Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”
Abstract
:1. Introduction
2. Scaffolds and Libraries for Modular Ligase Ribozymes
2.1. Design of scaffold based on a naturally occurring RNA
2.2.Design of RNA libraries bearing the P4-P6 scaffold
2.3.Design and construction of an artificial RNA scaffold
2.4.Design of RNA libraries based on the type-B RNA scaffold
3. Leaving Groups for RNA-RNA Ligation Reactions
4. Four Classes of Modular Ligase Ribozymes
4.1. The class hc ligase
4.2. The class P4-P6 ligase
4.3. The class DSL ligase
4.4. The class YFL ligase
5. Redesign of Modular Ligase Ribozymes
5.1. Redesign of modular ribozymes to split them into substrate and catalytic units
5.2. Continuous evolution of the class-DSL ligase ribozyme
5.3. The class-DSL ribozyme as a platform to generate novel RNA-RNA interacting modules
6. Perspective
Acknowledgments
References
- Campbell, I.D.; Downing, A.K. Building protein structure and function from modular units. Trends Biotechnol. 1994, 12, 168–172. [Google Scholar] [CrossRef]
- Holbrook, S.R. Structural principles from large RNAs. Annu. Rev. Biophys. 2008, 37, 445–464. [Google Scholar] [CrossRef]
- Lehnert, V.; Jaeger, L; Michel, F.; Westhof, E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem. Biol. 1996, 3, 993–1009. [Google Scholar] [CrossRef]
- Kazantsev, A.V.; Pace, N.R. Bacterial RNase P: a new view of an ancient enzyme. Nat. Rev. Microbiol. 2006, 4, 729–740. [Google Scholar] [CrossRef]
- Beaudry, A.A.; Joyce, G.F. Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron. Biochemistry 1990, 29, 6534–6539. [Google Scholar] [CrossRef]
- Ikawa, Y.; Shiraishi, H.; Inoue, T. Minimal catalytic domain of a group I self-splicing intron RNA. Nat. Struct. Biol. 2000, 7, 1032–1035. [Google Scholar] [CrossRef]
- Waugh, D.S.; Green, C.J.; Pace, N.R. The design and catalytic properties of a simplified ribonuclease P RNA. Science 1989, 244, 1569–1571. [Google Scholar]
- Green, C.J.; Rivera-León, R.; Vold, B.S. The catalytic core of RNase P. Nucleic Acids Res. 1996, 24, 1497–1503. [Google Scholar] [CrossRef]
- Mohr, G.; Caprara, M.G.; Guo, Q.; Lambowitz, A.M. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 1994, 370, 147–150. [Google Scholar] [CrossRef]
- Adams, P.L.; Stahley, M.R.; Kosek, A.B.; Wang, J.; Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nature 2004, 430, 45–50. [Google Scholar]
- Guo, F.; Gooding, A.R.; Cech, T.R. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol. Cell 2004, 16, 351–362. [Google Scholar]
- Golden, B.L.; Kim, H.; Chase, E. Crystal structure of a phage Twort group I ribozyme-product complex. Nat. Struct. Mol. Biol. 2005, 12, 82–89. [Google Scholar] [CrossRef]
- Paukstelis, P.J.; Chen, J.H.; Chase, E.; Lambowitz, A.M.; Golden, B.L. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 2008, 451, 94–97. [Google Scholar]
- Wilson, D.S.; Szostak, J.W. In vitro selection of functional nucleic acids. Annu. Rev. Biochem. 1999, 68, 611–647. [Google Scholar] [CrossRef]
- Lorsch, J.R.; Szostak, J.W. Chance and necessity in the selection of nucleic acid catalysts. Acc. Chem. Res. 1996, 29, 103–110. [Google Scholar] [CrossRef]
- Westhof, E.; Masquida, B.; Jaeger, L. RNA tectonics: towards RNA design. Fold. Des. 1996, 1, R78–R88. [Google Scholar] [CrossRef]
- Jaeger, L.; Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 2006, 16, 531–543. [Google Scholar] [CrossRef]
- Das, R.; Karanicolas, J.; Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 2010, 7, 291–294. [Google Scholar] [CrossRef]
- Jaeger, L.; Wright, M.C.; Joyce, G.F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc. Nat. Acad. Sci. USA 1999, 96, 14712–14717. [Google Scholar] [CrossRef]
- Ikawa, Y.; Tsuda, K.; Matsumura, S.; Inoue, T. De novo synthesis and development of an RNA enzyme. Proc. Nat. Acad. Sci. USA 2004, 101, 13750–13755. [Google Scholar] [CrossRef]
- Röthlisberger, D.; Khersonsky, O.; Wollacott, A.M.; Jiang, L.; DeChancie, J.; Betker, J.; Gallaher, J.L.; Althoff, E.A.; Zanghellini, A.; Dym, O.; Albeck, S.; Houk, K.N.; Tawfik, D.S.; Baker, D. Kemp elimination catalysts by computational enzyme design. Nature 2008, 453, 190–195, and references cited therein. [Google Scholar]
- Bashor, C.J.; Helman, N.C.; Yan, S.; Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008, 319, 1539–1543, and references cited therein. [Google Scholar] [CrossRef]
- Murphy, F.L.; Cech, T.R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 1993, 32, 5291–5300. [Google Scholar] [CrossRef]
- Doudna, J.A.; Cech, T.R. Self-assembly of a group I intron active site from its component tertiary structural domains. RNA 1995, 1, 36–45. [Google Scholar]
- Cate, J.H.; Gooding, A.R.; Podell, E.; Zhou, K.; Golden, B.L.; Kundrot, C.E.; Cech, T.R.; Doudna, J.A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996, 273, 1678–1685. [Google Scholar] [CrossRef]
- Doherty, E.A.; Doudna, J.A. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 1999, 38, 2982–2990. [Google Scholar] [CrossRef]
- Ikawa, Y.; Yoshioka, W.; Ohki, Y.; Shiraishi, H.; Inoue, T. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples. Genes Cells 2001, 6, 411–420. [Google Scholar] [CrossRef]
- Murphy, F.L.; Wang, Y.H.; Griffith, J.D.; Cech, T.R. Coaxially stacked RNA helices in the catalytic center of the Tetrahymena ribozyme. Science 1994, 265, 1709–1712. [Google Scholar]
- Ikawa, Y.; Shiraishi, H.; Inoue, T. A small structural element, Pc-J5/5a, plays dual roles in a group IC1 intron RNA. Biochem. Biophys. Res. Commun. 2000, 274, 259–265. [Google Scholar] [CrossRef]
- Yoshioka, W.; Ikawa, Y.; Jaeger, L.; Shiraishi, H.; Inoue, T. Generation of a catalytic module on a self-folding RNA. RNA 2004, 10, 1900–1906. [Google Scholar] [CrossRef]
- Juneau, K.; Cech, T.R. In vitro selection of RNAs with increased tertiary structure stability. RNA 1999, 5, 1119–1129. [Google Scholar] [CrossRef]
- Moore, P.B. Structural motifs in RNA. Annu. Rev. Biochem. 1999, 68, 287–300. [Google Scholar] [CrossRef]
- Leontis, N.B; Westhof, E. Analysis of RNA motifs. Curr. Opin. Struct. Biol. 2003, 13, 300–308. [Google Scholar] [CrossRef]
- Hendrix, D.K.; Brenner, S.E.; Holbrook, S.R. RNA structural motifs: building blocks of a modular biomolecule. Quart. Rev. Biophys. 2005, 38, 221–243. [Google Scholar] [CrossRef]
- Costa, M.; Michel, F. Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. 1995, 14, 1276–1285. [Google Scholar]
- Geary, C.; Baudrey, S.; Jaeger, L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res. 2008, 36, 1138–1152. [Google Scholar]
- Jaeger, L; Leontis, N.B. Tecto-RNA: One-Dimensional Self-Assembly through Tertiary Interactions. Angew. Chem. Int. Ed. Engl. 2000, 39, 2521–2524. [Google Scholar] [CrossRef]
- Ikawa, Y; Fukada, K.; Watanabe, S; Shiraishi, H; Inoue, T. Design, construction, and analysis of a novel class of self-folding RNA. Structure 2002, 10, 527–534. [Google Scholar] [CrossRef]
- Fujita, Y.; Furuta, H; Ikawa, Y. Tailoring RNA modular units on a common scaffold: a modular ribozyme with a catalytic unit for beta-nicotinamide mononucleotide-activated RNA ligation. RNA 2009, 15, 877–888. [Google Scholar] [CrossRef]
- Bartel, D.P.; Szostak, J.W. Isolation of new ribozymes from a large pool of random sequences. Science 1993, 261, 1411–1418. [Google Scholar]
- Joyce, G.F.; van der Horst, G.; Inoue, T. Catalytic activity is retained in the Tetrahymena group I intron despite removal of the large extension of element P5. Nucleic Acids Res. 1989, 17, 7879–7889. [Google Scholar] [CrossRef]
- Ikawa, Y.; Naito, D.; Aono, N.; Shiraishi, H.; Inoue, T. A conserved motif in group IC3 introns is a new class of GNRA receptor. Nucleic Acids Res. 1999, 27, 1859–1865. [Google Scholar] [CrossRef]
- Ikawa, Y.; Matsumoto, J.; Horie, S.; Inoue, T. Redesign of an artificial ligase ribozyme based on the analysis of its structural elements. RNA Biol. 2005, 2, 137–142. [Google Scholar] [CrossRef]
- Fujita, Y.; Furuta, H.; Ikawa, Y. Evolutionary optimization of a modular ligase ribozyme: a small catalytic unit and a hairpin motif masking an element that could form an inactive structure. Nucleic Acids Res. 2010, 38. In press. [Google Scholar]
- McGinness, K.E.; Joyce, G.F. In search of an RNA replicase ribozyme. Chem. Biol. 2003, 10, 5–14. [Google Scholar] [CrossRef]
- Müller, U.F. Re-creating an RNA world. Cell Mol. Life Sci. 2006, 63, 1278–1293. [Google Scholar] [CrossRef]
- Doudna, J.A.; Szostak, J.W. RNA-catalysed synthesis of complementary-strand RNA. Nature 1989, 339, 519–522. [Google Scholar] [CrossRef]
- McGinness, K.E.; Joyce, G.F. RNA-catalyzed RNA ligation on an external RNA template. Chem. Biol. 2002, 9, 297–307. [Google Scholar] [CrossRef]
- Matsumura, S.; Ohmori, R.; Saito, H.; Ikawa, Y.; Inoue, T. Coordinated control of a designed trans-acting ligase ribozyme by a loop-receptor interaction. FEBS Lett. 2009, 583, 2819–2826. [Google Scholar] [CrossRef]
- Ishikawa, J; Matsumura, S.; Jaeger, L.; Inoue, T.; Furuta, H.; Ikawa, Y. Rational optimization of the DSL ligase ribozyme with GNRA/receptor interacting modules. Arch. Biochem. Biophys. 2009, 490, 163–170. [Google Scholar] [CrossRef]
- Kuramitsu, S.; Ikawa, Y.; Inoue, T. Rational installation of an allosteric effector on a designed ribozyme. Nucleic Acids Symp. Ser. 2005, 49, 349–350. [Google Scholar] [CrossRef]
- Ishikawa, J.; Isomoto, N.; Fujita, Y.; Furuta, H.; Ikawa, Y. The transDSL ligase ribozyme can utilize various forms of modules to clamp its substrate and enzyme units. Biosci. Biotechnol. Biochem. 2010, 74, 872–874. [Google Scholar] [CrossRef]
- Voytek, S.B.; Joyce, G.F. Emergence of a fast-reacting ribozyme that is capable of undergoing continuous evolution. Proc. Nat. Acad. Sci. USA 2007, 104, 15288–15293. [Google Scholar] [CrossRef]
- Voytek, S.B.; Joyce, G.F. Niche partitioning in the coevolution of 2 distinct RNA enzymes. Proc. Nat. Acad. Sci. USA 2009, 106, 7780–7785. [Google Scholar] [CrossRef]
- Ohuchi, S.P.; Ikawa, Y.; Nakamura, Y. Selection of a novel class of RNA-RNA interaction motifs based on the ligase ribozyme with defined modular architecture. Nucleic Acids Res. 2008, 36, 3600–3607. [Google Scholar] [CrossRef]
- Sudarsan, N.; Lee, E.R.; Weinberg, Z.; Moy, R.H.; Kim, J.N.; Link, K.H.; Breaker, R.R. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 2008, 321, 411–413. [Google Scholar] [CrossRef]
- Regulski, E.E.; Moy, R.H.; Weinberg, Z.; Barrick, J.E.; Yao, Z.; Ruzzo, W.L.; Breaker, R.R. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol. Microbiol. 2008, 68, 918–932. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fujita, Y.; Ishikawa, J.; Furuta, H.; Ikawa, Y. Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”. Molecules 2010, 15, 5850-5865. https://doi.org/10.3390/molecules15095850
Fujita Y, Ishikawa J, Furuta H, Ikawa Y. Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”. Molecules. 2010; 15(9):5850-5865. https://doi.org/10.3390/molecules15095850
Chicago/Turabian StyleFujita, Yuki, Junya Ishikawa, Hiroyuki Furuta, and Yoshiya Ikawa. 2010. "Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”" Molecules 15, no. 9: 5850-5865. https://doi.org/10.3390/molecules15095850
APA StyleFujita, Y., Ishikawa, J., Furuta, H., & Ikawa, Y. (2010). Generation and Development of RNA Ligase Ribozymes with Modular Architecture Through “Design and Selection”. Molecules, 15(9), 5850-5865. https://doi.org/10.3390/molecules15095850