Previous Issue
Volume 12, April
 
 

J. Mar. Sci. Eng., Volume 12, Issue 5 (May 2024) – 136 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
19 pages, 3365 KiB  
Article
Optimization for Offshore Prestressed Concrete–Steel Hybrid Wind Turbine Support Structure with Pile Foundation Using a Parallel Modified Particle Swarm Algorithm
by Zeyu Li, Bin Xu and Guokai Yuan
J. Mar. Sci. Eng. 2024, 12(5), 826; https://doi.org/10.3390/jmse12050826 (registering DOI) - 15 May 2024
Abstract
The prestressed concrete–steel hybrid (PCSH) support structure, which replaces the lower part of the traditional support with a concrete segment, is a prospective support structure solution for ultrahigh wind turbines. Taking a 5.5 MW wind turbine support structure founded on a jacket substructure [...] Read more.
The prestressed concrete–steel hybrid (PCSH) support structure, which replaces the lower part of the traditional support with a concrete segment, is a prospective support structure solution for ultrahigh wind turbines. Taking a 5.5 MW wind turbine support structure founded on a jacket substructure with pile foundation as an example, an optimized design of the corresponding PCSH support structure with pile foundation for offshore wind turbine is conducted considering the soil–structure interaction (SSI) and the effect of water pressure. The construction cost of the proposed structure is treated as the objective function and minimized with a parallel modified particle swarm optimization (PMPSO) algorithm where the physical dimensions of each part of the PCSH wind turbine support structure are treated as optimization variables. Eleven optimization constraints are considered under both the serviceability limit state (SLS) and the ultimate limit state (ULS) according to relevant specifications and industry standards. A penalty function strategy is introduced to make sure that these constraints are fulfilled. The mechanical behavior and the cost of the optimal PCSH support structure with pile foundation are analyzed and are compared with those of the original design with a traditional steel tube tower founded on a jacket substructure. The results show that the cost and levelized cost of energy (LCOE), a comprehensive evaluation, of the optimized PCSH support decrease obviously with the PMPSO algorithm, which can provide advanced mechanic behavior including natural frequency, top deformation, and anti-overturning capacity. Compared with the PSO algorithm, the PMPSO algorithm has better performance in the procedure of PCSH support for offshore wind turbine optimization. Full article
Show Figures

Figure 1

16 pages, 2134 KiB  
Article
A Novel Positional Calibration Method for an Underwater Acoustic Beacon Array Based on the Equivalent Virtual Long Baseline Positioning Model
by Ge Zhang, Guoxing Yi, Zhennan Wei, Yangguang Xie and Ziyang Qi
J. Mar. Sci. Eng. 2024, 12(5), 825; https://doi.org/10.3390/jmse12050825 (registering DOI) - 15 May 2024
Viewed by 51
Abstract
The performance of long baseline (LBL) positioning systems is significantly impacted by the distribution and positional calibration accuracy of underwater acoustic beacon arrays. In previous calibration methods for beacon arrays based on autonomous underwater vehicle (AUV) platforms, the slant range information of each [...] Read more.
The performance of long baseline (LBL) positioning systems is significantly impacted by the distribution and positional calibration accuracy of underwater acoustic beacon arrays. In previous calibration methods for beacon arrays based on autonomous underwater vehicle (AUV) platforms, the slant range information of each beacon was processed independently, and each beacon was calibrated one at a time. This approach not only decreases the calibration efficiency but also leaves the positional calibration accuracy of each beacon highly susceptible to the navigation trajectory of the AUV. To overcome these limitations, an equivalent virtual LBL (EVLBL) positioning model is introduced in this paper. This model operates by adjusting the positions of each beacon according to the dead reckoning increments computed during the AUV’s reception of positioning signals, effectively forming a virtual beacon array. Consequently, the AUV is capable of mitigating LBL positioning errors that arise from its motion by simultaneously receiving positioning signals from all beacons. Additionally, an overall calibration method for beacon arrays based on particle swarm optimization (PSO) is proposed. In this approach, the minimization of the deviation between the EVLBL trajectory and the dead reckoning trajectory is set as the optimization objective, and the coordinates of each beacon are iteratively optimized. The simulation results demonstrate that the proposed EVLBL-based PSO algorithm (EVPSO) significantly enhanced the calibration efficiency and positional accuracy of the beacon array. Compared with conventional methods, the estimation error of the beacon positions was reduced from 6.40 m to within 1.00 m. After compensating for the beacon array positions, the positioning error of the LBL system decreased from approximately 5.00 m (with conventional methods) to around 1.00 m (with EVPSO), demonstrating the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Navigation and Detection Fusion for Autonomous Underwater Vehicles)
24 pages, 15455 KiB  
Article
Sensitivity Simulations of Wind-driven Water Circulation in İzmit Bay
by Sabri Mutlu, Barış Önol, Mehmet Ilıcak and Hüsne Altıok
J. Mar. Sci. Eng. 2024, 12(5), 824; https://doi.org/10.3390/jmse12050824 - 15 May 2024
Viewed by 145
Abstract
İzmit Bay, a 50 km long inlet at the eastern end of the Marmara Sea, is crucial for the region’s economy, culture, and marine ecosystem. The bay’s water circulation regulates nutrient distribution, stratification, sedimentation, oxygen levels, heat, and pollution levels. It is also [...] Read more.
İzmit Bay, a 50 km long inlet at the eastern end of the Marmara Sea, is crucial for the region’s economy, culture, and marine ecosystem. The bay’s water circulation regulates nutrient distribution, stratification, sedimentation, oxygen levels, heat, and pollution levels. It is also influenced by meteorological events, such as short-term moderate to strong wind conditions. This study investigated the sensitivity of İzmit Bay Water Circulation to wind speed, direction, and duration using the MITgcm model with Orlanski boundary conditions and process-oriented modeling. The simulations showed that under weak forcing conditions, seawater temperature, salinity, and stratification do not significantly vary. However, strong forcing and wind speeds (statistically defined by percentiles of observation data) of 4.9 m/s (75%), 6.7 m/s (90%), and 10.1 m/s (99%) generate significant mesoscale and sub-mesoscale processes, depending on the direction. Westerly component winds cause downwelling at the eastern coastline, while easterly component winds bring sub-surface water to the surface. Strong winds from N, NE, and E sectors lead to the rise in lower-layer waters in the western basin, forcing them to overflow through the Hersek Delta sill into the central basin. Overall, severe wind events greater than 4.9 m/s (75%) significantly affect the bay’s hydrography by transforming the upper layer, with a decrease in temperature up to 5 °C and an increase in salinity up to 10 ppt. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

20 pages, 5839 KiB  
Article
A Methodology to Evaluate the Real-Time Stability of Submarine Slopes under Rapid Sedimentation
by Zehao Wang, Defeng Zheng, Zhongde Gu, Xingsen Guo and Tingkai Nian
J. Mar. Sci. Eng. 2024, 12(5), 823; https://doi.org/10.3390/jmse12050823 - 14 May 2024
Viewed by 204
Abstract
Rapid sedimentation is widely recognized as a crucial factor in initiating the instability of submarine slopes. Once the slope fails, the subsequent landslide poses a significant threat to the safety of underwater infrastructures and potentially leads to severe damage to seabed pipelines, offshore [...] Read more.
Rapid sedimentation is widely recognized as a crucial factor in initiating the instability of submarine slopes. Once the slope fails, the subsequent landslide poses a significant threat to the safety of underwater infrastructures and potentially leads to severe damage to seabed pipelines, offshore foundations, and oil and gas exploitation wells. However, there is currently a lack of numerical methods to effectively assess the real-time stability of submarine slopes under rapid sedimentation. This study firstly employs a calibrated finite element (FE) model-change approach to reproduce the rapid sedimentation processes and proposes a concise method to calculate the safety factors for the real-time stability of sedimenting submarine slopes. Further, a parametric analysis is carried out to evaluate the effect of varying sedimentation rates on slope stability, and the critical sedimentation rate is numerically solved. Moreover, the effect of seismic events with different occurring times on the stability of rapidly sedimenting slopes is investigated in depth, and the most critical seismic loading pattern among various acceleration combinations is achieved. The results indicate that the presence of weak layers during sedimentation is a critical factor contributing to slope instability. The introduced rate of decrease in the safety factor proves valuable in assessing slope safety over a specific period. As the occurrence time of seismic events is delayed, the seismic resistance of the slope decreases, increasing the likelihood of shallower sliding surfaces. The findings offer insights into the mechanisms by which rapid sedimentation influences the stability of submarine slopes and provide valuable insights for predicting the potential instability of rapidly sedimenting slopes under specific seismic activity levels. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Geomechanics and Geotechnics)
Show Figures

Figure 1

17 pages, 9380 KiB  
Article
Mechanism of Speed Loss Reduction and Propulsion Efficiency Improvement of ONR Tumblehome with Active-Controlled Stern Flaps in Resonance Waves
by Lei Zhang, Chuanshun Du, Yongsen Ni, Yuchen Shang and Jianing Zhang
J. Mar. Sci. Eng. 2024, 12(5), 822; https://doi.org/10.3390/jmse12050822 - 14 May 2024
Viewed by 146
Abstract
The stern flap is a practical hull appendage equipment that enhances ship navigation performance and saves energy. The existing studies mainly focus on the fixed stern flap, other than an actively controlled one, so it is worth further exploring its effect and mechanism. [...] Read more.
The stern flap is a practical hull appendage equipment that enhances ship navigation performance and saves energy. The existing studies mainly focus on the fixed stern flap, other than an actively controlled one, so it is worth further exploring its effect and mechanism. By implanting the PID controller to the stern flap, this paper proposed a free-running CFD model on the ONRT (the Office of Naval Research Tumblehome) ship coupled with the active-controlled stern flap to investigate the hydrodynamic performance in resonance waves. The free-running performance in calm water and regular waves is numerically researched and verified versus the experimental and referenced results. Then, the effect of different PID coefficients and control strategies of the stern flap on the traveling speed, attitudes, and propulsion performance under the resonance wave condition is conducted, and the influence mechanism is explored. The results show that adopting a fixed flap controller and PID controller can reduce the original speed loss by 4.2% and 6.9%, respectively, and increase the average propulsive efficiency of the propeller by 1.0% and 1.4%, respectively. Further analysis reveals that the global effect of the suppressed motion attitudes due to the installation of the fixed flap effectively contributes to the resistance reduction. However, the local effect of the stern flap increases the resistance due to interaction with the propeller and stern. The PID-controlled stern flap exhibits similar average attitudes compared to the fixed one, which means the resistance reduction of the global effect is kept the same, and the active stern flap further improves the stern flow field, where the resistance increment of the local effect is weakened, enhancing the traveling speed and improving the propulsion efficiency. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 8099 KiB  
Article
Buckling Behavior of Stainless Wave-Shaped Pressure Hulls
by Lingtong Zheng, Yunsen Hu, Huifeng Jiao and Jian Zhang
J. Mar. Sci. Eng. 2024, 12(5), 821; https://doi.org/10.3390/jmse12050821 - 14 May 2024
Viewed by 122
Abstract
This study primarily focuses on the buckling behavior of wave-shaped pressure hulls subjected to uniform external pressure. The effect of slant angle on the buckling behavior of hulls was examined. The tested slant angles ranged from 0° to 30° and were increased at [...] Read more.
This study primarily focuses on the buckling behavior of wave-shaped pressure hulls subjected to uniform external pressure. The effect of slant angle on the buckling behavior of hulls was examined. The tested slant angles ranged from 0° to 30° and were increased at 1° increments. The buckling of smooth cylindrical pressure hulls and wave-shaped pressure hulls was investigated using numerical methods. A wave-shaped pressure hull was produced for experimental verification. The nonlinear numerical results aligned with the collected experimental data. The buckling load of the tested wave-shaped pressure hull was approximately 1.87 times that of the equivalent cylindrical pressure hull. Furthermore, a formula was developed to estimate the load-bearing capacity of the wave-shaped pressure hull. This formula, which has been experimentally validated, comprises a correction coefficient (obtained through numerical evaluation and regression analysis) and a classic semi-analytical formula for cylindrical pressure hulls. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 8228 KiB  
Article
Incipient Motion of Single Shells under Currents in Flume Experiments
by Jie Chen, Jiaxiang Liu, Changbo Jiang, Zhiyuan Wu, Zhen Yao and Cheng Bian
J. Mar. Sci. Eng. 2024, 12(5), 820; https://doi.org/10.3390/jmse12050820 - 14 May 2024
Viewed by 155
Abstract
Understanding the motion thresholds of shells is important, as shell motion allows the analysis of beach profiles, prevents excessive erosion of the coastline, and helps to resource the use of discarded shells, providing new ideas for the protection of beaches. In this study, [...] Read more.
Understanding the motion thresholds of shells is important, as shell motion allows the analysis of beach profiles, prevents excessive erosion of the coastline, and helps to resource the use of discarded shells, providing new ideas for the protection of beaches. In this study, the orientational motions and motion thresholds of two types of typical molluscan shells, bivalve and gastropod shells, were investigated by means of flume experiments. The final orientations with the statistically highest number of occurrences during the orientational motions of each shell were used as the initial orientations for the respective threshold flow velocity measurements. The critical Shields parameter and the incipient mean velocity of the flow were used to represent the critical threshold of the motion. The critical Shields parameters for bivalve shells in the convex upward position were overall higher on average than those for gastropod shells. The experimental data showed that the incipient mean flow velocities of bivalve shells in the convex upward position were about 1.4–2.8 times larger than those in the convex downward position. The incipient mean velocity data were regressed to obtain the motion threshold equations applicable to bivalve shells in the convex upward and convex downward positions as well as gastropod shells under different final orientations. Full article
23 pages, 7131 KiB  
Article
Design and Testing of an Autonomous Navigation Unmanned Surface Vehicle for Buoy Inspection
by Zhiqiang Lu, Weihua Li, Xinzheng Zhang, Jianhui Wang, Zihao Zhuang and Cheng Liu
J. Mar. Sci. Eng. 2024, 12(5), 819; https://doi.org/10.3390/jmse12050819 - 14 May 2024
Viewed by 114
Abstract
In response to the inefficiencies and high costs associated with manual buoy inspection, this paper presents the design and testing of an Autonomous Navigation Unmanned Surface Vehicle (USV) tailored for this purpose. The research is structured into three main components: Firstly, the hardware [...] Read more.
In response to the inefficiencies and high costs associated with manual buoy inspection, this paper presents the design and testing of an Autonomous Navigation Unmanned Surface Vehicle (USV) tailored for this purpose. The research is structured into three main components: Firstly, the hardware framework and communication system of the USV are detailed, incorporating the Robot Operating System (ROS) and additional nodes to meet practical requirements. Furthermore, a buoy tracking system utilizing the Kernelized Correlation Filter (KCF) algorithm is introduced. Secondly, buoy image training is conducted using the YOLOv7 object detection algorithm, establishing a robust model for accurate buoy state recognition. Finally, an improved Line-of-Sight (LOS) method for USV path tracking, assuming the presence of an attraction potential field around the inspected buoy, is proposed to enable a comprehensive 360-degree inspection. Experimental testing includes validation of buoy image target tracking and detection, assessment of USV autonomous navigation and obstacle avoidance capabilities, and evaluation of the enhanced LOS path tracking algorithm. The results demonstrate the USV's efficacy in conducting practical buoy inspection missions. This research contributes insights and advancements to the fields of maritime patrol and routine buoy inspections. Full article
23 pages, 1089 KiB  
Article
Nonlinear Slippage of Tensile Armor Layers of Unbonded Flexible Riser Subjected to Irregular Loads
by Qingsheng Liu, Zhongyuan Qu, Xiaoya Liu, Jiawei He, Gang Wang, Sicong Wang and Feng Chen
J. Mar. Sci. Eng. 2024, 12(5), 818; https://doi.org/10.3390/jmse12050818 - 14 May 2024
Viewed by 145
Abstract
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear [...] Read more.
The unbonded flexible riser has been increasingly applied in the ocean engineering industry to transport oil and gas resources from the seabed to offshore platforms. The slippage of helical layers, especially the tensile armor layers of unbonded flexible risers, contribute to the nonlinear hysteresis phenomenon, which is a research hotspot and difficulty. In this paper, on the basis of a typical eight-layer unbonded flexible riser model, the nonlinear slippage of a tensile armor layer and the corresponding nonlinear behavior of an unbonded flexible riser subjected to irregular external loads are studied by numerical modeling with detailed cross-sectional properties of the helical layers, and are verified through a theoretical method considering the coupled effect of the external loads on the unbonded flexible riser. Firstly, the balance equation of each layer considering the effect of external loads is established based on functional principles, and the overall theoretical model of the unbonded flexible riser is set up in consideration of the contact between adjacent layers. Secondly, the numerical modeling of each separate layer within the unbonded flexible riser, including the actual geometry of the carcass and pressure armor layer, is established, and solid elements are applied to all the interlayers, thus simulating the nonlinear contact and friction between and within interlayers. Finally, after verification through test data, the behavior of the unbonded flexible riser under the cyclic axial force, torsion, bending moment, and irregular external and internal pressure is studied. The results show that the tensile armor layer can slip under irregular loads. Additionally, some suggestions related to the analysis of unbonded flexible risers under irregular loads are drawn in the end. Full article
(This article belongs to the Section Ocean Engineering)
21 pages, 4724 KiB  
Article
ETE-SRSP: An Enhanced Optimization of Tramp Ship Routing and Scheduling
by Xiaohu Huang, Yuhan Liu, Mei Sha, Bing Han, Dezhi Han and Han Liu
J. Mar. Sci. Eng. 2024, 12(5), 817; https://doi.org/10.3390/jmse12050817 - 14 May 2024
Viewed by 176
Abstract
In the contemporary tramp shipping industry, route optimization and scheduling are directly linked to enhancements in operations, economics, and the environment, making them key factors for the effective management of maritime transportation. To enhance effective ship-to-cargo matching and the refinement of maritime transportation [...] Read more.
In the contemporary tramp shipping industry, route optimization and scheduling are directly linked to enhancements in operations, economics, and the environment, making them key factors for the effective management of maritime transportation. To enhance effective ship-to-cargo matching and the refinement of maritime transportation itineraries, this paper introduces a time efficiency and carbon dioxide emission multi-objective optimization algorithm named ETE-SRSP (efficiency–time–emission multi-optimization algorithm). ETE-SRSP incorporates several factors, including the initial positions of ships, time windows for loading and unloading operations, and varying sailing speeds. Within the ETE-SRSP framework, pioneering an approach that integrates ballast and laden sailing velocities as decisional parameters, it employs a multi-objective optimization technique to investigate the intricate interplay between temporal efficiency and carbon dioxide emissions. Additionally, the model’s proficiency in mitigating emissions and managing costs is clearly demonstrated through the optimization of these objectives, thereby offering a robust framework for decision support. The experimental results show that the optimal sailing speeds derived from the ETE-SRSP, under typical time-weight scenarios, can achieve an optimal balance between emission reduction and cost control. In summary, this study underscores the optimization strategy’s potential to effectively address the maritime sector’s need for economic growth and ecological conservation, showcasing its practical value in the industry. Full article
Show Figures

Figure 1

4 pages, 159 KiB  
Editorial
Special Issue on Offshore Wind Energy
by E. Uzunoglu, A. Souto-Iglesias and C. Guedes Soares
J. Mar. Sci. Eng. 2024, 12(5), 816; https://doi.org/10.3390/jmse12050816 - 14 May 2024
Viewed by 173
Abstract
As the impact of fossil fuels on the planet becomes clear, the world is increasingly focusing on renewable energy sources [...] Full article
(This article belongs to the Special Issue Offshore Wind Energy)
13 pages, 1495 KiB  
Article
Physiological Response of European Sea Bass (Dicentrarchus labrax) Juveniles to an Acute Stress Challenge: The Impact of Partial and Total Dietary Fishmeal Replacement by an Insect Meal
by Ana Basto, Diogo Peixoto, Marina Machado, Benjamin Costas, Daniel Murta and Luisa M. P. Valente
J. Mar. Sci. Eng. 2024, 12(5), 815; https://doi.org/10.3390/jmse12050815 - 14 May 2024
Viewed by 233
Abstract
This study aimed to explore the effect of FM substitution by defatted Tenebrio molitor larvae meal (dTM) on the response of European seabass to an acute stress challenge. An FM-based diet was used as a control and two other isoproteic/isoenergetic diets were formulated [...] Read more.
This study aimed to explore the effect of FM substitution by defatted Tenebrio molitor larvae meal (dTM) on the response of European seabass to an acute stress challenge. An FM-based diet was used as a control and two other isoproteic/isoenergetic diets were formulated to replace 50 and 100% of FM by dTM. Each diet was tested in quadruplicate groups of 15 fish (69 ± 5 g) fed until visual satiety for 16 weeks. After the feeding trial, fish were subjected to 1 min air exposure followed by 1 h of recovery before sampling. The haematological profile, plasma metabolites, and humoral immunity biomarkers, as well as hepatic oxidative stress and antioxidant capacity, were analysed. A clear response to acute stress was observed by a significant increase in haemoglobin, haematocrit, red blood cells, and almost all evaluated plasma metabolites and humoral parameters, regardless of dietary treatment. The obtained results demonstrated that partial substitution of FM by IM did not affect the stress response of seabass. However, total FM replacement increased the hepatic activity of total peroxidase and superoxide dismutase in fish fed TM100. Full article
(This article belongs to the Special Issue New Challenges in Marine Aquaculture Research)
Show Figures

Figure 1

19 pages, 21891 KiB  
Article
Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir
by Yangang Wang and Yongcun Feng
J. Mar. Sci. Eng. 2024, 12(5), 814; https://doi.org/10.3390/jmse12050814 - 14 May 2024
Viewed by 161
Abstract
The integrity of the cement sheath is susceptible to failure during multi-stage fracturing. In this study, the failure mechanisms of cement sheath integrity during multi-stage fracturing in the A offshore tight oil reservoir wells were investigated. The cement samples were subject to triaxial [...] Read more.
The integrity of the cement sheath is susceptible to failure during multi-stage fracturing. In this study, the failure mechanisms of cement sheath integrity during multi-stage fracturing in the A offshore tight oil reservoir wells were investigated. The cement samples were subject to triaxial compression test (TCT), triaxial cyclic loading test (TCLT), and permeability test. A full-scale device was constructed for cement sheath integrity experiments. Additionally, a 3-D finite element model was developed to simulate the interface debonding and the subsequent growth of micro-annuli throughout multi-stage fracturing. The results revealed that TCLT induced cumulative plastic deformation in the cement samples, resulting in a 10.7% decrease in triaxial compressive strength, an 8.3% decrease in elastic modulus, and a 150% increase in permeability. Despite these significant variations, no serious damage was caused to the cement sheath matrix. It was observed that gas leakage occurred at the 8th, 10th, and 14th cycles under cyclic loading with upper limits of 70 MPa, 80 MPa, and 90 MPa, respectively. After 15 cycles, the experimentally measured widths of micro-annuli were 117 μm, 178 μm, and 212 μm, which were in good agreement with simulation results of 130 μm, 165 μm, and 205 μm, respectively. These findings elucidate the causes of cement sheath integrity failure, providing insights into the failure mechanisms of cement sheath integrity during multi-stage fracturing. Full article
Show Figures

Figure 1

21 pages, 952 KiB  
Review
Data-Driven Modal Decomposition Methods as Feature Detection Techniques for Flow Fields in Hydraulic Machinery: A Mini Review
by Bin Xu, Liwen Zhang, Weibin Zhang, Yilin Deng and Teck Neng Wong
J. Mar. Sci. Eng. 2024, 12(5), 813; https://doi.org/10.3390/jmse12050813 - 13 May 2024
Viewed by 159
Abstract
Cavitation is a quasi-periodic process, and its non-stationarity leads to increasingly complex flow field structures. On the other hand, characterizing the flow field with greater precision has become increasingly feasible. However, accurately and effectively extracting the most representative vibration modes and spatial structures [...] Read more.
Cavitation is a quasi-periodic process, and its non-stationarity leads to increasingly complex flow field structures. On the other hand, characterizing the flow field with greater precision has become increasingly feasible. However, accurately and effectively extracting the most representative vibration modes and spatial structures from these vast amounts of data has become a significant challenge. Researchers have proposed data-driven modal decomposition techniques to extract flow field information, which have been widely applied in various fields such as signal processing and fluid dynamics. This paper addresses the application of modal decomposition methods, such as dynamic mode decomposition (DMD), Proper Orthogonal Decomposition (POD), and Spectral Proper Orthogonal Decomposition (SPOD), in cavitation feature detection in hydraulic machinery. It reviews the mathematical principles of these three algorithms and a series of improvements made by researchers since their inception. It also provides examples of the applications of these three algorithms in different hydraulic machinery. Based on this, the future development trends and possible directions for the improvement of modal decomposition methods are discussed. Full article
20 pages, 4110 KiB  
Article
Estimation of Artificial Reef Pose Based on Deep Learning
by Yifan Song, Zuli Wu, Shengmao Zhang, Weimin Quan, Yongchuang Shi, Xinquan Xiong and Penglong Li
J. Mar. Sci. Eng. 2024, 12(5), 812; https://doi.org/10.3390/jmse12050812 - 13 May 2024
Viewed by 190
Abstract
Artificial reefs are man-made structures submerged in the ocean, and the design of these structures plays a crucial role in determining their effectiveness. Precisely measuring the configuration of artificial reefs is vital for creating suitable habitats for marine organisms. This study presents a [...] Read more.
Artificial reefs are man-made structures submerged in the ocean, and the design of these structures plays a crucial role in determining their effectiveness. Precisely measuring the configuration of artificial reefs is vital for creating suitable habitats for marine organisms. This study presents a novel approach for automated detection of artificial reefs by recognizing their key features and key points. Two enhanced models, namely, YOLOv8n-PoseRFSA and YOLOv8n-PoseMSA, are introduced based on the YOLOv8n-Pose architecture. The YOLOv8n-PoseRFSA model exhibits a 2.3% increase in accuracy in pinpointing target key points compared to the baseline YOLOv8n-Pose model, showcasing notable enhancements in recall rate, mean average precision (mAP), and other evaluation metrics. In response to the demand for swift identification in mobile fishing scenarios, a YOLOv8n-PoseMSA model is proposed, leveraging MobileNetV3 to replace the backbone network structure. This model reduces the computational burden to 33% of the original model while preserving recognition accuracy and minimizing the accuracy drop. The methodology outlined in this research enables real-time monitoring of artificial reef deployments, allowing for the precise quantification of their structural characteristics, thereby significantly enhancing monitoring efficiency and convenience. By better assessing the layout of artificial reefs and their ecological impact, this approach offers valuable data support for the future planning and implementation of reef projects. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Graphical abstract

14 pages, 1642 KiB  
Article
Semidiurnal Internal Tide Interference in the Northern South China Sea
by Wenhui Wang, Jiahui Li and Xiaodong Huang
J. Mar. Sci. Eng. 2024, 12(5), 811; https://doi.org/10.3390/jmse12050811 - 13 May 2024
Viewed by 171
Abstract
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed [...] Read more.
Multiwave interference plays a crucial role in shaping the spatial variations of internal tides. Based on a combination of in situ mooring and altimeter data, interference of semidiurnal internal tides was investigated in the northern South China Sea. Mooring observations indicate the observed kinetic-to-potential energy ratio and group speed are both relatively lower than the theoretical values of mode-1 semidiurnal internal tides, indicating the presence of partly-standing waves. This is consistent with the altimeter result that the mooring was located at the antinode within the interference pattern formed by the superposition of the westward and southward semidiurnal internal tides from the Luzon Strait and the continental slope of the southern Taiwan Strait. However, the kinetic-to-potential energy ratio and group velocity were notably changed when an anticyclonic eddy passed by the mooring. By employing the ray-tracing method, we identified that mesoscale processes may induce a phase difference in the semidiurnal internal tides between the Luzon Strait and the continental slope of the southern Taiwan Strait. This alteration further leads to changes in the positions of nodes and antinodes within the interference pattern of the semidiurnal internal tides. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography—2nd Edition)
22 pages, 6700 KiB  
Article
Identification of Shipborne VHF Radio Based on Deep Learning with Feature Extraction
by Liang Chen and Jiayu Liu
J. Mar. Sci. Eng. 2024, 12(5), 810; https://doi.org/10.3390/jmse12050810 - 13 May 2024
Viewed by 209
Abstract
In the feature identification of maritime VHF radio communication signals, shipborne VHF communication technology follows the same international technical standards formulated by IMO, uses analog communication technology and uses the same communication channel in the same area, and cannot effectively achieve signal feature [...] Read more.
In the feature identification of maritime VHF radio communication signals, shipborne VHF communication technology follows the same international technical standards formulated by IMO, uses analog communication technology and uses the same communication channel in the same area, and cannot effectively achieve signal feature identification by adding feature elements in the process of signal modulation. How to effectively identify the ship using VHF radio has always been a technical difficulty in the field of ship perception. In this paper, based on the convolutional neural network, combined with the feasibility of CAM feature extraction and BiLSTM feature extraction in non-cooperative signal recognition, a deep learning recognition model of shipborne VHF radio communication signals is established, and the deep learning approach is employed to discern the features of VHF signals, thereby accomplishing the identification and classification of transmitting VHF radio stations. Several experiments are designed according to the characteristics of ship communication scenes at sea. The experimental data show that the method proposed in this paper can provide a new feasible path for ship target perception in terms of radio signal characteristics and identification. Full article
Show Figures

Figure 1

12 pages, 6709 KiB  
Article
Dynamic Testing of a Hybrid-Propellant Water-Breathing Ram Rocket in Underwater Cruise Conditions
by Sagi Dinisman, Nachum E. Eisen and Alon Gany
J. Mar. Sci. Eng. 2024, 12(5), 809; https://doi.org/10.3390/jmse12050809 - 13 May 2024
Viewed by 187
Abstract
High-speed submerged marine vehicles, such as torpedoes, traveling at velocities of an order of 100 m/s and above, require powerful propulsion to overcome the tremendous hydrodynamic drag. This paper aims to investigate a marine hybrid-propellant water-breathing ram rocket (marine ramjet or ducted rocket) [...] Read more.
High-speed submerged marine vehicles, such as torpedoes, traveling at velocities of an order of 100 m/s and above, require powerful propulsion to overcome the tremendous hydrodynamic drag. This paper aims to investigate a marine hybrid-propellant water-breathing ram rocket (marine ramjet or ducted rocket) under various underwater cruise conditions. At high underwater cruise speeds, the ram rocket outperforms regular rocket motors, substantially increasing its specific impulse and thrust. This investigation utilized a unique test facility capable of dynamically testing the marine ramjet. Over 20 dynamic experiments have been conducted, revealing the submerged motor characteristics at different cruise speeds, water-to-propellant mass ratios, and oxidizer-to-fuel mass ratios, thereby creating a performance map of the marine ramjet. The results were compared with static firing data and theoretical calculations, showing a good agreement with standard specific impulse improvement of about 55% compared to a regular hybrid rocket, reaching a maximum value of 380 s. The significant increase in performance demonstrates the potential of the water-breathing ramjet for propelling high-speed underwater vehicles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 8632 KiB  
Article
Investigation of the Impact Load Characteristics during Water Entry of Airdropped Underwater Gliders
by Xiangcheng Wu, Lihong Wu, Pengyao Yu and Xin Chang
J. Mar. Sci. Eng. 2024, 12(5), 808; https://doi.org/10.3390/jmse12050808 - 13 May 2024
Viewed by 262
Abstract
Underwater gliders have emerged as effective tools for long-term ocean exploration. Employing aircraft for launching underwater gliders could significantly expand their application. Compared to slender underwater vehicles, the distinctive wing structure of underwater gliders may endure huge impact forces when entering water, leading [...] Read more.
Underwater gliders have emerged as effective tools for long-term ocean exploration. Employing aircraft for launching underwater gliders could significantly expand their application. Compared to slender underwater vehicles, the distinctive wing structure of underwater gliders may endure huge impact forces when entering water, leading to more intricate impact load characteristics and potential wing damage. This paper employs a computational fluid dynamics approach to analyze the water entry event of an airdropped underwater glider and its impact load behavior. The results indicate that the glider impact load is enhanced prominently by the wing, and that the extent of enhancement is influenced by the entry attitude. At an entry angle of 80°, the glider exhibits the maximum impact load during different water entry angles. In addition, a larger attack angle indicates a higher glider impact load. Our present study holds significant importance for both the hydrodynamic shape design and water entry strategy control of airdropped underwater gliders. Full article
Show Figures

Figure 1

25 pages, 4906 KiB  
Article
Machine Learning-Based Anomaly Detection on Seawater Temperature Data with Oversampling
by Hangoo Kang, Dongil Kim and Sungsu Lim
J. Mar. Sci. Eng. 2024, 12(5), 807; https://doi.org/10.3390/jmse12050807 - 12 May 2024
Viewed by 337
Abstract
This study deals with a method for anomaly detection in seawater temperature data using machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023 using a Conductivity–Temperature–Depth (CTD) system in the Pacific Ocean, Indian Ocean, and Sea of Korea. The [...] Read more.
This study deals with a method for anomaly detection in seawater temperature data using machine learning methods with oversampling techniques. Data were acquired from 2017 to 2023 using a Conductivity–Temperature–Depth (CTD) system in the Pacific Ocean, Indian Ocean, and Sea of Korea. The seawater temperature data consist of 1414 profiles including 1218 normal and 196 abnormal profiles. This dataset has an imbalance problem in which the amount of abnormal data is insufficient compared to that of normal data. Therefore, we generated abnormal data with oversampling techniques using duplication, uniform random variable, Synthetic Minority Oversampling Technique (SMOTE), and autoencoder (AE) techniques for the balance of data class, and trained Interquartile Range (IQR)-based, one-class support vector machine (OCSVM), and Multi-Layer Perceptron (MLP) models with a balanced dataset for anomaly detection. In the experimental results, the F1 score of the MLP showed the best performance at 0.882 in the combination of learning data, consisting of 30% of the minor data generated by SMOTE. This result is a 71.4%-point improvement over the F1 score of the IQR-based model, which is the baseline of this study, and is 1.3%-point better than the best-performing model among the models without oversampling data. Full article
Show Figures

Figure 1

16 pages, 8678 KiB  
Article
Study on the Impact of Ammonia–Diesel Dual-Fuel Combustion on Performance of a Medium-Speed Diesel Engine
by Hua Xiao, Wenxuan Ying, Aiguo Chen, Guansheng Chen, Yang Liu, Zhaochun Lyu, Zengyin Qiao, Jun Li, Zhenwei Zhou and Xi Deng
J. Mar. Sci. Eng. 2024, 12(5), 806; https://doi.org/10.3390/jmse12050806 - 12 May 2024
Viewed by 256
Abstract
The combustion of diesel fuel in internal combustion engines faces challenges associated with excessive emissions of pollutants. A direct solution to this issue is the incorporation of cleaner energy sources. In this study, a numerical model was constructed to investigate the characteristics of [...] Read more.
The combustion of diesel fuel in internal combustion engines faces challenges associated with excessive emissions of pollutants. A direct solution to this issue is the incorporation of cleaner energy sources. In this study, a numerical model was constructed to investigate the characteristics of ammonia–diesel dual-fuel application in a medium-speed diesel engine. Effects of ammonia–diesel blending ratios on engine performance and emissions were investigated. The results indicate that for this engine model, the optimal diesel energy ratio is about 22%. When the diesel energy ratio is less than 22%, the engine’s output performance is significantly affected by the diesel energy ratio, while above 22%, the influence of the intake becomes more pronounced. When the diesel energy ratio is below 16%, the cylinder cannot reach combustion conditions. Diesel energy ratios below 22% can cause ammonia leakage. With increasing diesel energy ratio, the final emissions of carbon oxides increase. With a higher diesel energy ratio, NO emissions become lower. When the diesel fuel energy ratio exceeds 22%, the N2O emissions can be almost neglected, while below 22%, with poor combustion conditions inside the cylinder, the N2O emissions will increase. Full article
Show Figures

Figure 1

24 pages, 13787 KiB  
Article
Calibration of the Modified Mohr–Coulomb Failure Criterion and Its Application in the Study of Collision Response of Ship Hull Plate Frame Structures
by Shiye Liu, Kun Liu, Hewei Liu, Shuai Zong, Yue Lu and Chuhao Liu
J. Mar. Sci. Eng. 2024, 12(5), 805; https://doi.org/10.3390/jmse12050805 - 12 May 2024
Viewed by 285
Abstract
Within the lifecycle of a ship’s hull structure, damage due to collisions has been a focal point of research for researchers both domestically and internationally. To enhance the predictive accuracy of failure criteria in the simulation of ship hull collisions, this paper focuses [...] Read more.
Within the lifecycle of a ship’s hull structure, damage due to collisions has been a focal point of research for researchers both domestically and internationally. To enhance the predictive accuracy of failure criteria in the simulation of ship hull collisions, this paper focuses on the modified Mohr–Coulomb (MMC) failure criterion for metals, utilizing a hybrid experimental–numerical method for parameter calibration. Consideration of stress-state-dependent mesh size sensitivity has been amended, and the approach is integrated into the comprehensive nonlinear finite element software Abaqus 2020. Finite element tensile simulations were conducted to validate the effectiveness of the MMC criterion. Simulation analyses were conducted based on drop hammer collision experiments with various failure criteria and grid sizes. The comparative validation highlighted the superiority of the mesh size sensitivity-corrected MMC failure criterion. The outcomes of this research provide a foundation for assessing the structural safety of ship hulls. Full article
(This article belongs to the Special Issue Advanced Analysis of Marine Structures—Edition II)
Show Figures

Figure 1

27 pages, 28982 KiB  
Article
Characteristics and Reservoir Development Model of the Unconformity Caused by Huaiyuan Movement in Bohai Bay Basin, China: A Case Study of Chengdao-Zhuanghai Buried Hill in Jiyang Depression
by Ruijuan Liu, Guozhi Wang, Yongshi Wang, Xuefeng Hao, Feng Qin, Xianxu Fang, Wei Meng and Gang Liu
J. Mar. Sci. Eng. 2024, 12(5), 804; https://doi.org/10.3390/jmse12050804 - 11 May 2024
Viewed by 304
Abstract
It is beneficial in terms of the theoretical significance and application prospects to define the structure and reservoir development model of the lower Paleozoic unconformity in the Jiyang Depression of Bohai Bay Basin, China, for oil and gas exploration of unconformity in carbonate [...] Read more.
It is beneficial in terms of the theoretical significance and application prospects to define the structure and reservoir development model of the lower Paleozoic unconformity in the Jiyang Depression of Bohai Bay Basin, China, for oil and gas exploration of unconformity in carbonate strata. Geological and geochemical evidence shows that a regional unconformity formed during the Huaiyuan Movement in the lower Paleozoic strata of the Jiyang Depression. Along the top of the regional unconformity between the Yeli Liangjiashan Formation and Fengshan Formation, various types of karst breccia have developed, showing prominent characteristics of development and vertical karst zonation. The paleokarst zone can be divided into the vadose zone and the underflow zone, and there are apparent differences between the two zones in terms of the mode of karst activity and type of reservoir space. Primitive sedimentary microfacies, dolomitization, and supergene karstification controlled the reservoirs of the Fengshan Formation and Yeli-Liangjiashan Formation. There are significant differences in the original physical properties due to the differences in the original sedimentary microfacies. The pore development of granular dolomite of high-energy beach facies has the best reservoir performance. In the later period, the superposition of dolomitization and supergene karstification resulted in apparent differences in karst development mode, development intensity, reservoir type, and reservoir physical properties. Among them, the granular dolomite reservoir has the best physical properties and has developed a cavity-type reservoir that has a planar distribution along an unconformity surface. Full article
Show Figures

Figure 1

12 pages, 2099 KiB  
Article
To Build or Not to Build: Considerations of Coastal Development in the Ancient Southern Levant
by Gil Gambash
J. Mar. Sci. Eng. 2024, 12(5), 803; https://doi.org/10.3390/jmse12050803 - 11 May 2024
Viewed by 324
Abstract
The employment of the maritime medium by Southern Levantine societies is examined here through its engagement with coastline facilitation and the building of artificial harbors where natural bays are insufficient or non-existent. The development and availability of technologies and methods are surveyed and [...] Read more.
The employment of the maritime medium by Southern Levantine societies is examined here through its engagement with coastline facilitation and the building of artificial harbors where natural bays are insufficient or non-existent. The development and availability of technologies and methods are surveyed and analyzed vis-à-vis local choices made to adopt or to reject mediating tools such as jetties, quays, and breakwaters. The article discusses technological and conceptual innovations against the background of long-term practices, essentially in favor of natural features. Despite the early adoption of emerging technologies by such exemplars as Iron Age Atlit, Hellenistic Akko-Ptolemaïs, or Roman Caesarea, the rest of the Southern Levant did not join in, and Caesarea, Akko-Ptolemaïs, and Atlit fell short of maintaining their facilities in the long term. The solution for ships was found instead in natural anchorages and, much more dominantly, in the beaching of smaller vessels and offshore anchoring of larger ones. Full article
(This article belongs to the Special Issue Coastal Modification in Ancient Times: Echoes of the Past)
Show Figures

Figure 1

18 pages, 646 KiB  
Review
Untangling Structural and Functional Diversity of Prokaryotic Microbial Assemblage on Mangrove Pneumatophores
by Varsha Bohra, Nora Fung-Yee Tam, Luzhen Chen, Kaze King-Yip Lai, Winnie Lam, Steven Jing-Liang Xu, Hai-Chao Zhou, Tao Lang, Chak-Lam Lee and Fred Wang-Fat Lee
J. Mar. Sci. Eng. 2024, 12(5), 802; https://doi.org/10.3390/jmse12050802 - 11 May 2024
Viewed by 268
Abstract
Mangroves are important coastal wetlands along tropical and subtropical regions. Pneumatophore, a kind of aerial root, is among the prominent components of a mangrove ecosystem, which provides microhabitats for a range of prokaryotic (bacteria and cyanobacteria) microbial assemblages, whose role in the maintenance [...] Read more.
Mangroves are important coastal wetlands along tropical and subtropical regions. Pneumatophore, a kind of aerial root, is among the prominent components of a mangrove ecosystem, which provides microhabitats for a range of prokaryotic (bacteria and cyanobacteria) microbial assemblages, whose role in the maintenance of mangrove ecology often remains neglected. Very few studies are available on pneumatophore-associated prokaryotic microorganisms (PAPMs). The majority of them are related to the microscopic identification of cyanobacteria, with very limited research on the bacterial population, even though they demand more attention. Also, very scarce information is available on biotic and abiotic factors shaping the PAPMs. The objective of this review is to highlight the structural and functional importance of prokaryotic organisms associated with pneumatophores. This review begins with a brief introduction of what mangrove pneumatophores are, then focuses on the PAPMs, accentuating the breadth and depth of information gained from previous research. We further discuss how a combination of a traditional cultivable approach and a newly developed omics approach can be efficaciously employed to untangle PAPMs. This review provides updated information on PAPMs, which will intensify the visibility and necessity of pneumatophore-associated microbial community research. Full article
Show Figures

Figure 1

18 pages, 6706 KiB  
Article
Research on Modeling Method of Autonomous Underwater Vehicle Based on a Physics-Informed Neural Network
by Yifeng Zhao, Zhiqiang Hu, Weifeng Du, Lingbo Geng and Yi Yang
J. Mar. Sci. Eng. 2024, 12(5), 801; https://doi.org/10.3390/jmse12050801 - 11 May 2024
Viewed by 232
Abstract
Accurately modeling the system dynamics of autonomous underwater vehicles (AUVs) is imperative to facilitating the implementation of intelligent control. In this research, we introduce a physics-informed neural network (PINN) method to model the dynamics of AUVs by integrating dynamical equations with deep neural [...] Read more.
Accurately modeling the system dynamics of autonomous underwater vehicles (AUVs) is imperative to facilitating the implementation of intelligent control. In this research, we introduce a physics-informed neural network (PINN) method to model the dynamics of AUVs by integrating dynamical equations with deep neural networks. This integration leverages the nonlinear expressive power of deep neural networks, alongside the robust foundation of physical prior knowledge, resulting in an AUV model proficient in long-term motion forecasting. The experimental results indicate that this method is capable of effectively extracting AUV system dynamics from datasets, exhibiting strong generalization capabilities and achieving robust long-term motion prediction. Furthermore, a model predictive control method is proposed, using the learned PINN as the predictive model to accurately track the closed-loop trajectory. This research offers novel perspectives on the dynamics modeling of AUVs and has the potential to be applied in other relevant research endeavors. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 7906 KiB  
Article
Simulating Future Exposure to Coastal Urban Flooding Using a Neural Network–Markov Model
by Ayyoub Frifra, Mohamed Maanan, Mehdi Maanan and Hassan Rhinane
J. Mar. Sci. Eng. 2024, 12(5), 800; https://doi.org/10.3390/jmse12050800 - 11 May 2024
Viewed by 292
Abstract
Urbanization and climate change are two major challenges of the 21st century, and the effects of climate change, combined with the urbanization of coastal areas, increase the frequency of coastal flooding and the area exposed to it, resulting in increased risk of flooding [...] Read more.
Urbanization and climate change are two major challenges of the 21st century, and the effects of climate change, combined with the urbanization of coastal areas, increase the frequency of coastal flooding and the area exposed to it, resulting in increased risk of flooding and larger numbers of people and properties being vulnerable. An urban growth modeling system was used to simulate future growth scenarios along the coast of the Vendée region in western France, and the potential exposure to flooding with each scenario was evaluated. The model used was an Artificial Neural Network combined with a Markov Chain, using data obtained by the remote sensing and geographic information system techniques to predict three future urban growth scenarios: business as usual, environmental protection, and strategic urban planning. High-risk flood areas and future sea level projections from the Sixth Assessment Report of the Intergovernmental Panel on Climate Change were then used to assess future flood risk under each growth scenario in the study area. According to the results, the different growth scenarios are associated with different development patterns, and the strategic urban planning scenario significantly reduces the risk of flooding compared to the other two scenarios. However, the rise in sea level considerably expands the areas vulnerable to flooding. Finally, the methodology adopted can be used to prepare for the impact of climate change and develop strategies to mitigate the risk of flooding in the future. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 8874 KiB  
Article
Robust Fixed-Time Fault-Tolerant Control for USV with Prescribed Tracking Performance
by Zifu Li and Kai Lei
J. Mar. Sci. Eng. 2024, 12(5), 799; https://doi.org/10.3390/jmse12050799 - 10 May 2024
Viewed by 335
Abstract
The unmanned surface vessel (USV) is an emerging marine tool with its advantages of automation and intelligence in recent years; the good trajectory tracking performance is an important capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control scheme for a USV [...] Read more.
The unmanned surface vessel (USV) is an emerging marine tool with its advantages of automation and intelligence in recent years; the good trajectory tracking performance is an important capability. This paper proposes a novel prescribed performance fixed-time fault-tolerant control scheme for a USV with model parameter uncertainties, unknown external disturbances, and actuator faults, based on an improved fixed-time disturbances observer. Firstly, the proposed observer can not only accurately and quickly estimate and compensate the lumped nonlinearity, including actuator faults, but also reduce the chattering phenomenon by introducing the hyperbolic tangent function. Then, under the framework of prescribed performance control, a prescribed performance fault-tolerant controller is designed based on a nonsingular fixed-time sliding mode surface, which guarantees the transient and steady-state performance of a USV under actuator faults and meets the prescribed tracking performance requirements. In addition, it is proved that the closed-loop control system has fixed-time stability according to Lyapunov’s theory. Finally, upon conducting numerical simulations and comparing the proposed control scheme with the SMC and the finite-time NFTSMC scheme, it is evident that the absolute error tracking performance index of the proposed control scheme is significantly lower, thus indicating its superior accuracy. Full article
Show Figures

Figure 1

20 pages, 5779 KiB  
Article
Experimental Study on the Hot Surface Ignition Characteristics and a Predictive Model of Marine Diesel in a Ship Engine Room
by Kan Wang, Rui Qiu, Yang Ming and Hang Xu
J. Mar. Sci. Eng. 2024, 12(5), 798; https://doi.org/10.3390/jmse12050798 - 10 May 2024
Viewed by 332
Abstract
To ensure the safe protection of marine engine systems, it is necessary to explore the hot surface ignition (HSI) characteristics of marine diesel in ship environments. However, an accurate model describing these complex characteristics is still not available. In this work, a new [...] Read more.
To ensure the safe protection of marine engine systems, it is necessary to explore the hot surface ignition (HSI) characteristics of marine diesel in ship environments. However, an accurate model describing these complex characteristics is still not available. In this work, a new experimental method is proposed in order to enhance prediction performance by integrating testing data of the characteristics of HSI of marine diesel. The sensitivity of HSI is determined by various factors such as surface parameters, flow state, and the ship’s environment. According to variations in the HSI status of marine diesel in an engine room, the HSI probability is distributed in three phases. It is essential to determine whether the presence of marine diesel or surrounding items can intensify the risk of an initial fire beginning in the engine room. A vapor plume model was developed to describe the relationship between HSI height and initial specific buoyancy flux in vertical space. Further, field distribution revealed significant variation in the increase in temperature between 200 and 300 mm of vertical height, indicating a region of initial HSI. In addition, increasing surface temperature did not result in a significant change in ignition delay time. After reaching a temperature of 773 K, the ignition delay time remained around 0.48 s, regardless of how much the hot surface temperature increased. This study reveals the HSI evolution of marine diesel in a ship engine room and develops data-based predictive models for evaluating the safety of HSI parameters during initial accident assessments. The results show that the goodness of fit of the predictive models reached above 0.964. On the basis of the predicted results, the HSI characteristics of marine diesel in engine rooms could be gleaned by actively determining the parameters of risk. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

25 pages, 9279 KiB  
Article
Implementation of a Far-Field Water Quality Model for the Simulation of Trace Elements in an Eastern Mediterranean Coastal Embayment Receiving High Anthropogenic Pressure
by Aikaterini Anna Mazioti, Vassilis Kolovoyiannis, Evangelia Krasakopoulou, Elina Tragou, Vassilis Zervakis, Georgia Assimakopoulou, Alexandros Athiniotis, Vasiliki Paraskevopoulou, Alexandra Pavlidou and Christina Zeri
J. Mar. Sci. Eng. 2024, 12(5), 797; https://doi.org/10.3390/jmse12050797 - 10 May 2024
Viewed by 468
Abstract
Water quality modeling is a key element for the support of environmental protection and policymaking. The aim of this work is to describe the application of a far-field water quality model for the simulation of marine pollution occurring from heavy metals (cadmium, lead, [...] Read more.
Water quality modeling is a key element for the support of environmental protection and policymaking. The aim of this work is to describe the application of a far-field water quality model for the simulation of marine pollution occurring from heavy metals (cadmium, lead, nickel, copper, and zinc). The highly stressed marine area of the Saronikos Gulf (Aegean Sea, Eastern Mediterranean) was chosen for investigation. Major pollution sources were identified, loads were estimated, and the model was parameterized to reproduce the local seawater conditions. The distribution of the pollutants between the dissolved and particulate phases was examined. The performance of the model set-up was evaluated using field concentration measurements. The described implementation succeeded in reproducing the observed levels of pollution and therefore can be used as a baseline configuration to examine the cumulative impact of future pollution sources; for example, accidental pollution events. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop