 | Viewed by 3846
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to [...] Read more.
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders. Full article
(This article belongs to the Special Issue Molecular Mechanism of Leukemia)
Show Figures

Figure 1

15 pages, 2772 KiB  
Article
The Binomial “Inflammation-Epigenetics” in Breast Cancer Progression and Bone Metastasis: IL-1β Actions Are Influenced by TET Inhibitor in MCF-7 Cell Line
by Daniele Bellavia, Viviana Costa, Angela De Luca, Aurora Cordaro, Milena Fini, Gianluca Giavaresi, Fabio Caradonna and Lavinia Raimondi
Int. J. Mol. Sci. 2022, 23(23), 15422; https://doi.org/10.3390/ijms232315422 - 6 Dec 2022
Cited by 11 | Viewed by 2836
Abstract
The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 [...] Read more.
The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bone metastasis, indicating that the epigenetic action of TETs is a prerequisite for IL-1β-dependent tumor progression and bone metastasis formation. Full article
(This article belongs to the Special Issue Breast Cancer, Metastatic Breast Cancer, Therapeutic Approaches)
Show Figures

Figure 1

25 pages, 6284 KiB  
Article
Targeting of the Mitochondrial TET1 Protein by Pyrrolo[3,2-b]pyrrole Chelators
by Veronika Antonyová, Ameneh Tatar, Tereza Brogyányi, Zdeněk Kejík, Robert Kaplánek, Fréderic Vellieux, Nikita Abramenko, Alla Sinica, Jan Hajduch, Petr Novotný, Bettie Sue Masters, Pavel Martásek and Milan Jakubek
Int. J. Mol. Sci. 2022, 23(18), 10850; https://doi.org/10.3390/ijms231810850 - 16 Sep 2022
Cited by 6 | Viewed by 2703
Abstract
Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 [...] Read more.
Targeting of epigenetic mechanisms, such as the hydroxymethylation of DNA, has been intensively studied, with respect to the treatment of many serious pathologies, including oncological disorders. Recent studies demonstrated that promising therapeutic strategies could potentially be based on the inhibition of the TET1 protein (ten-eleven translocation methylcytosine dioxygenase 1) by specific iron chelators. Therefore, in the present work, we prepared a series of pyrrolopyrrole derivatives with hydrazide (1) or hydrazone (26) iron-binding groups. As a result, we determined that the basic pyrrolo[3,2-b]pyrrole derivative 1 was a strong inhibitor of the TET1 protein (IC50 = 1.33 μM), supported by microscale thermophoresis and molecular docking. Pyrrolo[3,2-b]pyrroles 26, bearing substituted 2-hydroxybenzylidene moieties, displayed no significant inhibitory activity. In addition, in vitro studies demonstrated that derivative 1 exhibits potent anticancer activity and an exclusive mitochondrial localization, confirmed by Pearson’s correlation coefficient of 0.92. Full article
Show Figures

Graphical abstract

Back to TopTop