Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = weak anion-exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15843 KB  
Article
Hydrochemical Characteristics and Formation Mechanisms of Groundwater in the Nanmiao Emergency Groundwater Source Area, Yichun, Western Jiangxi, China
by Shengpin Yu, Tianye Wang, Ximin Bai, Gongxin Chen, Pingqiang Wan, Shifeng Chen, Qianqian Chen, Haohui Wan and Fei Deng
Water 2025, 17(14), 2063; https://doi.org/10.3390/w17142063 - 10 Jul 2025
Viewed by 574
Abstract
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, [...] Read more.
The Nanmiao Emergency Groundwater Source Area, rich in H2SiO3, serves as a strategic freshwater reserve zone in western Jiangxi Province. However, the mechanisms underlying groundwater formation in this area remain unclear. This study applied a combination of statistical analysis, isotopic tracing, and hydrochemical modeling to reveal the hydrochemical characteristics and origins of groundwater in the region. The results indicate that Na+ and Ca2+ dominate the cations, while HCO3 and Cl dominate the anions. Groundwater from descending springs is characterized by low mineralization and weak acidity, with hydrochemical types of primarily HCO3–Na·Mg and HCO3–Mg·Na·Ca. Groundwater from boreholes is weakly mineralized and neutral, with dominant hydrochemical types of HCO3–Ca·Na and HCO3–Ca·Na·Mg, suggesting a deep circulation hydrogeochemical process. Hydrogen and oxygen isotope analysis indicates that atmospheric precipitation is the primary recharge source. The chemical composition of groundwater is mainly controlled by rock weathering, silicate mineral dissolution, and cation exchange processes. During groundwater flowing, water and rock interactions, such as leaching, cation exchange, and mixing, occur. This study identifies the recharge sources and circulation mechanisms of regional groundwater, offering valuable insights for the sustainable development and protection of the emergency water source area. Full article
(This article belongs to the Special Issue Advances in Surface Water and Groundwater Simulation in River Basin)
Show Figures

Figure 1

19 pages, 5889 KB  
Article
Upregulation of Sulfated N-Glycans in Serum as Predictive Biomarkers for Early-Stage Breast Cancer
by Dereje G. Feleke, Bryan M. Montalban, Solomon T. Gizaw and Hiroshi Hinou
Int. J. Mol. Sci. 2025, 26(11), 4968; https://doi.org/10.3390/ijms26114968 - 22 May 2025
Viewed by 1358
Abstract
Breast cancer (BC) is a major global health concern, and early detection is key to improving patient outcomes. Aberrant glycosylation, particularly the sulfation of glycans, is implicated in cancer progression; however, analyzing these low-abundance glycans is challenging. This study aimed to profile serum [...] Read more.
Breast cancer (BC) is a major global health concern, and early detection is key to improving patient outcomes. Aberrant glycosylation, particularly the sulfation of glycans, is implicated in cancer progression; however, analyzing these low-abundance glycans is challenging. This study aimed to profile serum sulfated N-glycans in Ethiopian patients with BC to identify novel biomarkers for the early detection of BC. Using a glycoblotting-based sulphoglycomics workflow, including high-throughput glycoblotting enrichment, weak anion exchange (WAX) separation, and MALDI-TOF MS, serum samples from 76 BC patients and 20 healthy controls were analyzed. Statistical evaluation revealed significant differences in the sulfated N-glycan profiles. Seven mono-sulfated N-glycans were markedly elevated in patients with BC, demonstrating high diagnostic accuracy (AUC ≥ 0.8) in this internal cohort. Terminal Lewis-type glycan epitopes were prominent in sulfated glycans but were absent in their non-sulfated counterparts. The increased fucosylation and sialylation of sulfated glycans are statistically significant markers of early-stage BC. The preservation of sialic acid groups during the analysis ensured detailed structural insight. This pioneering study quantitatively examined sulfated N-glycans in BC and identified potential glyco-biomarkers for early detection. Validation in larger, diverse cohorts is needed to establish their broader diagnostic relevance and improve our understanding of cancer-associated glycomic alterations. Full article
(This article belongs to the Special Issue Cancer Diagnosis and Treatment: Exploring Molecular Research)
Show Figures

Figure 1

12 pages, 2584 KB  
Proceeding Paper
Potato Protein Concentrate: Improving Quality Using a More Effective and Sustainable Method
by Thomas Wilbur Davis, Ecevit Yilmaz and William R. Newson
Biol. Life Sci. Forum 2024, 40(1), 46; https://doi.org/10.3390/blsf2024040046 - 12 Mar 2025
Viewed by 1378
Abstract
One ton of potatoes processed to starch yields 5 to 12 m3 of potato fruit juice (PFJ), containing 30–41 wt% per dry matter protein with a high nutritional value that is comparable to eggs and has all essential amino acids. However, high [...] Read more.
One ton of potatoes processed to starch yields 5 to 12 m3 of potato fruit juice (PFJ), containing 30–41 wt% per dry matter protein with a high nutritional value that is comparable to eggs and has all essential amino acids. However, high levels of phenolics reduce potato protein concentrate (PPC) quality and taste. This study deployed a sustainable method evaluating novel adsorption resins to bind phenolics in PFJ and improve the PPC. Resins exhibited aqueous phenolic binding capacities ranging from 317 ± 0.5 mg to 606 ± 0.9 mg of Gallic Acid bound per mL of resin. The best performing resin, Strong Anion Exchanger (SAX) 002, significantly reduced PFJ total phenolic content (TPC) from 295 ± 0.6 μg/mL to 84 ± 0.1 μg/mL (Gallic Acid Equivalent (GAE)). Weak Anion Exchanger (WAX) 007 and 008 also decreased TPC to 155 ± 0.2 μg/mL GAE and 154 ± 0.3 μg/mL GAE, respectively. However, the most effective phenolic-binding resin resulted in a lower PPC yield versus control. In contrast, WAX 003 showed moderate phenolic removal but resulted in a higher yield (60 ± 0.69% to 90.1 ± 0.1% of control), demonstrating a trade-off between phenolic reduction and PPC recovery. SAX resins are superior in lowering PFJ and PPC phenolic content through adsorption. The results show the possibilities of using specialized resins to improve PPC quality for human consumption. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

13 pages, 1533 KB  
Article
Protocol for the Determination of Total Iodine in Iodized Table Salts Using Ultra-High-Performance Liquid Chromatography
by Mohd Azerulazree Jamilan, Aswir Abd Rashed and Mohd Fairulnizal Md Noh
Chemosensors 2025, 13(2), 46; https://doi.org/10.3390/chemosensors13020046 - 3 Feb 2025
Cited by 2 | Viewed by 2046
Abstract
Potassium iodate and potassium iodide are commonly fortified in iodized table salt, which must be continuously monitored to maintain quality. Our study reported an optimized detection method for total iodine in iodized table salt using 0.5 M sodium bisulfite as the reducing agent. [...] Read more.
Potassium iodate and potassium iodide are commonly fortified in iodized table salt, which must be continuously monitored to maintain quality. Our study reported an optimized detection method for total iodine in iodized table salt using 0.5 M sodium bisulfite as the reducing agent. The iodized table salt (0.5 g) was dissolved in 0.5 M sodium bisulfite solution prior to injection in ultra-high-performance liquid chromatography (UHPLC) coupled with a diode array detector using a weak anion-exchange column (2.1 mm × 150 mm, 5 μm). Iodide was eluted at 9.92 ± 0.06 min (λ = 223 nm) when an isocratic mobile phase of 1:1 (v/v) methanol/120 mM phosphate buffer mixed with tetrasodium pyrophosphate (pH 3.0) was running at 0.20 mL/min (15 min). Iodide was detected as total iodine from 10.0 to 50.0 mg/kg with a limit of detection (LOD) of 1.2 mg/kg and a limit of quantification (LOQ) of 3.7 mg/kg. The method was validated with relative standard deviations (RSDs) of 4.2%, 0.4%, 1.6%, and 0.8% for accuracy, repeatability, intermediate precision, and robustness, respectively. The determination of total iodine was successful on six (6) samples (n = 3), which recovered 87.2–106.9% of iodate and iodide spike. Thus, this study provides a validated protocol for the determination of total iodine in iodized table salt using 0.5 M sodium bisulfite. Full article
(This article belongs to the Special Issue Green Analytical Chemistry: Current Trends and Future Developments)
Show Figures

Figure 1

14 pages, 2748 KB  
Article
Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish
by Ramachandran Loganathan Mohan Prakash, Deva Asirvatham Ravi, Du Hyeon Hwang, Changkeun Kang and Euikyung Kim
Toxins 2024, 16(9), 410; https://doi.org/10.3390/toxins16090410 - 20 Sep 2024
Cited by 1 | Viewed by 1871
Abstract
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme [...] Read more.
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes—specifically, papain and protamex—were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0–1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI–TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of −51.4 ± 2.5 and −62.3 ± 3.3 using the HADDOCK scoring function. Full article
(This article belongs to the Special Issue Venoms and Drugs)
Show Figures

Figure 1

17 pages, 5470 KB  
Article
Microfiltration Membrane Pore Functionalization with Primary and Quaternary Amines for PFAS Remediation: Capture, Regeneration, and Reuse
by Sam Thompson, Angela M. Gutierrez, Jennifer Bukowski and Dibakar Bhattacharyya
Molecules 2024, 29(17), 4229; https://doi.org/10.3390/molecules29174229 - 6 Sep 2024
Cited by 3 | Viewed by 2585
Abstract
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still [...] Read more.
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still a burden to the environment. A selective anion-exchange membrane capable of capture and controlled release could further concentrate necessary contaminants, making their eventual degradation or long-term storage easier. To this end, commercial microfiltration membranes were modified using pore functionalization to incorporate an anion-exchange moiety within the membrane matrix. This functionalization was performed with primary and quaternary amine-containing polymer networks ranging from weak to strong basic residues. Membrane loading ranged from 0.22 to 0.85 mmol/g membrane and 0.97 to 3.4 mmol/g membrane for quaternary and primary functionalization, respectively. Modified membranes exhibited a range of water permeances within approximately 45–131 LMH/bar. The removal of PFASs from aqueous streams was analyzed for both “long-chain” and “short-chain” analytes, perfluorooctanoic acid and perfluorobutyric acid, respectively. Synthesized membranes demonstrated as high as 90% rejection of perfluorooctanoic acid and 50–80% rejection of perfluorobutyric acid after 30% permeate recovery. Regenerated membranes maintained the capture performance for three cycles of continuous operation. The efficiency of capture and reuse can be improved through the consideration of charge density, water flux, and influent contaminant concentration. This process is not limited by the substrate and, thus, is able to be implemented on other platforms. This research advances a versatile membrane platform for environmentally relevant applications that seek to help increase the global availability of safe drinking water. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

21 pages, 2184 KB  
Review
A Review of Life Cycle Assessment (LCA) Studies for Hydrogen Production Technologies through Water Electrolysis: Recent Advances
by Negar Shaya and Simon Glöser-Chahoud
Energies 2024, 17(16), 3968; https://doi.org/10.3390/en17163968 - 10 Aug 2024
Cited by 20 | Viewed by 8775
Abstract
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact, thereby reducing carbon emissions in the energy sector. Our research [...] Read more.
Climate change is a major concern for the sustainable development of global energy systems. Hydrogen produced through water electrolysis offers a crucial solution by storing and generating renewable energy with minimal environmental impact, thereby reducing carbon emissions in the energy sector. Our research evaluates current hydrogen production technologies, such as alkaline water electrolysis (AWE), proton exchange membrane water electrolysis (PEMWE), solid oxide electrolysis (SOEC), and anion exchange membrane water electrolysis (AEMWE). We systematically review life cycle assessments (LCA) for these technologies, analyzing their environmental impacts and recent technological advancements. This study fills essential gaps by providing detailed LCAs for emerging technologies and evaluating their scalability and environmental footprints. Our analysis outlines the strengths and weaknesses of each technology, guiding future research and assisting stakeholders in making informed decisions about integrating hydrogen production into the global energy mix. Our approach highlights operational efficiencies and potential sustainability enhancements by employing comparative analyses and reviewing advancements in membrane technology and electrocatalysts. A significant finding is that PEMWE when integrated with renewable energy sources, offers rapid response capabilities that are vital for adaptive energy systems and reducing carbon footprints. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

15 pages, 5311 KB  
Article
Pectins Rich in RG-I Extracted from Watermelon Peel: Physicochemical, Structural, Emulsifying, and Antioxidant Properties
by Xiaojun Ma, Xinxin Cheng, Yuyi Du, Peiyao Tang, Liangxiao Chen, Wei Chen and Zhenjia Zheng
Foods 2024, 13(15), 2338; https://doi.org/10.3390/foods13152338 - 25 Jul 2024
Cited by 2 | Viewed by 3088
Abstract
RG-I pectin has excellent health benefits, but its raw materials are relatively scarce, and its complex structure often breaks down its side-chain structure during the extraction process. In this study, the physicochemical and antioxidant properties of a branched-chain-rich pectin gained from watermelon peel [...] Read more.
RG-I pectin has excellent health benefits, but its raw materials are relatively scarce, and its complex structure often breaks down its side-chain structure during the extraction process. In this study, the physicochemical and antioxidant properties of a branched-chain-rich pectin gained from watermelon peel were demonstrated, and the structure–function relationships of RG-I-enriched pectin and emulsification properties were investigated. Fourier transform infrared spectroscopy, high-performance anion exchange chromatography, high-performance gel permeation chromatography, nuclear magnetic resonance spectroscopy, and methylation analyses reveal it as acetylated, low-methoxylated pectin, rich in RG-I side chains (MW: 1991 kDa, RG-I = 66.17%, methylation degree: 41.45%, (Ara + Gal)/Rha: 20.59%). RPWP outperforms commercial citrus pectin in emulsification and stability, significantly preventing lipid oxidation in emulsions. It also exhibits free radical scavenging abilities, contributing to its effectiveness in preventing lipid oxidation. Emulsions made with RPWP show higher viscosity and form a weak gel network (G′ > G″), enhancing stability by preventing phase separation. These findings position watermelon peel as a good source of RG-I pectin and deepen our understanding of RPWP behavior in emulsion systems, which may be useful in the food and pharmaceutical fields. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

17 pages, 2332 KB  
Article
Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate
by Mikhail A. Nadporojskii, Viktoriya V. Orlovskaya, Olga S. Fedorova, Dmitry S. Sysoev and Raisa N. Krasikova
Molecules 2024, 29(14), 3342; https://doi.org/10.3390/molecules29143342 - 16 Jul 2024
Cited by 2 | Viewed by 2079
Abstract
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this [...] Read more.
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption–elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC. Full article
(This article belongs to the Special Issue Advance in Radiochemistry)
Show Figures

Figure 1

23 pages, 3078 KB  
Article
Non-Targeted PFAS Suspect Screening and Quantification of Drinking Water Samples Collected through Community Engaged Research in North Carolina’s Cape Fear River Basin
by Rebecca A. Weed, Grace Campbell, Lacey Brown, Katlyn May, Dana Sargent, Emily Sutton, Kemp Burdette, Wayne Rider, Erin S. Baker and Jeffrey R. Enders
Toxics 2024, 12(6), 403; https://doi.org/10.3390/toxics12060403 - 31 May 2024
Cited by 7 | Viewed by 3696
Abstract
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North [...] Read more.
A community engaged research (CER) approach was used to provide an exposure assessment of poly- and perfluorinated (PFAS) compounds in North Carolina residential drinking water. Working in concert with community partners, who acted as liaisons to local residents, samples were collected by North Carolina residents from three different locations along the Cape Fear River basin: upper, middle, and lower areas of the river. Residents collected either drinking water samples from their homes or recreational water samples from near their residence that were then submitted by the community partners for PFAS analysis. All samples were processed using weak anion exchange (WAX) solid phase extraction and analyzed using a non-targeted suspect screening approach as well as a quantitative approach that included a panel of 45 PFAS analytes, several of which are specific to chemical industries near the collection site locations. The non-targeted approach, which utilized a suspect screening list (obtained from EPA CompTox database) identified several PFAS compounds at a level two confidence rating (Schymanski scale); compounds identified included a fluorinated insecticide, a fluorinated herbicide, a PFAS used in polymer chemistry, and another that is used in battery production. Notably, at several locations, PFOA (39.8 ng/L) and PFOS (205.3 ng/L) were at levels that exceeded the mandatory EPA maximum contaminant level (MCL) of 4 ng/L. Additionally, several sites had detectable levels of PFAS that are unique to a local chemical manufacturer. These findings were communicated back to the community partners who then disseminated this information to the local residents to help empower and aid in making decisions for reducing their PFAS exposure. Full article
Show Figures

Graphical abstract

13 pages, 2063 KB  
Article
Development of a Fast Method Using Inductively Coupled Plasma Mass Spectrometry Coupled with High-Performance Liquid Chromatography and Exploration of the Reduction Mechanism of Cr(VI) in Foods
by Ge Song, Honglian Tan, Chuhan Cheng, Peng Li, Xinyang Sun, Yuling Zhou and Yong Fang
Toxics 2024, 12(5), 325; https://doi.org/10.3390/toxics12050325 - 29 Apr 2024
Cited by 6 | Viewed by 2215
Abstract
Hexavalent chromium (Cr(VI)) is known as the most hazardous species of chromium. Speciation analysis of Cr in foods is of a great significance for assessing its influences on human health. In this study, a fast HPLC-ICP-MS method for the determination of Cr(VI) was [...] Read more.
Hexavalent chromium (Cr(VI)) is known as the most hazardous species of chromium. Speciation analysis of Cr in foods is of a great significance for assessing its influences on human health. In this study, a fast HPLC-ICP-MS method for the determination of Cr(VI) was developed for determining the content of Cr(VI) and also investigating its transformation in foods. The developed method employs an alkali extraction and weak anion-exchange column separation for distinguishing the Cr species, facilitating accurate Cr(VI) quantification within 1.5 min. This technique was applied to determine the Cr(VI) levels in a range of food products, including yoghurt, milk powder, rice flour, orange juice, green tea, white vinegar, and whole wheat bread. The results showed that no Cr(VI) was detected in these food products. Spiking experiments revealed that the recovery rate of Cr(VI) decreased with the increase in its contact time with food products. A further exploration of Cr(VI) in various food components such as vitamin C, tea polyphenols, whey proteins, gelatin, fructose, and cellulose indicated the conversion of Cr(VI) to organic Cr(III) over a period from 20 min to 60 h. It was found that high temperatures and acidic conditions accelerated the rate of Cr(VI) conversion to organic Cr(III) in the six food components mentioned above. This evidence suggests that natural reducing substances in foods probably prevent the occurrence of Cr(VI). Full article
Show Figures

Graphical abstract

16 pages, 6735 KB  
Article
Adsorption and Desorption Behavior and Mechanism of Ruthenium in Nitrite–Nitric Acid System
by Cong Li, Chao Xie, Tianjiao Jiang, Lifeng Chen, Shunyan Ning, Caiwu Luo, Qi Zheng, Ji Wang and Yuezhou Wei
Toxics 2024, 12(3), 181; https://doi.org/10.3390/toxics12030181 - 27 Feb 2024
Cited by 1 | Viewed by 2062
Abstract
Ruthenium is required to separate from high-level liquid waste (HLLW) because Ru is a valuable resource and is negatively influential on the vitrification process of HLLW. However, the separation of Ru is very challenging due to its complicated complexation properties. In this study, [...] Read more.
Ruthenium is required to separate from high-level liquid waste (HLLW) because Ru is a valuable resource and is negatively influential on the vitrification process of HLLW. However, the separation of Ru is very challenging due to its complicated complexation properties. In this study, the adsorption and desorption characteristics of ruthenium on a synthesized SiPyR-N3 (weak-base anion exchange resin with pyridine functional groups) composite were investigated in nitric acid and nitrite–nitric acid systems, respectively, and the adsorption mechanism was explored. The experimental results showed that SiPyR-N3 has a significantly better adsorption effect on Ru in the nitrite–nitric acid system than in the nitric acid system, with an increase in the adsorption capacity of approximately three times. The maximum adsorption capacity of Ru is 45.6 mg/g in the nitrite–nitric acid system. The SiPyR-N3 possesses good adsorption selectivity (SFRu/other metal ions is around 100) in 0.1 M NO2–0.1 M HNO3 solution. The adsorption processes of Ru in the two different systems are fitted with the pseudo-second-order kinetic model and Langmuir model for uptake kinetics and adsorption isotherms, respectively. The results obtained from the FT-IR, XPS, and UV absorption spectrometry indicate that NO2 was involved in the adsorption process either as a complexing species with the metal ions or as free NO2 from the solution. A 0.1 M HNO3 + 1 M thiourea mixed solution shows effective desorption performance, and the desorption efficiency can reach 92% at 328 K. Full article
(This article belongs to the Special Issue Novel Adsorbents and Adsorption Methods for Pollutants Removal Ⅱ)
Show Figures

Figure 1

11 pages, 1050 KB  
Article
A Fast and Simple Solid Phase Extraction-Based Method for Glucosinolate Determination: An Alternative to the ISO-9167 Method
by Yanfang Li, Mengliang Zhang, Pamela Pehrsson, James M. Harnly, Pei Chen and Jianghao Sun
Foods 2024, 13(5), 650; https://doi.org/10.3390/foods13050650 - 21 Feb 2024
Cited by 2 | Viewed by 2408
Abstract
Glucosinolates (GLSs) are a well-studied sulfur-containing compound found in Brassicaceae plants that play critical roles in plant resistance and human health. Correctly identifying and reliably quantifying the total and individual GLS content is of great importance. An improved method as an alternative to [...] Read more.
Glucosinolates (GLSs) are a well-studied sulfur-containing compound found in Brassicaceae plants that play critical roles in plant resistance and human health. Correctly identifying and reliably quantifying the total and individual GLS content is of great importance. An improved method as an alternative to the ISO 9167-1 (ISO) method is developed in the present study. An efficient extraction and purification procedure is proposed with a commercially available dimethylaminopropyl (DEA)-based weak anion exchange solid-phase extraction (SPE) cartridge instead of using the self-prepared ion-exchange columns in the ISO method. The GLSs are identified and quantified by ultra high-performance liquid chromatography (UHPLC) high-resolution mass spectrometry (HRMS). The method demonstrates a comparable quantification of total and individual GLSs on certified rapeseeds and other Brassicaceae vegetables when compared to the ISO method. The developed SPE method is simpler and more efficient, thus allowing for applications to a large sample size with reduced analysis time, improved repeatability and accuracy, and possible automation. Full article
(This article belongs to the Special Issue Analysis and Possible Utilization of Food Bioactive Compounds)
Show Figures

Graphical abstract

14 pages, 807 KB  
Article
Erythropoietin N-glycosylation of Therapeutic Formulations Quantified and Characterized: An Interlab Comparability Study of High-Throughput Methods
by Róisín O’Flaherty, Manuela Amez Martín, Richard A. Gardner, Patrick M. Jennings, Pauline M. Rudd, Daniel I. R. Spencer and David Falck
Biomolecules 2024, 14(1), 125; https://doi.org/10.3390/biom14010125 - 18 Jan 2024
Cited by 1 | Viewed by 3413
Abstract
Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of [...] Read more.
Recombinant human erythropoietin (EPO) is a biopharmaceutical frequently used in the treatment of anemia. It is a heavily glycosylated protein with a diverse and complex glycome. EPO N-glycosylation influences important pharmacological parameters, prominently serum half-life. Therefore, EPO N-glycosylation analysis is of the utmost importance in terms of controlling critical quality attributes. In this work, we performed an interlaboratory study of glycoanalytical techniques for profiling and in-depth characterization, namely (1) hydrophilic interaction liquid chromatography with fluorescence detection after 2-aminobenzamide labeling (HILIC-FLD(2AB)) and optional weak anion exchange chromatography (WAX) fractionation and exoglycosidase digestion, (2) HILIC-FLD after procainamide labeling (PROC) optionally coupled to electrospray ionization-MS and (3) matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-MS). All techniques showed good precision and were able to differentiate the unique N-glycosylation profiles of the various EPO preparations. HILIC-FLD showed higher precision, while MALDI-TOF-MS covered the most analytes. However, HILIC-FLD differentiated isomeric N-glycans, i.e., N-acetyllactosamine repeats and O-acetylation regioisomers. For routine profiling, HILIC-FLD methods are more accessible and cover isomerism in major structures, while MALDI-MS covers more minor analytes with an attractively high throughput. For in-depth characterization, MALDI-MS and HILIC-FLD(2AB)/WAX give a similar amount of orthogonal information. HILIC-FLD(PROC)-MS is attractive for covering isomerism of major structures with a significantly less extensive workflow compared to HILIC-FLD(2AB)/WAX. Full article
Show Figures

Figure 1

12 pages, 3931 KB  
Article
Study on the Thermal Stabilizing Process of Layered Double Hydroxides in PVC Resin
by Zhi Rao, Kaitao Li, Pingli Liu, Yanjun Lin and Xiang Lyu
Molecules 2023, 28(23), 7792; https://doi.org/10.3390/molecules28237792 - 27 Nov 2023
Cited by 3 | Viewed by 2226
Abstract
Poly(vinyl chloride) (PVC) is widely used in various fields and requires the use of thermal stabilizers to enhance its thermal stability during processing because of its poor thermal stability. Layered double hydroxides (LDHs) are widely considered to be one kind of highly efficient [...] Read more.
Poly(vinyl chloride) (PVC) is widely used in various fields and requires the use of thermal stabilizers to enhance its thermal stability during processing because of its poor thermal stability. Layered double hydroxides (LDHs) are widely considered to be one kind of highly efficient and environmentally friendly PVC thermal stabilizer. To investigate the thermal stabilizing process of layered double hydroxides (LDHs) in PVC resin, PVC and MgAl-LDHs powders with different interlayer anions (CO32−, Cl, and NO3) were physically mixed and aged at 180 °C. The structure of LDHs at different aging times was studied using XRD, SEM, and FT-IR. The results show that the thermal stabilizing process of LDHs on PVC mainly has three stages. In the first stage, the layers of LDHs undergo a reaction with HCl, which is released during the thermal decomposition of PVC. Subsequently, the ion exchange process occurs between Cl and interlayer CO32−, resulting in the formation of MgAl-Cl-LDHs. Finally, the layers of MgAl-Cl-LDHs react with HCl slowly. During the thermal stabilizing process of MgAl-Cl-LDHs, the peak intensity of XRD reduces slightly, and no new XRD peak emerges. It indicates that only the first step happens for MgAl-Cl-LDHs. The TG-DTA analysis of LDHs indicates that the interaction of LDHs with different interlayer anions has the following order: NO3 < CO32− < Cl, according to the early coloring in the thermal aging test of PVC composites. The results of the thermal aging tests suggest that LDHs with a weak interaction between interlayer anions and layers can enhance the early stability of PVC significantly. Furthermore, the thermal aging test demonstrates that LDHs with high HCl absorption capacities exhibit superior long-term stabilizing effects on PVC resin. This finding provides a valuable hint for designing an LDHs/PVC resin with a novel structure and excellent thermal stability. Full article
Show Figures

Figure 1

Back to TopTop