Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = wavelength selective switch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4627 KB  
Article
Laser-Based Characterization and Classification of Functional Alloy Materials (AlCuPbSiSnZn) Using Calibration-Free Laser-Induced Breakdown Spectroscopy and a Laser Ablation Time-of-Flight Mass Spectrometer for Electrotechnical Applications
by Amir Fayyaz, Muhammad Waqas, Kiran Fatima, Kashif Naseem, Haroon Asghar, Rizwan Ahmed, Zeshan Adeel Umar and Muhammad Aslam Baig
Materials 2025, 18(9), 2092; https://doi.org/10.3390/ma18092092 - 2 May 2025
Cited by 1 | Viewed by 1051
Abstract
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of [...] Read more.
In this paper, we present the analysis of functional alloy samples containing metals aluminum (Al), copper (Cu), lead (Pb), silicon (Si), tin (Sn), and zinc (Zn) using a Q-switched Nd laser operating at a wavelength of 532 nm with a pulse duration of 5 ns. Nine pelletized alloy samples were prepared, each containing varying chemical concentrations (wt.%) of Al, Cu, Pb, Si, Sn, and Zn—elements commonly used in electrotechnical and thermal functional materials. The laser beam is focused on the target surface, and the resulting emission spectrum is captured within the temperature interval of 9.0×103 to 1.1×104 K using a set of compact Avantes spectrometers. Each spectrometer is equipped with a linear charged-coupled device (CCD) array set at a 2 μs gate delay for spectrum recording. The quantitative analysis was performed using calibration-free laser-induced breakdown spectroscopy (CF-LIBS) under the assumptions of optically thin plasma and self-absorption-free conditions, as well as local thermodynamic equilibrium (LTE). The net normalized integrated intensities of the selected emission lines were utilized for the analysis. The intensities were normalized by dividing the net integrated intensity of each line by that of the aluminum emission line (Al II) at 281.62 nm. The results obtained using CF-LIBS were compared with those from the laser ablation time-of-flight mass spectrometer (LA-TOF-MS), showing good agreement between the two techniques. Furthermore, a random forest technique (RFT) was employed using LIBS spectral data for sample classification. The RFT technique achieves the highest accuracy of ~98.89% using out-of-bag (OOB) estimation for grouping, while a 10-fold cross-validation technique, implemented for comparison, yields a mean accuracy of ~99.12%. The integrated use of LIBS, LA-TOF-MS, and machine learning (e.g., RFT) enables fast, preparation-free analysis and classification of functional metallic materials, highlighting the synergy between quantitative techniques and data-driven methods. Full article
Show Figures

Figure 1

18 pages, 8498 KB  
Article
Characterizing Metabolic Shifts in Septic Murine Kidney Tissue Using 2P-FLIM for Early Sepsis Detection
by Stella Greiner, Mahyasadat Ebrahimi, Marko Rodewald, Annett Urbanek, Tobias Meyer-Zedler, Michael Schmitt, Ute Neugebauer and Jürgen Popp
Bioengineering 2025, 12(2), 170; https://doi.org/10.3390/bioengineering12020170 - 10 Feb 2025
Viewed by 1286
Abstract
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The [...] Read more.
In this study, thin mouse kidney sections from healthy mice and those infected leading to acute and chronic sepsis were examined with two-photon excited fluorescence lifetime imaging (2P-FLIM) using the endogenous fluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD). The results presented show that this approach is a powerful tool for investigating cell metabolism in thin tissue sections. An adapted measurement routine was established for these samples by performing a spectral scan, identifying a combination of two excitation wavelengths and two detection ranges suitable for detailed scan images of NADH and FAD. Selected positions in thin slices of the renal cortex of nine mice (three healthy, three with chronic sepsis, and three with acute sepsis) were studied using 2P-FLIM. In addition, overview images were obtained using two-photon excited fluorescence (2PEF) intensity. This study shows that healthy kidney slices differ considerably from those with acute sepsis with regard to their fluorescence lifetime signatures. The latter shows a difference in metabolism between the inner and outer cortex, indicating that outer cortical tubular cells switch their metabolism from oxidative phosphorylation to glycolysis in kidneys from mice with acute sepsis and back in later stages, as seen for mice with chronic infections. These findings suggest that 2P-FLIM could serve as a powerful tool for early-stage sepsis diagnosis and monitoring metabolic recovery during treatment. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Graphical abstract

27 pages, 2894 KB  
Article
New Control Algorithms for Rearrangeable Wavelength–Space–Wavelength Switches in Elastic Optical Networks
by Mariusz Żal, Enass Abuelela and Wojciech Kabaciński
Electronics 2025, 14(4), 684; https://doi.org/10.3390/electronics14040684 - 10 Feb 2025
Viewed by 968
Abstract
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of [...] Read more.
The main objective of this paper is to propose a set of new algorithms for assigning frequency slots in the inter-stage links of the wavelength–space–wavelength switching networks used in nodes in elastic optical networks. The algorithms are based on decomposition of the set of inter-stage link frequency slots into subsets, which can be utilized for realizing conflict-free connections. Similar algorithms have previously been proposed for switching networks with two, three, or four inputs and outputs. The algorithms proposed in this paper have been adapted to work in switching networks with five inputs and outputs. These algorithms make it possible to reduce the required number of frequency slots in inter-stage links. From the comparison conducted in this work with the switching networks for three and four inputs and outputs, it follows that the new algorithms for networks with five inputs/outputs allow for a reduction in the number of frequency slots by about 20%. Additionally, the approximation of the proposed algorithms for switching networks with a larger number of inputs and outputs also leads to a reduction in the required frequency slots, compared to previously known algorithms. The proposed algorithms allow for reducing the number of frequency slots in inter-stage links, which is associated with reducing the capacity range of wavelength-selective switches and the tunability range of spectrum converters, and therefore also the costs of switching networks. Full article
Show Figures

Figure 1

12 pages, 16546 KB  
Article
Silica Waveguide Thermo-Optic Mode Switch with Bimodal S-Bend
by Zhentao Yao, Manzhuo Wang, Yue Zhang, Zhaoyang Sun, Xiaoqiang Sun, Yuanda Wu and Daming Zhang
Nanomaterials 2024, 14(24), 1991; https://doi.org/10.3390/nano14241991 (registering DOI) - 12 Dec 2024
Viewed by 1002
Abstract
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. [...] Read more.
A silica waveguide thermo-optic mode switch with small radius bimodal S-bends is demonstrated in this study. The cascaded multimode interference coupler is adopted to implement the E11 and E21 mode selective output. The beam propagation method is used in design optimization. Standard CMOS processing of ultraviolet photolithography, chemical vapor deposition, and plasma etching are adopted in fabrication. Detailed characterizations on the prepared switch are performed to confirm the precise fabrication. The measurement results show that within the wavelength range from 1530 to 1575 nm, for the E11 mode input, the switch exhibits an extinction ratio of ≥13.1 dB and a crosstalk ≤−22.8 dB at an electrical driving power of 284.8 mW, while for the E21 mode input, the extinction ratio is ≥15.5 dB and the crosstalk is ≤−18.1 dB at an electrical driving power of 282.4 mW. These results prove the feasibility of multimode S-bends in mode switching. The favorable performance of the demonstrated switch promises good potential for on-chip mode routing. Full article
Show Figures

Figure 1

11 pages, 1848 KB  
Communication
Broadband Optical Frequency Comb Generation Utilizing a Gain-Switched Weak-Resonant-Cavity Fabry–Perot Laser Diode under Multi-Wavelength Optical Injection
by Yuhong Tao, Qiupin Wang, Pu Ou, Guangqiong Xia and Zhengmao Wu
Photonics 2024, 11(10), 912; https://doi.org/10.3390/photonics11100912 - 27 Sep 2024
Viewed by 1687
Abstract
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD [...] Read more.
We propose and experimentally demonstrate an approach for generating a wideband optical frequency comb (OFC) featuring multiple comb lines and wavelength tunability based on a gain-switched weak-resonant-cavity Fabry–Perot laser diode (WRC-FPLD) under multi-wavelength optical injection. The longitudinal mode interval of the utilized WRC-FPLD is about 0.28 nm (35.0 GHz), and its relaxation oscillation frequency is about 2.0 GHz at 1.15 times the threshold current. Under current modulation with a power of 20.00 dBm and a frequency of 2.0 GHz, the WRC-FPLD is driven into the gain-switched state. By further introducing multi-wavelength injection light (MWIL) containing four power equalization comb lines with an interval of 0.56 nm, a wideband OFC featuring multiple comb lines and wavelength tenability can be obtained. The experimental results demonstrate that by gradually increasing the injection’s optical power, the number of produced OFC lines initially increases and then decreases. By meticulously adjusting the wavelengths of the MWIL and carefully selecting the matched injection power, the broadband OFC can be tuned across an extensive spectral range. Under optimized operation parameters, an OFC with 147 lines, and a bandwidth of approximately 292 GHz within a 10 dB amplitude, variation is achieved. In this case, the measured single-sideband phase noise at the fundamental frequency is about −115 dBc/Hz @ 10 kHz, indicating that the comb lines possess good stability and strong coherence. Full article
Show Figures

Figure 1

17 pages, 3041 KB  
Article
Dedicated Path Protection with Flexible Switching Selection in Passive Optical 5G Xhaul Access Networks
by Mirosław Klinkowski
Photonics 2024, 11(10), 908; https://doi.org/10.3390/photonics11100908 - 26 Sep 2024
Cited by 1 | Viewed by 1039
Abstract
This work addresses the optimized planning of survivable optical 5G Xhaul access networks employing passive Wavelength Division Multiplexing (WDM) technologies. Specifically, it focuses on the reliability of optical transmission paths connecting remote radio sites to a central hub ensured by using a novel, [...] Read more.
This work addresses the optimized planning of survivable optical 5G Xhaul access networks employing passive Wavelength Division Multiplexing (WDM) technologies. Specifically, it focuses on the reliability of optical transmission paths connecting remote radio sites to a central hub ensured by using a novel, cost-effective, flexible, and dedicated path protection (DPP-F) scheme, protecting against single-link failures. The proposed DPP-F network protection approach allows for switching of individual wavelengths or the complete multiplexed WDM signal, flexibly applying the best switching option according to given traffic demands. Concurrently, it enables traffic aggregation on the transmission paths from the end and intermediate nodes to minimize the overall network deployment cost. The problem of selecting primary (working) and backup (protection) paths, together with the selection of the best switching and traffic aggregation options, is modeled and solved as a mixed-integer linear programming (MILP) optimization problem. To evaluate the cost savings achieved with DPP-F, we compare it with two reference DPP schemes based on switching the entire multiplexed WDM signal (DPP-M) and individual wavelengths (DPP-W). Numerical experiments conducted across a wide range of network scenarios reveal, among other things, that DPP-F’s performance is at least as good as that of the reference methods, bringing significant cost savings (from several to tens of percent) in most of the analyzed network scenarios. Full article
(This article belongs to the Special Issue Optical Communication Networks: Advancements and Future Directions)
Show Figures

Figure 1

12 pages, 4849 KB  
Article
Design of Ultra-Compact and Multifunctional Optical Logic Gate Based on Sb2Se3-SOI Hybrid Platform
by Liuni Yang, Qiang Liu, Haoyuan Liang, Minming Geng, Kejin Wei and Zhenrong Zhang
Nanomaterials 2024, 14(15), 1317; https://doi.org/10.3390/nano14151317 - 5 Aug 2024
Cited by 3 | Viewed by 2917
Abstract
Optical logic devices are essential functional devices for achieving optical signal processing. In this study, we design an ultra-compact (4.92 × 2.52 μm2) reconfigurable optical logic gate by using inverse design method with DBS algorithm based on Sb2Se3 [...] Read more.
Optical logic devices are essential functional devices for achieving optical signal processing. In this study, we design an ultra-compact (4.92 × 2.52 μm2) reconfigurable optical logic gate by using inverse design method with DBS algorithm based on Sb2Se3-SOI integrated platform. By selecting different amorphous/crystalline distributions of Sb2Se3 via programmable electrical triggers, the designed structure can switch between OR, XOR, NOT or AND logic gate. This structure works well for all four logic functions in the wavelength range of 1540–1560 nm. Especially at the wavelength of 1550 nm, the Contrast Ratios for XOR, NOT and AND logic gate are 13.77 dB, 11.69 dB and 3.01 dB, respectively, indicating good logical judgment ability of the device. Our design is robust to a certain range of fabrication imperfections. Even if performance weakens due to deviations, improvements can be obtained by rearranging the configurations of Sb2Se3 without reproducing the whole device. Full article
Show Figures

Figure 1

14 pages, 4139 KB  
Article
Design of Photonic Molecule-Based Multiway Beam Splitter/Coupler with Variable Division Ratio
by Yury E. Geints
Photonics 2024, 11(7), 600; https://doi.org/10.3390/photonics11070600 - 26 Jun 2024
Viewed by 2377
Abstract
An optical beam splitter is used for dividing an input optical beam into several separate beams with a specific power ratio. Usually, conventional optical beam splitters have bulky dimensions (many optical wavelengths) and a fixed dividing ratio, which significantly limit the design of [...] Read more.
An optical beam splitter is used for dividing an input optical beam into several separate beams with a specific power ratio. Usually, conventional optical beam splitters have bulky dimensions (many optical wavelengths) and a fixed dividing ratio, which significantly limit the design of new miniaturized optical devices and integrated optical circuits. We propose and investigate in detail a novel physical concept of a highly miniaturized (up to two working wavelengths) planar optical resonant splitter/coupler with a switching element comprising a photonic molecule (PM) pair dispersing input optical fluxes in multiple directions with a tailored power ratio. The structural design of the proposed splitter is based on a silicon-on-insulator (SOI) platform and composed of high-quality resonators in the form of electromagnetically coupled submicron-sized microcylinders. The control on the power division ratio and the selection of optical beam directions is realized by tuning the photonic splitter structure to the corresponding resonance of the PM supermode. Compared to known analogs, the proposed design is easy and cheap in fabrication. Because of its tiny dimensions, it is suitable for integration into a “System-on-a-chip” platform and can dynamically change the beam power division ratio by input wave-phase manipulation. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

21 pages, 10710 KB  
Article
Effects of Laser Treatment of Terbium-Doped Indium Oxide Thin Films and Transistors
by Rihui Yao, Dingrong Liu, Nanhong Chen, Honglong Ning, Guoping Su, Yuexin Yang, Dongxiang Luo, Xianzhe Liu, Haoyan Chen, Muyun Li and Junbiao Peng
Nanomaterials 2024, 14(11), 908; https://doi.org/10.3390/nano14110908 - 22 May 2024
Cited by 2 | Viewed by 1866
Abstract
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination [...] Read more.
In this study, a KrF excimer laser with a high-absorption coefficient in metal oxide films and a wavelength of 248 nm was selected for the post-processing of a film and metal oxide thin film transistor (MOTFT). Due to the poor negative bias illumination stress (NBIS) stability of indium gallium zinc oxide thin film transistor (IGZO-TFT) devices, terbium-doped Tb:In2O3 material was selected as the target of this study. The XPS test revealed the presence of both Tb3+ and Tb4+ ions in the Tb:In2O3 film. It was hypothesized that the peak of the laser thermal effect was reduced and the action time was prolonged by the f-f jump of Tb3+ ions and the C-T jump of Tb4+ ions during the laser treatment. Studies related to the treatment of Tb:In2O3 films with different laser energy densities have been carried out. It is shown that as the laser energy density increases, the film density increases, the thickness decreases, the carrier concentration increases, and the optical band gap widens. Terbium has a low electronegativity (1.1 eV) and a high Tb-O dissociation energy (707 kJ/mol), which brings about a large lattice distortion. The Tb:In2O3 films did not show significant crystallization even under laser energy density treatment of up to 250 mJ/cm2. Compared with pure In2O3-TFT, the doping of Tb ions effectively reduces the off-state current (1.16 × 10−11 A vs. 1.66 × 10−12 A), improves the switching current ratio (1.63 × 106 vs. 1.34 × 107) and improves the NBIS stability (ΔVON = −10.4 V vs. 6.4 V) and positive bias illumination stress (PBIS) stability (ΔVON = 8 V vs. 1.6 V). Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

9 pages, 4367 KB  
Communication
Gain-Switched Er-Doped Fluoride Fiber Laser at ~3.75 μm
by Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Qiang Fang and Jianquan Yao
Photonics 2024, 11(5), 449; https://doi.org/10.3390/photonics11050449 - 11 May 2024
Cited by 4 | Viewed by 2493
Abstract
We demonstrate a pulsed Er-doped ZBLAN fiber laser operating at 3.75 μm based on the gain-switching scheme. A diffraction grating is introduced as a wavelength selection component to enable stable lasing in this long-wavelength region that deviates from the emission peak of 4 [...] Read more.
We demonstrate a pulsed Er-doped ZBLAN fiber laser operating at 3.75 μm based on the gain-switching scheme. A diffraction grating is introduced as a wavelength selection component to enable stable lasing in this long-wavelength region that deviates from the emission peak of 4F9/24I9/2 transition in Er3+. Different from the conventional gain-switching behavior where the pulse repetition frequency of the output laser is same as the that of the pump, the gain-switched laser demonstrated here shows a variable pulse repetition frequency, which accounts for 1/n (n = 4, 3, 2) of the pump pulse repetition frequency, in response to the 1950 nm pump power. The output pulse characteristics, including average output power, repetition frequency, pulse duration, and peak power, are investigated in detail. Over 200 mW average output power at 3.75 μm was obtained at 12 W of 1950 nm pump power. This work demonstrates that the Er-doped ZBLAN fiber laser, in combination with gain-switched scheme, is a feasible and promising approach to generate powerful pulsed emission > 3.7 μm. Full article
(This article belongs to the Special Issue Research on Rare-Earth-Doped Fiber Lasers)
Show Figures

Figure 1

20 pages, 6756 KB  
Article
Optical Design of a Wavelength Selective Switch Utilizing a Waveguide Frontend with Beamsteering Capability
by Georgios Patsamanis, Dimitra Ketzaki, Dimitrios Chatzitheocharis and Konstantinos Vyrsokinos
Photonics 2024, 11(4), 381; https://doi.org/10.3390/photonics11040381 - 18 Apr 2024
Cited by 1 | Viewed by 3521
Abstract
Wavelength selective switches (WSSs) are essential elements for wavelength division multiplexing (WDM) optical networks, as they offer cost-effective, high port-count and flexible spectral channel switching. This work proposes a new hybrid WSS architecture that leverages the beam shaping and steering features of uniform [...] Read more.
Wavelength selective switches (WSSs) are essential elements for wavelength division multiplexing (WDM) optical networks, as they offer cost-effective, high port-count and flexible spectral channel switching. This work proposes a new hybrid WSS architecture that leverages the beam shaping and steering features of uniform silicon nitride-based end-fire optical phased arrays (OPAs). By introducing beamforming to a WSS system, the spectral channels on the liquid crystal on silicon (LCoS) panel can be tailored and arranged properly, depending on the optical configuration, using the beam control capabilities of OPAs. Combining 3D-FDTD and ray tracing simulations, the study shows that, by reducing the input beam dimensions with proper sizing of the OPAs, the WSS design with a null-steering OPA layout and 4 × No switch size features increased spectral resolution. This extensive beamforming study on the steering-enabled layout reveals the acquirement of an even higher input channel number, matching the 8 × No WSS scheme, with flexible channel routing on the LCoS panel. Such implementation of beamsteerers can unlock an extra degree of freedom for the switching capabilities of hybrid WSS devices. The results show great promise for the introduction of OPAs in WSS systems and provide valuable insight for the design of future wireless communication links and WDM systems. Full article
Show Figures

Figure 1

11 pages, 3819 KB  
Article
Switchable Dual-Wavelength Thulium-Doped Fiber Laser Based on Polarization-Maintaining Fiber Bragg Grating and Compound Cavity Filter
by Xiangdong Wang, Fengping Yan, Hao Guo, Wei Wang, Dandan Yang, Pengfei Wang, Ting Li, Chenhao Yu, Kazuo Kumamoto and Yuping Suo
Photonics 2024, 11(4), 360; https://doi.org/10.3390/photonics11040360 - 12 Apr 2024
Cited by 7 | Viewed by 3561
Abstract
This paper presents experimental evidence regarding a novel switchable dual-wavelength thulium-doped fiber laser (TDFL). Wavelength switching is achieved by combining a polarization-maintaining fiber Bragg grating (PM-FBG) with a polarization controller (PC). The three-coupler double-ring compound cavity (TC-DRC) structure, acting as a mode-selection filter, [...] Read more.
This paper presents experimental evidence regarding a novel switchable dual-wavelength thulium-doped fiber laser (TDFL). Wavelength switching is achieved by combining a polarization-maintaining fiber Bragg grating (PM-FBG) with a polarization controller (PC). The three-coupler double-ring compound cavity (TC-DRC) structure, acting as a mode-selection filter, is designed to select a single longitudinal mode (SLM) from the dense longitudinal modes. This paper introduces the design and fabrication method of the TC-DRC filter and analyzes, in detail, the mechanism for SLM selection. The experimental results demonstrate that the designed filter exhibits excellent performance. By adjusting the PC, the TDFL achieves stable SLM operation at the wavelengths of 1940.54 nm and 1941.06 nm, respectively. The optical signal-to-noise ratio (OSNR) is superior to 65 dB. When the TDFL is tested at room temperature, there is no significant wavelength drift, and power fluctuations are less than 1.5 dB. The operation of the SLM is verified through the self-heterodyne method, and the laser maintains stable SLM states for both wavelengths after continuous operation for an hour. Furthermore, based on the phase noise demodulation method, the linewidths of both wavelengths are measured to be less than 10 kHz at the integration time of 0.001 s. Full article
(This article belongs to the Special Issue Single Frequency Fiber Lasers and Their Applications)
Show Figures

Figure 1

14 pages, 5158 KB  
Article
The Design of a Fiber-Coupling Micro-Lens Array for an M × N Wavelength-Selective Switch
by Jiaqi Hao, Yunshu Gao, Chengcheng Dong, Zeyuan Meng and Genxiang Chen
Micromachines 2024, 15(3), 307; https://doi.org/10.3390/mi15030307 - 23 Feb 2024
Cited by 2 | Viewed by 3622
Abstract
The M × N port wavelength-selective switch (WSS) is a crucial device used for Reconfigurable Optical Add/Drop Multiplexors and optical switching nodes in optical communication systems. The primary function of an M × N port WSS is to simultaneously transmit and switch multiple [...] Read more.
The M × N port wavelength-selective switch (WSS) is a crucial device used for Reconfigurable Optical Add/Drop Multiplexors and optical switching nodes in optical communication systems. The primary function of an M × N port WSS is to simultaneously transmit and switch multiple input optical signals from input fiber ports to output fiber ports through spatial light coupling. The port array module in a WSS that is responsible for coupling the spatial beam with the fiber determines the important parameters of the M × N port WSS, such as the number of input/output ports and insertion loss. In this paper, VirtualLab Fusion software 2023.1 (Build 1.558), as a powerful physical optics simulation tool, is used to design and optimize a silicon micro-lens array that can achieve the high-precision coupling of a fiber array with a pitch of 1143 μm. Finally, the designed micro-lens is manufactured and experimentally demonstrates its good beam focusing ability with a 3 dB insertion loss. The designed micro-lens array coupling system, which delivers 28 focused spots of approximately 1mm in size (the beam has a 1/e2 diameter) after transmitting a distance of around 300 mm, effectively extends the number of WSS ports. This design method of the micro-lens array significantly amplifies the port count of the M × N port wavelength-selective switch, effectively expanding it to encompass an impressive 28 × 28 ports. Full article
(This article belongs to the Special Issue Design and Manufacture of Micro-Optical Lens)
Show Figures

Figure 1

13 pages, 3142 KB  
Article
Low-Power Phototransistor with Enhanced Visible-Light Photoresponse and Electrical Performances Using an IGZO/IZO Heterostructure
by Yu Bin Kim, Jun Hyung Jeong, Min Ho Park, Jung Min Yun, Jin Hyun Ma, Hyoun Ji Ha, Seong Jae Kang and Seong Jun Kang
Materials 2024, 17(3), 677; https://doi.org/10.3390/ma17030677 - 30 Jan 2024
Cited by 4 | Viewed by 2712
Abstract
In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on–off switching behavior in the front channel of our oxide–oxide heterostructure. Similarly, for an additional [...] Read more.
In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on–off switching behavior in the front channel of our oxide–oxide heterostructure. Similarly, for an additional oxide layer, we have selected IZO due to its outstanding electrical properties. The optimized optoelectronic characteristics of the IGZO/IZO phototransistors were identified by adjusting the ratio of In:Zn in the IZO layer. As a result, the most remarkable traits were observed at the ratio of In:Zn = 8:2. Compared to the IGZO single-layer phototransistor, the IGZO/IZO(8:2) phototransistor showed improved photoresponse characteristics, with photosensitivity and photoresponsivity values of 1.00 × 107 and 89.1 AW−1, respectively, under visible light wavelength illumination. Moreover, the electrical characteristics of the IGZO/IZO(8:2) transistor, such as field effect mobility (μsat) and current on/off ratio (Ion/Ioff), were highly enhanced compared to the IGZO transistor. The μsat and Ion/Ioff were increased by about 2.1 times and 2.3 times, respectively, compared to the IGZO transistor. This work provides an approach for fabricating visible-light phototransistors with elevated optoelectronic properties and low power consumption based on an oxide–oxide heterostructure. The phototransistor with improved performance can be applied to applications such as color-selective visible-light image sensors and biometric sensors interacting with human–machine interfaces. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Characterization of ZnO Particles)
Show Figures

Figure 1

13 pages, 2027 KB  
Article
Multi-Wavelength Selective and Broadband Near-Infrared Plasmonic Switches in Anisotropic Plasmonic Metasurfaces
by Yan Li, Yaojie Zhou, Qinke Liu, Zhendong Lu, Xiao-Qing Luo, Wu-Ming Liu and Xin-Lin Wang
Nanomaterials 2023, 13(24), 3141; https://doi.org/10.3390/nano13243141 - 15 Dec 2023
Cited by 8 | Viewed by 2211
Abstract
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains [...] Read more.
Anisotropic plasmonic metasurfaces have attracted broad research interest since they possess novel optical properties superior to natural materials and their tremendous design flexibility. However, the realization of multi-wavelength selective plasmonic metasurfaces that have emerged as promising candidates to uncover multichannel optical devices remains a challenge associated with weak modulation depths and narrow operation bandwidth. Herein, we propose and numerically demonstrate near-infrared multi-wavelength selective passive plasmonic switching (PPS) that encompasses high ON/OFF ratios and strong modulation depths via multiple Fano resonances (FRs) in anisotropic plasmonic metasurfaces. Specifically, the double FRs can be fulfilled and dedicated to establishing tailorable near-infrared dual-wavelength PPS. The multiple FRs mediated by in-plane mirror asymmetries cause the emergence of triple-wavelength PPS, whereas the multiple FRs governed by in-plane rotational asymmetries avail the implementation of the quasi-bound states in the continuum-endowed multi-wavelength PPS with the ability to unfold a tunable broad bandwidth. In addition, the strong polarization effects with in-plane anisotropic properties further validate the existence of the polarization-resolved multi-wavelength PPS. Our results provide an alternative approach to foster the achievement of multifunctional meta-devices in optical communication and information processing. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

Back to TopTop