Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = ternary mixture separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3145 KB  
Article
Economic, Environmental, and Safety Multi-Objective Optimization Design for Separation of Tetrahydrofuran/Methanol/Water Mixture
by Mengdie Gao, Qiyu Zhang, Zhehao Jin, Yishan Liu and Yiyang Dai
Separations 2025, 12(9), 255; https://doi.org/10.3390/separations12090255 - 21 Sep 2025
Viewed by 235
Abstract
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF [...] Read more.
Tetrahydrofuran (THF) and methanol (MeOH) are widely used as organic solvents in chemical, pharmaceutical, and other industrial fields. The wastewater from producing 1,4-butanediol contains THF, MeOH, and water ternary azeotropic mixture. In this study, to protect the environment and improve economic feasibility, THF and MeOH from the wastewater must be recovered. Triple-column extractive distillation (TED), pressure-swing azeotropic distillation (PSAD) and reactive extractive dividing-wall column (REDWC) are introduced to separate this ternary system, and the NSGA-III algorithm is introduced to optimize the processes, taking the total annual cost (TAC), CO2 emissions, and process route index (PRI) as objective functions. The results indicate that in comparison with TED process, TAC of PSAD and REDWC is reduced by 29.92% and 24.25%, respectively, and CO2 emissions decreased by 18.01% and 25.13%, while PRI increased by 150.25% and 100.50%. This study can provide an insight for the design of ternary azeotropic system separation. Full article
(This article belongs to the Special Issue Novel Solvents and Methods in Distillation Process)
Show Figures

Figure 1

29 pages, 2543 KB  
Article
Synergistic Extraction of Samarium(III) from Water via Emulsion Liquid Membrane Using a Low-Concentration D2EHPA–TOPO System: Operational Parameters and Salt Effects
by Ahlem Taamallah and Oualid Hamdaoui
Separations 2025, 12(9), 233; https://doi.org/10.3390/separations12090233 - 1 Sep 2025
Cited by 1 | Viewed by 379
Abstract
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. [...] Read more.
The synergistic effect of using D2EHPA and TOPO together to enhance the extraction of samarium(III) from aqueous media via emulsion liquid membrane (ELM) technology was explored. D2EHPA in binary mixtures with TBP and in ternary mixtures with TOPO and TBP was also tested. Among the tested extractants, a binary mixture of 0.1% (w/w) D2EHPA and 0.025% (w/w) TOPO achieved 100% samarium(III) extraction at a low loading. This mixture outperformed D2EHPA-TBP and other systems because D2EHPA strongly binds to Sm(III) ions, while TOPO increases the solubility and transport efficiency of metal complexes. Additionally, process factors that optimize performance and minimize emulsion breakage were examined. Key insights for successfully implementing the process include the following: 5 min emulsification with 0.75% Span 80 in kerosene at pH 6.7 (natural), 250 rpm stirring, a 1:1 internal/membrane phase volume ratio, a 20:200 treatment ratio, and a 0.2 N HNO3 stripping agent. These insights produced stable, fine droplets, enabling complete recovery and rapid carrier regeneration without emulsion breakdown. Extraction kinetics accelerate with temperature up to 35 °C but declined above this limit due to emulsion rupture. The activation energy was calculated to be 33.13 kJ/mol using pseudo-first-order rate constants. This suggests that the process is diffusion-controlled rather than chemically controlled. Performance decreases with Sm(III) feed concentrations greater than 200 mg/L and in high-salt matrices (Na2SO4 > NaCl > KNO3). Integrating these parameters yields a scalable, low-loading ELM framework capable of achieving complete Sm(III) separation with minimal breakage. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

16 pages, 2594 KB  
Article
Study of the Viability of Separating Mixtures of Water–Bioethanol Using a Neoteric Solvent: 1-Decyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide
by Maria-Pilar Cumplido, Javier de la Torre, Maria-Camila Arango, Josep Pasqual Cerisuelo and Amparo Chafer
Processes 2025, 13(2), 580; https://doi.org/10.3390/pr13020580 - 18 Feb 2025
Viewed by 624
Abstract
Following the successful utilization of various 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) as effective solvents in the extraction of ethanol, 1-propanol, and 2-propanol from water, we conducted experiments to determine the liquid–liquid equilibria data for the ternary mixture comprising water, ethanol, and 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [...] Read more.
Following the successful utilization of various 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) as effective solvents in the extraction of ethanol, 1-propanol, and 2-propanol from water, we conducted experiments to determine the liquid–liquid equilibria data for the ternary mixture comprising water, ethanol, and 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([dmim][Tf2N]) at temperatures of 283.2 K, 303.2 K, and 323.2 K under atmospheric pressure. The thermodynamic parameters for both ternary mixtures were calculated using the non-random two-liquid (NRTL) and universal quasichemical (UNIQUAC) models, yielding favorable results across all investigated conditions (rmsd < 0.65%). Subsequently, we explored the efficiency of [dmim][Tf2N] in separating azeotropic mixtures by analyzing the distribution coefficient and selectivity (K2 and S greater than 1 in all cases, with maximum values of 3.551 and 10.878, respectively). Comparative assessments were made against the performance of various 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ILs and alcohols. The findings underscore the promising capabilities of [dmim][Tf2N] in achieving effective separation, providing valuable insights for potential applications in liquid–liquid extraction processes. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

25 pages, 5618 KB  
Article
Effects of Nicotine on the Thermodynamics and Phase Coexistence of Pulmonary Surfactant Model Membranes
by Fadi S. S. Magalhães, Ernanni D. Vieira, Mariana R. B. Batista, Antonio J. Costa-Filho and Luis G. M. Basso
Membranes 2024, 14(12), 267; https://doi.org/10.3390/membranes14120267 - 11 Dec 2024
Cited by 1 | Viewed by 1503
Abstract
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential [...] Read more.
Phase separation is essential for membrane function, and alterations in phase coexistence by membrane-interacting molecules, such as nicotine, can impair membrane stability. With the increasing use of e-cigarettes, concerns have arisen about the impact of nicotine on pulmonary surfactants. Here, we used differential scanning calorimetry (DSC), molecular dynamics (MD) simulations, and electron spin resonance (ESR) to examine nicotine’s effect on the phase coexistence of two surfactant models: pure DPPC and a DPPC/POPC/POPG mixture. Our DSC analysis revealed that nicotine interacts with both membranes, increasing enthalpy and entropy change during the phase transition. ESR revealed that nicotine affects membrane fluidity and packing of DPPC more effectively than the ternary mixture, especially near the surface. MD simulations showed that neutral nicotine resides in the mid-plane, while protonated nicotine remains near the surface. Nicotine binding to the membranes is dynamic, switching between bound and unbound states. Analysis via ESR/van’t Hoff method revealed changes in the thermodynamics of phase coexistence, yielding distinct non-linear behavior. Nicotine altered the temperature dependence of the free energy, modifying the thermodynamic driving forces and the balance of non-covalent lipid interactions. These findings provide new insights into how nicotine influences pulmonary surfactant model membranes, with potential implications for surfactant function. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

13 pages, 6513 KB  
Article
Flotation of Copper Sulfide Ore Using Ultra-Low Dosage of Combined Collectors
by Qing Geng, Guang Han and Shuming Wen
Minerals 2024, 14(10), 1026; https://doi.org/10.3390/min14101026 - 13 Oct 2024
Cited by 1 | Viewed by 2681
Abstract
Copper sulfide ores frequently co-occur with pyrite, presenting a significant challenge for their selective separation during beneficiation processes. Despite advancements in flotation technology, there remains a critical need for efficient methods to enhance copper recovery while suppressing pyrite interference, particularly without compromising the [...] Read more.
Copper sulfide ores frequently co-occur with pyrite, presenting a significant challenge for their selective separation during beneficiation processes. Despite advancements in flotation technology, there remains a critical need for efficient methods to enhance copper recovery while suppressing pyrite interference, particularly without compromising the associated precious metals such as gold and silver. Current practices often struggle with achieving high selectivity and recovery while maintaining environmental sustainability. Here, we investigate the efficacy of a ternary collector mixture consisting of ammonium dibutyl dithiophosphate (ADD), butyl xanthate (BX), and ethyl xanthate (EX) for the selective flotation of copper sulfide from a complex ore containing 0.79% Cu and associated precious metals (0.233 g/t Au and 5.83 g/t Ag). A combination of lime and hydrogen peroxide as inhibitors was employed to suppress pyrite effectively under alkaline conditions (pH = 11.33). The results demonstrate that the optimized ternary collector system (ADD:BX:EX at a ratio of 1:0.5:0.5) significantly improves the copper grade and recovery at an ultra-low dosage of 10 g/t. The optimized flotation method using the combined collectors and inhibitors effectively separated chalcopyrite from pyrite, achieving a copper concentrate with 20.08% Cu content and a recovery of 87.73%. Additionally, the process yielded notable recoveries of gold (9.22%) and silver (26.66%). These findings advance the field by providing a viable and environmentally conscious approach to the beneficiation of sulfide ores, potentially serving as a blueprint for processing similar mineral deposits while minimizing reagent usage and costs. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

22 pages, 4253 KB  
Article
Enhanced Visible-Light-Assisted Photocatalytic Removal of Tetracycline Using Co/La@g-C3N4 Ternary Nanocomposite and Underlying Reaction Mechanisms
by Kingsley Igenepo John, Touma B. Issa, Goen Ho, Aleksandar N. Nikoloski and Dan Li
Water 2024, 16(18), 2563; https://doi.org/10.3390/w16182563 - 10 Sep 2024
Cited by 2 | Viewed by 1610
Abstract
Graphitic carbon nitride (g-C3N4) is a promising material for photocatalytic applications. However, it suffers from poor visible-light absorption and a high recombination rate of photogenerated electron–hole pairs. Here, Co/La@g-C3N4 with enhanced photocatalytic activity was prepared by [...] Read more.
Graphitic carbon nitride (g-C3N4) is a promising material for photocatalytic applications. However, it suffers from poor visible-light absorption and a high recombination rate of photogenerated electron–hole pairs. Here, Co/La@g-C3N4 with enhanced photocatalytic activity was prepared by co-doping Co and La into g-C3N4 via a facile one-pot synthesis. Co/La@g-C3N4 displayed better performance, achieving 94% tetracycline (TC) removal within 40 min, as compared with g-C3N4 (BCN, 65%). It also demonstrated promising performance in degrading other pollutants, which was ~2–4-fold greater relative to BCN. The improved photocatalytic activity of Co/La@g-C3N4 was associated with improved photogenerated charge separation, reduced charge transfer resistance, a built-in electric field arising from the p-n-p heterojunction, and the synergistic effect of ternary components for the separation and transfer of the photogenerated charge carriers. Superoxide radicals are suggested to be the most notable reactive species responsible for the photocatalytic reaction. Environmental factors, including the pollutant concentration, catalyst dosage, solution pH, inorganic salts, water matrices, and mixture with dyes, were considered in the photocatalytic reactions. Co/La@g-C3N4 showed good reusability for five cycles of the photocatalytic degradation of TC. The facile one-pot co-doping of Co and La in g-C3N4 formed a p-n-p heterojunction with boosted photocatalytic activity for the highly efficient removal of TC from various water matrices. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 8964 KB  
Article
Long-Term Evaluation of a Ternary Mixture of Molten Salts in Solar Thermal Storage Systems: Impact on Thermophysical Properties and Corrosion
by Mauro Henríquez, Juan Carlos Reinoso-Burrows, Raúl Pastén, Carlos Soto, Carlos Duran, Douglas Olivares, Luis Guerreiro, José Miguel Cardemil, Felipe M. Galleguillos Madrid and Edward Fuentealba
Materials 2024, 17(16), 4053; https://doi.org/10.3390/ma17164053 - 15 Aug 2024
Cited by 1 | Viewed by 1646
Abstract
Solar thermal plants typically undergo trough operational cycles spanning between 20 and 25 years, highlighting the critical need for accurate assessments of long-term component evolution. Among these components, the heat storage media (molten salt) is crucial in plant design, as it significantly influences [...] Read more.
Solar thermal plants typically undergo trough operational cycles spanning between 20 and 25 years, highlighting the critical need for accurate assessments of long-term component evolution. Among these components, the heat storage media (molten salt) is crucial in plant design, as it significantly influences both the thermophysical properties of the working fluid and the corrosion of the steel components in thermal storage systems. Our research focused on evaluating the long-term effects of operating a low-melting-point ternary mixture consisting of 30 wt% LiNO3, 57 wt% KNO3, and 13 wt% NaNO3. The ternary mixture exhibited a melting point of 129 °C and thermal stability above 550 °C. Over 15,000 h, the heat capacity decreased from 1.794 to 1.409 J/g °C. Additionally, saline components such as CaCO3 and MgCO3, as well as lithium oxides (LiO and LiO2), were detected due to the separation of the ternary mixture. A 30,000 h exposure resulted in the formation of Fe2O3 and the presence of Cl, indicating prolonged interaction with the marine environment. This investigation highlights the necessity of analyzing properties under actual operating conditions to accurately predict the lifespan and select the appropriate materials for molten salt-based thermal storage systems. Full article
Show Figures

Figure 1

14 pages, 2034 KB  
Article
Response of Maize (Zea mays L.) to Soil Contamination with Diclofenac, Ibuprofen and Ampicillin and Mixtures of These Drugs
by Robert Biczak, Julia Kierasińska, Wiktoria Jamrozik and Barbara Pawłowska
Sustainability 2024, 16(13), 5698; https://doi.org/10.3390/su16135698 - 3 Jul 2024
Cited by 2 | Viewed by 2231
Abstract
Diclofenac (DIC) and ibuprofen (IBU) are popular non-steroidal anti-inflammatory drugs (NSAIDs), while ampicillin (AMP) is a relatively common antibiotic for treating bacterial infections. All of these drugs are only slightly retained in the human body, and therefore, their presence is found in the [...] Read more.
Diclofenac (DIC) and ibuprofen (IBU) are popular non-steroidal anti-inflammatory drugs (NSAIDs), while ampicillin (AMP) is a relatively common antibiotic for treating bacterial infections. All of these drugs are only slightly retained in the human body, and therefore, their presence is found in the environment. In the present study, an attempt was made to determine the effects of diclofenac, ibuprofen and ampicillin on the growth and development of early stages of maize. The drugs were used both separately and in binary mixtures and a ternary mixture. The study found that NSAIDs exhibited the greatest phytotoxicity. Both diclofenac and ibuprofen, applied at the highest doses, reduced the fresh weight yield of maize seedlings relative to the control. Ampicillin, on the other hand, showed no adverse effect on the growth and development of maize seedlings. Analyzing the effect of selected drugs on changes in the content of photosynthetic pigments, it should be noted that they led to a systematic decrease in the content of chlorophylls and carotenoids in maize seedlings. Small changes in the values of the basic parameters of chlorophyll fluorescence may indicate the possibility of stress in maize seedlings. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

12 pages, 6170 KB  
Article
Dehydration of Organic Solvents from Ternary Mixtures Containing Toluene/Methanol/Water by Pervaporation
by Ying Qiao, Shichang Xu, Yixuan Wu, Long Zhang and Lixin Xie
Membranes 2024, 14(6), 139; https://doi.org/10.3390/membranes14060139 - 12 Jun 2024
Cited by 1 | Viewed by 2682
Abstract
The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene–methanol–water. This work investigates the effects of feed temperature, feed flow [...] Read more.
The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene–methanol–water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water. Full article
(This article belongs to the Special Issue Membrane Separation Technology in Industrial Wastewater Treatment)
Show Figures

Figure 1

15 pages, 7401 KB  
Article
Formation of Microporous Poly Acrylonitrile-Co-Methyl Acrylate Membrane via Thermally Induced Phase Separation for Immiscible Oil/Water Separation
by Linli Tan, Yuqi Wang and Mingpu Li
Molecules 2024, 29(10), 2302; https://doi.org/10.3390/molecules29102302 - 14 May 2024
Viewed by 3488
Abstract
An interconnected sponge structure and porous surface poly (acrylonitrile-co-methyl acrylate) (P(AN-MA)) microfiltration membranes (MF) were fabricated via thermally induced phase separation (TIPS) by using caprolactam (CPL), and acetamide (AC) as the mixed diluent. When the ternary system was composed of 15 wt.% P(AN-MA), [...] Read more.
An interconnected sponge structure and porous surface poly (acrylonitrile-co-methyl acrylate) (P(AN-MA)) microfiltration membranes (MF) were fabricated via thermally induced phase separation (TIPS) by using caprolactam (CPL), and acetamide (AC) as the mixed diluent. When the ternary system was composed of 15 wt.% P(AN-MA), 90 wt.% CPL, and 10 wt.% AC and formed in a 25 °C air bath, the membrane exhibited the highest water flux of 8107 L/m2·h. The P(AN-MA) membrane contained hydrophobic groups (-COOCH3) and hydrophilic groups (-CN), leading it to exhibit oleophobic properties underwater and hydrophobic properties in oil. The membrane demonstrates efficient separation of immiscible oil/water mixtures. The pure water flux of the petroleum ether/water mixture measured 870 L/m2·h, and the pure oil flux of the petroleum tetrachloride/water mixture measured 1230 L/m2·h under the influence of gravity. Additionally, the recovery efficiency of diluents through recrystallization was 85.3%, significantly reducing potential pollution and production costs. Full article
(This article belongs to the Special Issue Advances in Membrane Preparation and Applications in Green Chemistry)
Show Figures

Figure 1

15 pages, 4440 KB  
Article
The Material Balance of Complex Separation Flowsheets
by Anastasia Frolkova, Alla Frolkova, Michael Sibirtsev and Kirill Lysenko
Processes 2024, 12(4), 821; https://doi.org/10.3390/pr12040821 - 18 Apr 2024
Viewed by 1478
Abstract
The paper shows the expediency of supplementing the balance simplex method by calculating the number of free variables of separation flowsheets containing recycle flows. The need to determine and set the free variables that provide lower energy consumption when calculating the material balance [...] Read more.
The paper shows the expediency of supplementing the balance simplex method by calculating the number of free variables of separation flowsheets containing recycle flows. The need to determine and set the free variables that provide lower energy consumption when calculating the material balance of flowsheets with recycling is justified. The problem of material balance multivariance is illustrated, and ways to solve it are shown with the example of separation flowsheets for two ternary mixtures: n-butanol + water + toluene and n-butanol + butyl acetate + water. Separation flowsheets containing three distillation columns and a liquid–liquid separator are proposed for both systems. The dependence of the recycle flow values and the energy consumption of distillation columns and separation flowsheets on the selection and setting of values of free variables in solving the balance problem is shown. The dependence of energy consumption on the composition of the original mixture is studied for an n-butanol + butyl acetate + water system. Recommendations for setting free variables for flowsheets of the separation of ternary mixtures with three binary (and one ternary) azeotropes are formulated. The technique of highlighting the region of separation flowsheet operability is illustrated. The column operating parameters that ensure the production of products of a given quality with minimal energy consumption are determined. It is shown that with the incorrect selection and setting of variables (during balance task solvation), the energy consumption for mixture separation can be overestimated by more than 40%. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Graphical abstract

13 pages, 4426 KB  
Article
Augmenting the Efficacy of a Polyvinyl Alcohol Selective Layer Coated on Polyvinylidene Fluoride Support Membranes with Kaolinite Introduction for Improved Pervaporation Dehydration of Epichlorohydrin/Isopropanol/Water Ternary Systems
by Shivshankar Chaudhari, YeWon Jeong, HyeonTae Shin, SeWook Jo, MinYoung Shon, SeungEun Nam and YouIn Park
Polymers 2024, 16(6), 835; https://doi.org/10.3390/polym16060835 - 18 Mar 2024
Cited by 1 | Viewed by 1860
Abstract
Composite membranes with a polyvinyl alcohol (PVA) selective layer composed of well-dispersed hydrophilic kaolinite particles coated on a polyvinylidene fluoride (PVDF) support were developed. They were applied to the pervaporation dehydration of the industrially important epichlorohydrin (ECH)/isopropanol (IPA)/water ternary mixture. In comparison with [...] Read more.
Composite membranes with a polyvinyl alcohol (PVA) selective layer composed of well-dispersed hydrophilic kaolinite particles coated on a polyvinylidene fluoride (PVDF) support were developed. They were applied to the pervaporation dehydration of the industrially important epichlorohydrin (ECH)/isopropanol (IPA)/water ternary mixture. In comparison with raw kaolinite (RK), hydrophilic kaolinite (HK) enhanced the mechanical properties, hydrophilicity, and thermal stability of the PVA selective layer, as confirmed by universal testing, the contact angle, and TGA analyses, respectively. The pervaporation results revealed that the addition of HK particles significantly enhanced the separation factor (3-fold). Only a marginal reduction in flux was observed with ECH/IPA/water, 50/30/20 (w/w %) at 40 °C. An HK particle concentration of 4 wt.% with respect to PVA delivered the highest flux performance of 0.86 kg/m2h and achieved a separation factor of 116. The PVA–kaolinite composite membrane exhibited pronounced resistance to the ECH-containing feed, demonstrating a sustained flux and separation factor throughout an extended pervaporation stability test lasting 250 h. Full article
Show Figures

Figure 1

17 pages, 2364 KB  
Article
Design of Experimental Approach for Development of Rapid High Performance Liquid Chromatographic Process for Simultaneous Estimation of Metoprolol, Telmisartan, and Amlodipine from Formulation: Greenness and Whiteness Evaluation
by Mahesh Attimarad, Mohammed Jassim Alali, Hussain Ali Alali, Dana Hisham Alabdulmuhsin, Aljohara Khalid Alnajdi, Katharigatta Narayanaswamy Venugopala and Anroop B. Nair
Molecules 2024, 29(5), 1087; https://doi.org/10.3390/molecules29051087 - 29 Feb 2024
Cited by 6 | Viewed by 2857
Abstract
The design of an experimental approach, the Box–Behnken design, was implemented to optimize the chromatographic condition to develop a rapid HPLC procedure for quantification of a ternary mixture of metoprolol (MET), telmisartan (TEL), and amlodipine (AML) from the formulation. The perturbation plots, contour, [...] Read more.
The design of an experimental approach, the Box–Behnken design, was implemented to optimize the chromatographic condition to develop a rapid HPLC procedure for quantification of a ternary mixture of metoprolol (MET), telmisartan (TEL), and amlodipine (AML) from the formulation. The perturbation plots, contour, and 3D response surface pictures were developed to study the impact of each variable on the analytes’ retention time and the probable interaction between the parameters with fewer chromatographic runs. The optimized HPLC method separated the three analytes within 5 min with excellent selectivity and peak shape on a Zorbax C18 HPLC column using acetonitrile and phosphate buffer (20 mM, pH 5.8) with isocratic elution at a 1.1 mL/min flowrate. A wavelength 230 nm was utilized to monitor the elute. The validation of proposed method demonstrated a wide linearity range of 10–200 µg/mL for MET and TEL and 5–50 µg/mL for AML along with an excellent correlation coefficient. The correctness of the HPLC approach was further confirmed by excellent recovery of the added amount of analytes utilizing the standard addition technique. The recommended HPLC approach was employed safely for quality assurance of the formulation, because the evaluation of the method’s greenness and whiteness confirmed the environmentally friendly nature of the approach. Full article
Show Figures

Figure 1

15 pages, 2221 KB  
Article
New Insight into the Effects of Endogenous Protein and Lipids on the Enzymatic Digestion of Starch in Sorghum Flour
by Chen Chao, Song Liang, Zheyuan Zhang, Michael J. Gidley, Ye Liu and Shujun Wang
Foods 2024, 13(5), 663; https://doi.org/10.3390/foods13050663 - 22 Feb 2024
Cited by 13 | Viewed by 3038
Abstract
The effects of endogenous lipids and protein in sorghum flour on starch digestion were studied following the depletion of lipids and/or protein and after the reconstitution of separated fractions. The removal of protein or lipids moderately increases the digestibility of starch in raw [...] Read more.
The effects of endogenous lipids and protein in sorghum flour on starch digestion were studied following the depletion of lipids and/or protein and after the reconstitution of separated fractions. The removal of protein or lipids moderately increases the digestibility of starch in raw (uncooked) sorghum flour to values close to those for purified starch. Rapid Visco Analyzer data (as a model for the cooking process) show that cooked sorghum flours with lipids have a lower starch digestibility than those without lipids after RVA processing, due to the formation of starch–lipid complexes as evidenced by their higher final viscosity and larger enthalpy changes. Additionally, the formation of a starch–lipid–protein ternary complex was identified in cooked sorghum flour, rather than in a reconstituted ternary mixture, according to the unique cooling stage viscosity peak and a greater enthalpy of lipid complexes. After heating, the sorghum flour showed a lower digestibility than the depleted flours and the reconstituted flours. The results indicate that the natural organization of components in sorghum flour is an important factor in facilitating the interactions between starch, lipids, and protein during RVA processing and, in turn, reducing the starch digestion. Full article
(This article belongs to the Special Issue Starch and Food Processing: Structure, Functionality and Nutrition)
Show Figures

Graphical abstract

22 pages, 2989 KB  
Article
Evaluation of a Simplified Model for Three-Phase Equilibrium Calculations of Mixed Gas Hydrates
by Panagiotis Kastanidis, George E. Romanos, Athanasios K. Stubos, Georgia Pappa, Epaminondas Voutsas and Ioannis N. Tsimpanogiannis
Energies 2024, 17(2), 440; https://doi.org/10.3390/en17020440 - 16 Jan 2024
Viewed by 1905
Abstract
In this study, we perform an extensive evaluation of a simple model for hydrate equilibrium calculations of binary, ternary, and limited quaternary gas hydrate systems that are of practical interest for separation of gas mixtures. We adopt the model developed by Lipenkov and [...] Read more.
In this study, we perform an extensive evaluation of a simple model for hydrate equilibrium calculations of binary, ternary, and limited quaternary gas hydrate systems that are of practical interest for separation of gas mixtures. We adopt the model developed by Lipenkov and Istomin and analyze its performance at temperature conditions higher than the lower quadruple point. The model of interest calculates the dissociation pressure of mixed gas hydrate systems using a simple combination rule that involves the hydrate dissociation pressures of the pure gases and the gas mixture composition, which is at equilibrium with the aqueous and hydrate phases. Such an approach has been used extensively and successfully in polar science, as well as research related to space science where the temperatures are very low. However, the particular method has not been examined for cases of higher temperatures (i.e., above the melting point of the pure water). Such temperatures are of interest to practical industrial applications. Gases of interest for this study include eleven chemical components that are related to industrial gas-mixture separations. Calculations using the examined methodology, along with the commercial simulator CSMGem, are compared against experimental measurements, and the range of applicability of the method is delineated. Reasonable agreement (particularly at lower hydrate equilibrium pressures) between experiments and calculations is obtained considering the simplicity of the methodology. Depending on the hydrate-forming mixture considered, the percentage of absolute average deviation in predicting the hydrate equilibrium pressure is found to be in the range 3–91%, with the majority of systems having deviations that are less than 30%. Full article
Show Figures

Figure 1

Back to TopTop