Previous Issue
Volume 46, April
 
 
cimb-logo

Journal Browser

Journal Browser

Curr. Issues Mol. Biol., Volume 46, Issue 5 (May 2024) – 42 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 310 KiB  
Article
Serum Levels of Zinc, Albumin, Interleukin-6 and CRP in Patients with Unipolar and Bipolar Depression: Cross Sectional Study
by Tihana Bagarić, Alma Mihaljević-Peleš, Milena Skočić Hanžek, Maja Živković, Ana Kozmar and Dunja Rogić
Curr. Issues Mol. Biol. 2024, 46(5), 4533-4550; https://doi.org/10.3390/cimb46050275 (registering DOI) - 9 May 2024
Abstract
Unipolar (UD) and bipolar depression (BDD) show a high degree of similarity in clinical presentations, which complicates the differential diagnosis of these disorders. The aim of this study was to investigate the serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), albumin (Alb), [...] Read more.
Unipolar (UD) and bipolar depression (BDD) show a high degree of similarity in clinical presentations, which complicates the differential diagnosis of these disorders. The aim of this study was to investigate the serum levels of interleukin 6 (IL-6), C-reactive protein (CRP), albumin (Alb), and zinc (Zn) in patients with UD, BDD, and healthy controls (HC). A total of 211 samples were collected: 131 patient samples (65 UD and 68 BDD) and 80 HC. The Montgomery–Asberg Depression Rating Scale (MADRS), along with the Hamilton Depression Rating Scale (HAMD-17), were administered to patient groups to evaluate symptoms. A cross-sectional study was performed to analyse the serum levels of IL-6, CRP, albumin, and zinc. The concentration of CRP was determined using the immunoturbidimetry method, zinc using the colorimetric method, and albumin using the colorimetric method with bromocresol green on the Alinity c device. IL-6 cytokine concentration in serum samples was ascertained using a commercial enzyme immunoassay, ELISA. We found no significant differences in serum concentrations of zinc, albumin, CRP, and IL-6 between the groups of patients with unipolar and bipolar depression. There was a significant statistical difference (p < 0.001) between serum levels of all investigated parameters in both groups of depressed patients in comparison with HC. Furthermore, correlations with specific items on HAMD-17; (namely, hypochondrias, work and activities, somatic symptoms-general, and weight loss) and on MADRS (concentration difficulties, lassitude) were observed in both patient groups. These findings confirm the presence of low-grade inflammation in depression, thus adding better insight into the inflammation hypothesis directed to explain the aetiology of depressive disorders. Our results do not indicate potential biomarkers for distinguishing between unipolar and bipolar depression. Full article
(This article belongs to the Special Issue Molecules at Play in Neurological Diseases 2024)
14 pages, 586 KiB  
Review
Role of NR5A1 Gene Mutations in Disorders of Sex Development: Molecular and Clinical Features
by Giovanni Luppino, Malgorzata Wasniewska, Roberto Coco, Giorgia Pepe, Letteria Anna Morabito, Alessandra Li Pomi, Domenico Corica and Tommaso Aversa
Curr. Issues Mol. Biol. 2024, 46(5), 4519-4532; https://doi.org/10.3390/cimb46050274 - 9 May 2024
Viewed by 157
Abstract
Disorders/differences of sex development (DSDs) are defined as broad, heterogenous groups of congenital conditions characterized by atypical development of genetic, gonadal, or phenotypic sex accompanied by abnormal development of internal and/or external genitalia. NR5A1 gene mutation is one of the principal genetic alterations [...] Read more.
Disorders/differences of sex development (DSDs) are defined as broad, heterogenous groups of congenital conditions characterized by atypical development of genetic, gonadal, or phenotypic sex accompanied by abnormal development of internal and/or external genitalia. NR5A1 gene mutation is one of the principal genetic alterations implicated in causing DSD. This review outlines the role of NR5A1 gene during the process of gonadal development in humans, provides an overview of the molecular and functional characteristics of NR5A1 gene, and discusses potential clinical phenotypes and additional organ diseases due to NR5A1 mutations. NR5A1 mutations were analyzed in patients with 46,XY DSD and 46,XX DSD both during the neonatal and pubertal periods. Loss of function of the NR5A1 gene causes several different phenotypes, including some associated with disease in additional organs. Clinical phenotypes may vary, even among patients carrying the same NR5A1 variant, indicating that there is no specific genotype–phenotype correlation. Genetic tests are crucial diagnostic tools that should be used early in the diagnostic pathway, as early as the neonatal period, when gonadal dysgenesis is the main manifestation of NR5A1 mutation. NR5A1 gene mutations could be mainly associated with amenorrhea, ovarian failure, hypogonadism, and infertility during puberty. Fertility preservation techniques should be considered as early as possible. Full article
(This article belongs to the Special Issue Complex Molecular Mechanism of Monogenic Diseases 2.0)
Show Figures

Figure 1

13 pages, 6416 KiB  
Article
Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI
by Roxana Iacob, Matei Palimariciuc, Tudor Florea, Cosmin Vasilica Pricope, Cristina Mariana Uritu, Bogdan Ionel Tamba, Teodor Marian Ionescu, Cati Raluca Stolniceanu, Wael Jalloul, Romeo Petru Dobrin, Lucian Hritcu, Oana Cioanca, Monica Hancianu, Alexandru Gratian Naum and Cipriana Stefanescu
Curr. Issues Mol. Biol. 2024, 46(5), 4506-4518; https://doi.org/10.3390/cimb46050273 - 9 May 2024
Viewed by 141
Abstract
The memory-enhancing activity of Matricaria chamomilla hydroalcoholic extract (MCE) is already being investigated by behavioral and biochemical assays in scopolamine-induced amnesia rat models, while the effects of scopolamine (Sco) on cerebral glucose metabolism are examined as well. Nevertheless, the study of the metabolic [...] Read more.
The memory-enhancing activity of Matricaria chamomilla hydroalcoholic extract (MCE) is already being investigated by behavioral and biochemical assays in scopolamine-induced amnesia rat models, while the effects of scopolamine (Sco) on cerebral glucose metabolism are examined as well. Nevertheless, the study of the metabolic profile determined by an enriched MCE has not been performed before. The present experiments compared metabolic quantification in characteristic cerebral regions and behavioral characteristics for normal, only diseased, diseased, and MCE- vs. Galantamine (Gal)-treated Wistar rats. A memory deficit was induced by four weeks of daily intraperitoneal Sco injection. Starting on the eighth day, the treatment was intraperitoneally administered 30 min after Sco injection for a period of three weeks. The memory assessment comprised three maze tests. Glucose metabolism was quantified after the 18F-FDG PET examination. The right amygdala, piriform, and entorhinal cortex showed the highest differential radiopharmaceutical uptake of the 50 regions analyzed. Rats treated with MCE show metabolic similarity with normal rats, while the Gal-treated group shows features closer to the diseased group. Behavioral assessments evidenced a less anxious status and a better locomotor activity manifested by the MCE-treated group compared to the Gal-treated group. These findings prove evident metabolic ameliorative qualities of MCE over Gal classic treatment, suggesting that the extract could be a potent neuropharmacological agent against amnesia. Full article
Show Figures

Figure 1

17 pages, 2466 KiB  
Article
A Novel Approach Using Reduced Graphene Oxide for the Detection of ALP and RUNX2 Osteogenic Biomarkers
by Elena Alina Chiticaru and Mariana Ioniță
Curr. Issues Mol. Biol. 2024, 46(5), 4489-4505; https://doi.org/10.3390/cimb46050272 - 8 May 2024
Viewed by 272
Abstract
In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and [...] Read more.
In this work, we propose a new technique involving the modification of commercial screen-printed carbon electrodes with electrochemically reduced graphene oxide to serve as the starting point of a future electrochemical biosensor for the detection of two osteogenic biomarkers: alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2). The electrodes were characterized after each modification by cyclic voltammetry and electrochemical impedance spectroscopy, showing the appropriate electrochemical characteristics for each modification type. The results obtained from scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and contact angle measurements are well correlated with each other, demonstrating the successful modification of the electrodes with graphene oxide and its subsequent reduction. The bioreceptors were immobilized on the electrodes by physical adsorption, which was confirmed by electrochemical methods, structural characterization, and contact angle measurements. Finally, the functionalized electrodes were incubated with the specific target analytes and the detection relied on monitoring the electrochemical changes occurring after the hybridization process. Our results indicated that the pilot platform has the ability to detect the two biomarkers up to 1 nM, with increased sensitivity observed for RUNX2, suggesting that after further optimizations, it has a high potential to be employed as a future biosensor. Full article
(This article belongs to the Special Issue Molecular Imaging of Cells and Tissues)
18 pages, 1306 KiB  
Review
Bridging the Gap: Harnessing Plant Bioactive Molecules to Target Gut Microbiome Dysfunctions in Amyotrophic Lateral Sclerosis
by Mirela Pribac, Anca Motataianu, Sebastian Andone, Elena Mardale and Sebastian Nemeth
Curr. Issues Mol. Biol. 2024, 46(5), 4471-4488; https://doi.org/10.3390/cimb46050271 - 8 May 2024
Viewed by 348
Abstract
The correlation between neurodegenerative diseases and the gut microbiome is increasingly evident, with amyotrophic lateral sclerosis (ALS) being particularly notable for its severity and lack of therapeutic options. The gut microbiota, implicated in the pathogenesis and development of ALS, plays a crucial role [...] Read more.
The correlation between neurodegenerative diseases and the gut microbiome is increasingly evident, with amyotrophic lateral sclerosis (ALS) being particularly notable for its severity and lack of therapeutic options. The gut microbiota, implicated in the pathogenesis and development of ALS, plays a crucial role in the disease. Bioactive plant molecules, specifically volatile compounds in essential oils, offer a promising therapeutic avenue due to their anti-inflammatory properties and gut-modulating effects. Our narrative review aimed to identify microbiota-associated bacteria in ALS and analyze the benefits of administering bioactive plant molecules as much-needed therapeutic options in the management of this disease. A comprehensive search of PubMed database articles published before December 2023, encompassing research on cell, human, and animal ALS models, was conducted. After selecting, analyzing, and discussing key articles, bacteria linked to ALS pathogenesis and physiopathology were identified. Notably, positively highlighted bacteria included Akkermansia muciniphila (Verrucomicrobia phylum), Faecalibacterium prausnitzii, and Butyrivibrio spp. (Firmicutes phylum). Conversely, members of the Escherichia coli spp. (Proteobacteria phylum) and Ruminococcus spp. (Firmicutes phylum) stood out negatively in respect to ALS development. These bacteria were associated with molecular changes linked to ALS pathogenesis and evolution. Bioactive plant molecules can be directly associated with improvements in the microbiome, due to their role in reducing inflammation and oxidative stress, emerging as one of the most promising natural agents for enriching present-day ALS treatments. Full article
(This article belongs to the Special Issue Aging and Oxidative Stress in Nervous System)
Show Figures

Figure 1

19 pages, 12525 KiB  
Article
Black Chokeberry (Aronia melanocarpa) Juice Supplementation Improves Oxidative Stress and Aging Markers in Testis of Aged Rats
by Elena Daskalova, Mina Pencheva and Petko Denev
Curr. Issues Mol. Biol. 2024, 46(5), 4452-4470; https://doi.org/10.3390/cimb46050270 - 8 May 2024
Viewed by 232
Abstract
Spermatogenesis is a process that continues until the end of an individual’s life, although with reduced activity with advancing age. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases observed in aged testes. The use [...] Read more.
Spermatogenesis is a process that continues until the end of an individual’s life, although with reduced activity with advancing age. Inflammation, oxidation, and apoptosis are events considered as predictors of pathogenesis and the development of age-related diseases observed in aged testes. The use of natural compounds with antioxidant and anti-inflammatory properties has a beneficial effect on the inflammatory and oxidative status of the aged testis. The aim of this study was to determine the effect of supplementation with antioxidant-rich black chokeberry (Aronia melanocarpa) juice on several markers of oxidative stress and aging in rat testis. In total, 24 male Wistar rats were divided into three experimental groups: young controls aged 2 months, old controls aged 27 months, and 27-month-old rats supplemented with black chokeberry juice at a dose of 10 mL/kg for 3 months. A. melanocarpa juice supplementation led to reduced oxidative stress, manifested by increased immunoexpression of nNOS, eNOS, and MAS1 in the seminiferous tubules and in the Leydig cells. The morphometrically determined tubule structure data showed no significant differences between the three groups. However, the intensity of the immunoreaction for TRK-C and NT3 in Leydig cells was demonstrably higher in the supplemented old animals compared with the old controls. There was a significantly higher number of blood vessels around the seminiferous tubules in the supplemented animals compared to the old controls. These data indicate that supplementation with A. melanocarpa juice slows down aging processes in the testis and preserves the functional activity of Leydig cells. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products)
15 pages, 1342 KiB  
Article
SCN1A—Characterization of the Gene’s Variants in the Polish Cohort of Patients with Dravet Syndrome: One Center Experience
by Elżbieta Stawicka, Anita Zielińska, Paulina Górka-Skoczylas, Karolina Kanabus, Renata Tataj, Tomasz Mazurczak and Dorota Hoffman-Zacharska
Curr. Issues Mol. Biol. 2024, 46(5), 4437-4451; https://doi.org/10.3390/cimb46050269 - 7 May 2024
Viewed by 177
Abstract
The aim of this study was to characterize the genotype and phenotype heterogeneity of patients with SCN1A gene mutations in the Polish population, fulfilling the criteria for the diagnosis of Dravet syndrome (DRVT). Particularly important was the analysis of the clinical course, the [...] Read more.
The aim of this study was to characterize the genotype and phenotype heterogeneity of patients with SCN1A gene mutations in the Polish population, fulfilling the criteria for the diagnosis of Dravet syndrome (DRVT). Particularly important was the analysis of the clinical course, the type of epileptic seizures and the co-occurrence of additional features such as intellectual disability, autism or neurological symptoms such as ataxia or gait disturbances. Based on their results and the available literature, the authors discuss potential predictors for DRVT. Identifying these early symptoms has important clinical significance, affecting the course and disease prognosis. 50 patients of the Pediatric Neurology Clinic of the Institute of Mother and Child in Warsaw clinically diagnosed with DRVT and carriers of SCN1A pathogenic variants were included. Clinical data were retrospectively collected from caregivers and available medical records. Patients in the study group did not differ significantly in parameters such as type of first seizure and typical epileptic seizures from those described in other studies. The age of onset of the first epileptic seizure was 2–9 months. The co-occurrence of intellectual disability was confirmed in 71% of patients and autism in 18%. The study did not show a correlation between genotype and phenotype, considering the severity of the disease course, clinical symptoms, response to treatment, the presence of intellectual disability, autism symptoms or ataxia. From the clinical course, a significant problem was the differentiation between complex febrile convulsions and symptoms of DRVT. The authors suggest that parameters such as the age of the first seizure, less than one year of age, the onset of a seizure up to 72 h after vaccination and the presence of more than two features of complex febrile seizures are more typical of DRVT, which should translate into adequate diagnostic and clinical management. The substantial decrease in the age of genetic verification of the diagnosis, as well as the decline in the use of sodium channel inhibitors, underscores the growing attention of pediatric neurologists in Poland to the diagnosis of DRVT. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 5048 KiB  
Article
An Accurate Representation of the Number of bZIP Transcription Factors in the Triticum aestivum (Wheat) Genome and the Regulation of Functional Genes during Salt Stress
by Xin Liu, Selvakumar Sukumaran, Esteri Viitanen, Nupur Naik, Sameer Hassan and Henrik Aronsson
Curr. Issues Mol. Biol. 2024, 46(5), 4417-4436; https://doi.org/10.3390/cimb46050268 - 7 May 2024
Viewed by 235
Abstract
Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many [...] Read more.
Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants. Transcription factors (TFs) within crop plants represent a key to understanding salt tolerance, as these proteins play important roles in the regulation of functional genes linked to salt stress. The basic leucine zipper (bZIP) TF has a well-documented role in the regulation of salt tolerance. To better understand how bZIP TFs are linked to salt tolerance, we performed a genome-wide analysis in wheat using the Chinese spring wheat genome, which has been assembled by the International Wheat Genome Sequencing Consortium. We identified 89 additional bZIP gene sequences, which brings the total of bZIP gene sequences in wheat to 237. The majority of these 237 sequences included a single bZIP protein domain; however, different combinations of five other domains also exist. The bZIP proteins are divided into ten subfamily groups. Using an in silico analysis, we identified five bZIP genes (ABF2, ABF4, ABI5, EMBP1, and VIP1) that were involved in regulating salt stress. By scrutinizing the binding properties to the 2000 bp upstream region, we identified putative functional genes under the regulation of these TFs. Expression analyses of plant tissue that had been treated with or without 100 mM NaCl revealed variable patterns between the TFs and functional genes. For example, an increased expression of ABF4 was correlated with an increased expression of the corresponding functional genes in both root and shoot tissues, whereas VIP1 downregulation in root tissues strongly decreased the expression of two functional genes. Identifying strategies to sustain the expression of the functional genes described in this study could enhance wheat’s salt tolerance. Full article
(This article belongs to the Special Issue Advanced Research in Wheat Genome and Breeding)
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Algal Oil Mitigates Sodium Taurocholate-Induced Pancreatitis by Alleviating Calcium Overload, Oxidative Stress, and NF-κB Activation in Pancreatic Acinar Cells
by Yi Fang, Sung-Yen Lin, Chung-Hwan Chen and Hui-Chen Lo
Curr. Issues Mol. Biol. 2024, 46(5), 4403-4416; https://doi.org/10.3390/cimb46050267 - 7 May 2024
Viewed by 253
Abstract
Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of [...] Read more.
Acute pancreatitis (AP) is characterized by elevated intracellular Ca2+ concentrations, mitochondrial dysfunction, and oxidative stress in pancreatic acinar cells. Algal oil (AO) has demonstrated antioxidant and anti-inflammatory properties. This study aims to explore the effects of algal oil on the microenvironment of AP. Rat pancreatic acinar AR42J cells were pretreated with AO containing 0, 50, 100, or 150 μM of docosahexaenoic acid (DHA) 2 h prior to AP induction using sodium taurocholate (STC). After 1 h of STC treatment, AR42J cells exhibited a significant increase in intracellular Ca2+ concentration and the production of amylase, lipase, reactive oxygen species, and pro-inflammatory mediators, including tumor necrosis factor-α and interleukin-6. These STC-induced increases were markedly reduced in cells pretreated with AO. In comparison to cells without AO, those treated with a high dose of AO before STC exposure demonstrated a significant increase in mitochondrial membrane potential and a decrease in lipid peroxidation. Furthermore, STC-activated nuclear factor kappa-B (NF-κB) was attenuated in AO-pretreated cells, as evidenced by a significant decrease in activated NF-κB. In conclusion, AO may prevent damage to pancreatic acinar cells by alleviating intracellular Ca2+ overload, mitigating mitochondrial dysfunction, reducing oxidative stress, and attenuating NF-κB-targeted inflammation. Full article
(This article belongs to the Special Issue Molecular Research on Free Radicals and Oxidative Stress)
Show Figures

Figure 1

24 pages, 1103 KiB  
Review
Modulation of Oxidative Stress and Neuroinflammation by Cannabidiol (CBD): Promising Targets for the Treatment of Alzheimer’s Disease
by Jordan P. Hickey, Andrila E. Collins, Mackayla L. Nelson, Helen Chen and Bettina E. Kalisch
Curr. Issues Mol. Biol. 2024, 46(5), 4379-4402; https://doi.org/10.3390/cimb46050266 - 6 May 2024
Viewed by 314
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the most common form of dementia globally. Although the direct cause of AD remains under debate, neuroinflammation and oxidative stress are critical components in its pathogenesis and progression. As a result, compounds like cannabidiol (CBD) are being increasingly investigated for their ability to provide antioxidant and anti-inflammatory neuroprotection. CBD is the primary non-psychotropic phytocannabinoid derived from Cannabis sativa. It has been found to provide beneficial outcomes in a variety of medical conditions and is gaining increasing attention for its potential therapeutic application in AD. CBD is not psychoactive and its lipophilic nature allows its rapid distribution throughout the body, including across the blood–brain barrier (BBB). CBD also possesses anti-inflammatory, antioxidant, and neuroprotective properties, making it a viable candidate for AD treatment. This review outlines CBD’s mechanism of action, the role of oxidative stress and neuroinflammation in AD, and the effectiveness and limitations of CBD in preclinical models of AD. Full article
(This article belongs to the Special Issue Advanced Research in Neuroinflammation)
21 pages, 1384 KiB  
Review
Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming
by Maria Felicia Faienza, Flavia Urbano, Federico Anaclerio, Luigi Antonio Moscogiuri, Fani Konstantinidou, Liborio Stuppia and Valentina Gatta
Curr. Issues Mol. Biol. 2024, 46(5), 4358-4378; https://doi.org/10.3390/cimb46050265 - 6 May 2024
Viewed by 238
Abstract
Alterations in a mother’s metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring’s childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal [...] Read more.
Alterations in a mother’s metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring’s childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother’s gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring’s metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults. Full article
(This article belongs to the Section Molecular Medicine)
21 pages, 26614 KiB  
Article
Effect of the 35 nm and 70 nm Size Exclusion Chromatography (SEC) Column and Plasma Storage Time on Separated Extracellular Vesicles
by Bernadett György, Krisztina Pálóczi, Mirjam Balbisi, Lilla Turiák, László Drahos, Tamás Visnovitz, Erika Koltai and Zsolt Radák
Curr. Issues Mol. Biol. 2024, 46(5), 4337-4357; https://doi.org/10.3390/cimb46050264 - 6 May 2024
Viewed by 381
Abstract
The technical difficulty of separating extracellular vesicles (EVs) from plasma proteins in human blood presents a significant hurdle in EV research, particularly during nano ultra-high-performance liquid chromatography–tandem mass spectrometric (UHPLC-MS/MS) analysis, where detecting “vesicular” proteins among abundant plasma proteins is challenging. Standardisation is [...] Read more.
The technical difficulty of separating extracellular vesicles (EVs) from plasma proteins in human blood presents a significant hurdle in EV research, particularly during nano ultra-high-performance liquid chromatography–tandem mass spectrometric (UHPLC-MS/MS) analysis, where detecting “vesicular” proteins among abundant plasma proteins is challenging. Standardisation is a pressing issue in EV research, prompting collaborative global efforts to address it. While the MISEV guidelines offer valuable recommendations, unanswered questions remain, particularly regarding sample storage. We compared size exclusion chromatography (SEC) columns with pore sizes of 35 nm and 70 nm to identify fractions with minimal contaminating proteins and the highest concentration of small EVs (sEVs). Following column selection, we explored potential differences in the quality and quantity of sEVs isolated from platelet-free plasma (PFP) after long-term storage at −80 °C (>2.5 years) compared to freshly drawn blood. Our methodologically rigorous study indicates that prolonged storage, under correct storage and processing conditions, does not compromise sEV quality. Both columns effectively isolated vesicles, with the 70 nm column exhibiting a higher abundance of “vesicular” proteins. We propose a relatively rapid and moderately efficient protocol for obtaining a comparatively pure sEV fraction from plasma, facilitating sEV processing in clinical trials. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Expression of G2019S LRRK2 in Rat Primary Astrocytes Mediates Neurotoxicity and Alters the Dopamine Synthesis Pathway in N27 Cells via Astrocytic Proinflammatory Cytokines and Neurotrophic Factors
by Dong Hwan Ho, Hyejung Kim, Daleum Nam, Mi Kyoung Seo, Sung Woo Park and Ilhong Son
Curr. Issues Mol. Biol. 2024, 46(5), 4324-4336; https://doi.org/10.3390/cimb46050263 - 6 May 2024
Viewed by 300
Abstract
Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson’s disease (PD). LRRK2 is expressed in neurons, microglia, and [...] Read more.
Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson’s disease (PD). LRRK2 is expressed in neurons, microglia, and astrocytes and plays diverse roles in these cell types. We aimed to determine the effects of mutant human G2019S-LRRK2 (GS-hLRRK2) in rat primary astrocytes (rASTROs). Transfection with GS-hLRRK2 significantly decreased cell viability compared to transfection with the vector and wild-type human LRRK2 (WT-hLRRK2). GS-hLRRK2 expression significantly reduced the levels of nerve growth factor and increased the levels of proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) compared to the vector and WT-hLRRK2 expression. Furthermore, GS-hLRRK2 expression in rASTROs promoted astrogliosis, which was characterized by increased expression of glial fibrillary acidic protein and vimentin. Treatment with the conditioned medium of G2019S LRRK2-expressing rASTROs decreased N27 cell viability compared to treatment with that of WT-hLRRK2-expressing rASTROs. Consequently, the regulation of the dopamine synthesis pathway was affected in N27 cells, thereby leading to altered levels of tyrosine hydroxylase, dopamine transporter, Nurr1, and dopamine release. Overall, the G2019S LRRK2 mutation disrupted astrocyte function, thereby aggravating PD progression. Full article
(This article belongs to the Special Issue Advanced Research in Neuroinflammation)
Show Figures

Figure 1

15 pages, 639 KiB  
Article
Assessing Chitinases and Neurofilament Light Chain as Biomarkers for Adult-Onset Leukodystrophies
by Paulo de Lima Serrano, Thaiane de Paulo Varollo Rodrigues, Leslyê Donato Pinto, Indiara Correia Pereira, Igor Braga Farias, Renan Brandão Rambaldi Cavalheiro, Patrícia Marques Mendes, Kaliny Oliveira Peixoto, João Paulo Barile, Daniel Delgado Seneor, Eduardo Gleitzmann Correa Silva, Acary Souza Bulle Oliveira, Wladimir Bocca Vieira de Rezende Pinto and Paulo Sgobbi
Curr. Issues Mol. Biol. 2024, 46(5), 4309-4323; https://doi.org/10.3390/cimb46050262 - 5 May 2024
Viewed by 281
Abstract
Leukodystrophies represent a large and complex group of inherited disorders affecting the white matter of the central nervous system. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare leukodystrophy which still needs the proper identification of diagnostic, prognostic, and monitoring [...] Read more.
Leukodystrophies represent a large and complex group of inherited disorders affecting the white matter of the central nervous system. Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a rare leukodystrophy which still needs the proper identification of diagnostic, prognostic, and monitoring biomarkers. The aim of this study was to determine the diagnostic and prognostic value of chitinases and neurofilament light chain as biomarkers for ALSP. A cross-sectional study was performed to analyze cerebrospinal fluid levels of chitinases (chitotriosidase and chitinase 3-like 2) and neurofilament light chain in five different groups: (i) normal health individuals; (ii) patients with definitive diagnosis of ALSP and genetic confirmation; (iii) asymptomatic patients with CSF1R variants; (iv) patients with other adult-onset leukodystrophies; and (v) patients with amyotrophic lateral sclerosis (external control group). Chitinase levels showed a statistical correlation with clinical assessment parameters in ALSP patients. Chitinase levels were also distinct between ALSP and the other leukodystrophies. Significant differences were noted in the levels of chitinases and neurofilament light chain comparing symptomatic (ALSP) and asymptomatic individuals with CSF1R variants. This study is the first to establish chitinases as a potential biomarker for ALSP and confirms neurofilament light chain as a good biomarker for primary microgliopathies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

23 pages, 7534 KiB  
Review
Insights into the Activation of Unfolded Protein Response Mechanism during Coronavirus Infection
by Panagiotis Keramidas, Maria Pitou, Eleni Papachristou and Theodora Choli-Papadopoulou
Curr. Issues Mol. Biol. 2024, 46(5), 4286-4308; https://doi.org/10.3390/cimb46050261 - 5 May 2024
Viewed by 262
Abstract
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells [...] Read more.
Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER’s ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy. Full article
(This article belongs to the Special Issue Research on Virus-Induced Cellular and Molecular Responses)
Show Figures

Figure 1

15 pages, 1397 KiB  
Review
The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review
by Andrea Portacci, Ilaria Iorillo, Leonardo Maselli, Monica Amendolara, Vitaliano Nicola Quaranta, Silvano Dragonieri and Giovanna Elisiana Carpagnano
Curr. Issues Mol. Biol. 2024, 46(5), 4271-4285; https://doi.org/10.3390/cimb46050260 - 3 May 2024
Viewed by 405
Abstract
Galectins are a group of β-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From [...] Read more.
Galectins are a group of β-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From this standpoint, an increasing body of evidence have recognized galectins as potential biomarkers involved in several aspects of asthma pathophysiology. Among them, galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-10 (Gal-10) are the most extensively studied in human and animal asthma models. These galectins can affect T helper 2 (Th2) and non-Th2 inflammation, mucus production, airway responsiveness, and bronchial remodeling. Nevertheless, while higher Gal-3 and Gal-9 concentrations are associated with a stronger degree of Th-2 phlogosis, Gal-10, which forms Charcot–Leyden Crystals (CLCs), correlates with sputum eosinophilic count, interleukin-5 (IL-5) production, and immunoglobulin E (IgE) secretion. Finally, several galectins have shown potential in clinical response monitoring after inhaled corticosteroids (ICS) and biologic therapies, confirming their potential role as reliable biomarkers in patients with asthma. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 4246 KiB  
Article
Membrane Association of the Short Transglutaminase Type 2 Splice Variant (TG2-S) Modulates Cisplatin Resistance in a Human Hepatocellular Carcinoma (HepG2) Cell Line
by Dipak D. Meshram, Cristina Fanutti, Claire V. S. Pike and Peter J. Coussons
Curr. Issues Mol. Biol. 2024, 46(5), 4251-4270; https://doi.org/10.3390/cimb46050259 - 2 May 2024
Viewed by 286
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able [...] Read more.
Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine. Further analysis revealed that, whereas the full-length TG2 isoform (TG2-L) was almost completely cytoplasmic in its distribution, the majority of the short TG2 isoform (TG2-S) was membrane-associated in both parental and chemoresistant HepG2 cells. Following the induction of cisplatin toxicity in non-chemoresistant parental cells, TG2-S, together with cisplatin, quickly relocated to the cytosolic fraction. Conversely, no cytosolic relocalisation of TG2-S or nuclear accumulation cisplatin was observed, following the identical treatment of chemoresistant cells, where TG2-S remained predominantly membrane-associated. This suggests that the deficient subcellular relocalisation of TG2-S from membranous structures into the cytoplasm may limit the apoptic response to cisplatin toxicity in chemoresistant cells. Structural analysis of TG2 revealed the presence of binding motifs for interaction of TG2-S with the membrane scaffold protein LC3/LC3 homologue that could contribute to a novel mechanism of chemotherapeutic resistance in HepG2 cells Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 1552 KiB  
Review
Salivary Diagnosis of Dental Caries: A Systematic Review
by Rita Antonelli, Valentina Massei, Elena Ferrari, Mariana Gallo, Thelma A. Pertinhez, Paolo Vescovi, Silvia Pizzi and Marco Meleti
Curr. Issues Mol. Biol. 2024, 46(5), 4234-4250; https://doi.org/10.3390/cimb46050258 - 2 May 2024
Viewed by 275
Abstract
The activity of dental caries, combined with its multifactorial etiology, alters salivary molecule composition. The present systematic review was developed to answer the following question: “Are salivary biomarkers reliable for diagnosis of dental caries?”. Following the “Preferred Reporting Item for Systematic Reviews and [...] Read more.
The activity of dental caries, combined with its multifactorial etiology, alters salivary molecule composition. The present systematic review was developed to answer the following question: “Are salivary biomarkers reliable for diagnosis of dental caries?”. Following the “Preferred Reporting Item for Systematic Reviews and Meta-analysis” (PRISMA) guidelines, the review was conducted using multiple database research (Medline, Web of Science, and Scopus). Studies performed on healthy subjects with and without dental caries and providing detailed information concerning the clinical diagnosis of caries (Decayed, Missing, Filled Teeth-DMFT and International Caries Detection and Assessment System-ICDAS criteria) were included. The quality assessment was performed following a modified version of the Joanna Briggs Institute Prevalence Critical Appraisal Checklist. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO, ID: CRD42022304505). Sixteen papers were included in the review. All studies reported statistically significant differences in the concentration of salivary molecules between subjects with and without caries (p < 0.05). Proteins were the most investigated molecules, in particular alpha-amylase and mucins. Some studies present a risk of bias, such as identifying confounding factors and clearly defining the source population. Nevertheless, the 16 papers were judged to be of moderate to high quality. There is evidence that some salivary compounds studied in this review could play an important diagnostic role for dental caries, such as salivary mucins, glycoproteins (sCD14), interleukins (IL-2RA, 4,-13), urease, carbonic anhydrase VI, and urea. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

31 pages, 1331 KiB  
Review
A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health
by Zachary Shea, Matheus Ogando do Granja, Elizabeth B. Fletcher, Yaojie Zheng, Patrick Bewick, Zhibo Wang, William M. Singer and Bo Zhang
Curr. Issues Mol. Biol. 2024, 46(5), 4203-4233; https://doi.org/10.3390/cimb46050257 - 1 May 2024
Viewed by 269
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary [...] Read more.
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources—soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security. Full article
Show Figures

Figure 1

17 pages, 1432 KiB  
Review
Mind over Microplastics: Exploring Microplastic-Induced Gut Disruption and Gut-Brain-Axis Consequences
by Charlotte E. Sofield, Ryan S. Anderton and Anastazja M. Gorecki
Curr. Issues Mol. Biol. 2024, 46(5), 4186-4202; https://doi.org/10.3390/cimb46050256 - 30 Apr 2024
Viewed by 299
Abstract
As environmental plastic waste degrades, it creates an abundance of diverse microplastic particles. Consequently, microplastics contaminate drinking water and many staple food products, meaning the oral ingestion of microplastics is an important exposure route for the human population. Microplastics have long been considered [...] Read more.
As environmental plastic waste degrades, it creates an abundance of diverse microplastic particles. Consequently, microplastics contaminate drinking water and many staple food products, meaning the oral ingestion of microplastics is an important exposure route for the human population. Microplastics have long been considered inert, however their ability to promote microbial dysbiosis as well as gut inflammation and dysfunction suggests they are more noxious than first thought. More alarmingly, there is evidence for microplastics permeating from the gut throughout the body, with adverse effects on the immune and nervous systems. Coupled with the now-accepted role of the gut-brain axis in neurodegeneration, these findings support the hypothesis that this ubiquitous environmental pollutant is contributing to the rising incidence of neurodegenerative diseases, like Alzheimer’s disease and Parkinson’s disease. This comprehensive narrative review explores the consequences of oral microplastic exposure on the gut-brain-axis by considering current evidence for gastrointestinal uptake and disruption, immune activation, translocation throughout the body, and neurological effects. As microplastics are now a permanent feature of the global environment, understanding their effects on the gut, brain, and whole body will facilitate critical further research and inform policy changes aimed at reducing any adverse consequences. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

39 pages, 1459 KiB  
Review
Recent Therapeutic Gene Editing Applications to Genetic Disorders
by Eric Deneault
Curr. Issues Mol. Biol. 2024, 46(5), 4147-4185; https://doi.org/10.3390/cimb46050255 - 30 Apr 2024
Viewed by 476
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a [...] Read more.
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks. Full article
Show Figures

Figure 1

14 pages, 7061 KiB  
Article
Colorectal Cancer Detection via Metabolites and Machine Learning
by Rachel Yang, Igor F. Tsigelny, Santosh Kesari and Valentina L. Kouznetsova
Curr. Issues Mol. Biol. 2024, 46(5), 4133-4146; https://doi.org/10.3390/cimb46050254 - 30 Apr 2024
Viewed by 217
Abstract
Today, colorectal cancer (CRC) diagnosis is performed using colonoscopy, which is the current, most effective screening method. However, colonoscopy poses risks of harm to the patient and is an invasive process. Recent research has proven metabolomics as a potential, non-invasive detection method, which [...] Read more.
Today, colorectal cancer (CRC) diagnosis is performed using colonoscopy, which is the current, most effective screening method. However, colonoscopy poses risks of harm to the patient and is an invasive process. Recent research has proven metabolomics as a potential, non-invasive detection method, which can use identified biomarkers to detect potential cancer in a patient’s body. The aim of this study is to develop a machine-learning (ML) model based on chemical descriptors that will recognize CRC-associated metabolites. We selected a set of metabolites found as the biomarkers of CRC, confirmed that they participate in cancer-related pathways, and used them for training a machine-learning model for the diagnostics of CRC. Using a set of selective metabolites and random compounds, we developed a range of ML models. The best performing ML model trained on Stage 0–2 CRC metabolite data predicted a metabolite class with 89.55% accuracy. The best performing ML model trained on Stage 3–4 CRC metabolite data predicted a metabolite class with 95.21% accuracy. Lastly, the best-performing ML model trained on Stage 0–4 CRC metabolite data predicted a metabolite class with 93.04% accuracy. These models were then tested on independent datasets, including random and unrelated-disease metabolites. In addition, six pathways related to these CRC metabolites were also distinguished: aminoacyl-tRNA biosynthesis; glyoxylate and dicarboxylate metabolism; glycine, serine, and threonine metabolism; phenylalanine, tyrosine, and tryptophan biosynthesis; arginine biosynthesis; and alanine, aspartate, and glutamate metabolism. Thus, in this research study, we created machine-learning models based on metabolite-related descriptors that may be helpful in developing a non-invasive diagnosis method for CRC. Full article
Show Figures

Figure 1

14 pages, 3918 KiB  
Article
Structural and Dynamic Features of the Recognition of 8-oxoguanosine Paired with an 8-oxoG-clamp by Human 8-oxoguanine-DNA Glycosylase
by Maria V. Lukina, Polina V. Zhdanova and Vladimir V. Koval
Curr. Issues Mol. Biol. 2024, 46(5), 4119-4132; https://doi.org/10.3390/cimb46050253 - 29 Apr 2024
Viewed by 273
Abstract
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in [...] Read more.
8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme’s active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar–phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme–substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme–substrate complex. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Health and Diseases)
Show Figures

Figure 1

13 pages, 266 KiB  
Article
Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients
by Yulia S. Koshevaya, Mariia E. Turkunova, Anastasia O. Vechkasova, Elena A. Serebryakova, Maxim Yu. Donnikov, Svyatoslav I. Papanov, Alexander N. Chernov, Lev N. Kolbasin, Lyudmila V. Kovalenko, Andrey S. Glotov and Oleg S. Glotov
Curr. Issues Mol. Biol. 2024, 46(5), 4106-4118; https://doi.org/10.3390/cimb46050252 - 29 Apr 2024
Viewed by 251
Abstract
Osteogenesis imperfecta (OI) is a group of inherited disorders of connective tissue that cause significant deformities and fragility in bones. Most cases of OI are associated with pathogenic variants in collagen type I genes and are characterized by pronounced polymorphisms in clinical manifestations [...] Read more.
Osteogenesis imperfecta (OI) is a group of inherited disorders of connective tissue that cause significant deformities and fragility in bones. Most cases of OI are associated with pathogenic variants in collagen type I genes and are characterized by pronounced polymorphisms in clinical manifestations and the absence of clear phenotype–genotype correlation. The objective of this study was to conduct a comprehensive molecular–genetic and clinical analysis to verify the diagnosis of OI in six Russian patients with genetic variants in the COL1A1 and COL1A2 genes. Clinical and laboratory data were obtained from six OI patients who were observed at the Medical Genetics Center in Saint Petersburg from 2016 to 2023. Next-generation sequencing on MGISEQ G400 (MGI, China) was used for DNA analysis. The GATK bioinformatic software (version 4.5.0.0) was used for variant calling and hard filtering. Genetic variants were verified by the direct automatic sequencing of PCR products using the ABI 3500X sequencer. We identified six genetic variants, as follows pathogenic c.3505G>A (p. Gly1169Ser), c.769G>A (p.Gly257Arg), VUS c.4123G>A (p.Ala1375Thr), and c.4114A>T (p.Asn1372Tyr) in COL1A1; and likely pathogenic c.2035G>A (p.Gly679Ser) and c.739-2A>T in COL1A2. In addition, clinical cases are presented due to the presence of the c.4114A>T variant in the COL1A2 gene. Molecular genetics is essential for determining different OI types due to the high similarity across various types of the disease and the failure of unambiguous diagnosis based on clinical manifestations alone. Considering the variable approaches to OI classification, an integrated strategy is required for optimal patient management. Full article
(This article belongs to the Collection Bioinformatics Approaches to Biomedicine)
43 pages, 1030 KiB  
Review
Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts
by Chiara Coppola, Marco Greco, Anas Munir, Debora Musarò, Stefano Quarta, Marika Massaro, Maria Giulia Lionetto and Michele Maffia
Curr. Issues Mol. Biol. 2024, 46(5), 4063-4105; https://doi.org/10.3390/cimb46050251 - 29 Apr 2024
Viewed by 239
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable [...] Read more.
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition’s complexities. Full article
(This article belongs to the Special Issue Molecular Research in Osteoarthritis and Osteoarticular Diseases)
Show Figures

Figure 1

14 pages, 70103 KiB  
Article
A Tissue Engineered 3D Model of Cancer Cell Invasion for Human Head and Neck Squamous-Cell Carcinoma
by Manuel Stöth, Anna Teresa Mineif, Fabian Sauer, Till Jasper Meyer, Flurin Mueller-Diesing, Lukas Haug, Agmal Scherzad, Maria Steinke, Angela Rossi and Stephan Hackenberg
Curr. Issues Mol. Biol. 2024, 46(5), 4049-4062; https://doi.org/10.3390/cimb46050250 - 28 Apr 2024
Viewed by 278
Abstract
Head and neck squamous-cell carcinoma (HNSCC) is associated with aggressive local invasiveness, being a main reason for its poor prognosis. The exact mechanisms underlying the strong invasive abilities of HNSCC remain to be elucidated. Therefore, there is a need for in vitro models [...] Read more.
Head and neck squamous-cell carcinoma (HNSCC) is associated with aggressive local invasiveness, being a main reason for its poor prognosis. The exact mechanisms underlying the strong invasive abilities of HNSCC remain to be elucidated. Therefore, there is a need for in vitro models to study the interplay between cancer cells and normal adjacent tissue at the invasive tumor front. To generate oral mucosa tissue models (OMM), primary keratinocytes and fibroblasts from human oral mucosa were isolated and seeded onto a biological scaffold derived from porcine small intestinal submucosa with preserved mucosa. Thereafter, we tested different methods (single tumor cells, tumor cell spots, spheroids) to integrate the human cancer cell line FaDu to generate an invasive three-dimensional model of HNSCC. All models were subjected to morphological analysis by histology and immunohistochemistry. We successfully built OMM tissue models with high in vivo–in vitro correlation. The integration of FaDu cell spots and spheroids into the OMM failed. However, with the integration of single FaDu cells into the OMM, invasive tumor cell clusters developed. Between segments of regular epithelial differentiation of the OMM, these clusters showed a basal membrane penetration and lamina propria infiltration. Primary human fibroblasts and keratinocytes seeded onto a porcine carrier structure are suitable to build an OMM. The HNSCC model with integrated FaDu cells could enable subsequent investigations into cancer cell invasiveness. Full article
(This article belongs to the Special Issue Oral Cancer: Prophylaxis, Etiopathogenesis and Treatment)
Show Figures

Graphical abstract

14 pages, 3076 KiB  
Review
Ex Vivo-Generated Tolerogenic Dendritic Cells: Hope for a Definitive Therapy of Autoimmune Diseases
by Jonny, Enda Cindylosa Sitepu, Chairul A. Nidom, Soetojo Wirjopranoto, I. Ketut Sudiana, Arif N. M. Ansori and Terawan Agus Putranto
Curr. Issues Mol. Biol. 2024, 46(5), 4035-4048; https://doi.org/10.3390/cimb46050249 - 28 Apr 2024
Viewed by 306
Abstract
Current therapies for autoimmune diseases are immunosuppressant agents, which have many debilitating side effects. However, dendritic cells (DCs) can induce antigen-specific tolerance. Tolerance restoration mediated by ex vivo-generated DCs can be a therapeutic approach. Therefore, in this review, we summarize the conceptual framework [...] Read more.
Current therapies for autoimmune diseases are immunosuppressant agents, which have many debilitating side effects. However, dendritic cells (DCs) can induce antigen-specific tolerance. Tolerance restoration mediated by ex vivo-generated DCs can be a therapeutic approach. Therefore, in this review, we summarize the conceptual framework for developing ex vivo-generated DC strategies for autoimmune diseases. First, we will discuss the role of DCs in developing immune tolerance as a foundation for developing dendritic cell-based immunotherapy for autoimmune diseases. Then, we also discuss relevant findings from pre-clinical and clinical studies of ex vivo-generated DCs for therapy of autoimmune diseases. Finally, we discuss problems and challenges in dendritic cell therapy in autoimmune diseases. Throughout the article, we discuss autoimmune diseases, emphasizing SLE. Full article
(This article belongs to the Collection Molecular Mechanisms in Human Diseases)
Show Figures

Graphical abstract

14 pages, 4813 KiB  
Article
FokI-RYdCas9 Mediates Nearly PAM-Less and High-Precise Gene Editing in Human Cells
by Di Li, Yaqi Cao, Long Xie, Chenfei He, Danrong Jiao, Mengxue Ma, Zhenrui Zuo, Erwei Zuo and Xiaogan Yang
Curr. Issues Mol. Biol. 2024, 46(5), 4021-4034; https://doi.org/10.3390/cimb46050248 - 27 Apr 2024
Viewed by 340
Abstract
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of [...] Read more.
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 6933 KiB  
Article
Proteomics Identifies LUC7L3 as a Prognostic Biomarker for Hepatocellular Carcinoma
by Yushan Hou, Siqi Wang, Yiming Zhang, Xiaofen Huang, Xiuyuan Zhang, Fuchu He, Chunyan Tian and Aihua Sun
Curr. Issues Mol. Biol. 2024, 46(5), 4004-4020; https://doi.org/10.3390/cimb46050247 - 27 Apr 2024
Viewed by 346
Abstract
Alternative splicing has been shown to participate in tumor progression, including hepatocellular carcinoma. The poor prognosis of patients with HCC calls for molecular classification and biomarker identification to facilitate precision medicine. We performed ssGSEA analysis to quantify the pathway activity of RNA splicing [...] Read more.
Alternative splicing has been shown to participate in tumor progression, including hepatocellular carcinoma. The poor prognosis of patients with HCC calls for molecular classification and biomarker identification to facilitate precision medicine. We performed ssGSEA analysis to quantify the pathway activity of RNA splicing in three HCC cohorts. Kaplan–Meier and Cox methods were used for survival analysis. GO and GSEA were performed to analyze pathway enrichment. We confirmed that RNA splicing is significantly correlated with prognosis, and identified an alternative splicing-associated protein LUC7L3 as a potential HCC prognostic biomarker. Further bioinformatics analysis revealed that high LUC7L3 expression indicated a more progressive HCC subtype and worse clinical features. Cell proliferation-related pathways were enriched in HCC patients with high LUC7L3 expression. Consistently, we proved that LUC7L3 knockdown could significantly inhibit cell proliferation and suppress the activation of associated signaling pathways in vitro. In this research, the relevance between RNA splicing and HCC patient prognosis was outlined. Our newly identified biomarker LUC7L3 could provide stratification for patient survival and recurrence risk, facilitating early medical intervention before recurrence or disease progression. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

14 pages, 6895 KiB  
Communication
Stemness and Cell Cycle Regulators and Their Modulation by Retinoic Acid in Ewing Sarcoma
by Maria Eduarda Battistella, Natália Hogetop Freire, Bruno Toson, Matheus Dalmolin, Marcelo A. C. Fernandes, Isadora D. Tassinari, Mariane Jaeger, André T. Brunetto, Algemir L. Brunetto, Lauro Gregianin, Caroline Brunetto de Farias and Rafael Roesler
Curr. Issues Mol. Biol. 2024, 46(5), 3990-4003; https://doi.org/10.3390/cimb46050246 - 26 Apr 2024
Viewed by 319
Abstract
Retinoic acid (RA) regulates stemness and differentiation in human embryonic stem cells (ESCs). Ewing sarcoma (ES) is a pediatric tumor that may arise from the abnormal development of ESCs. Here we show that RA impairs the viability of SK-ES-1 ES cells and affects [...] Read more.
Retinoic acid (RA) regulates stemness and differentiation in human embryonic stem cells (ESCs). Ewing sarcoma (ES) is a pediatric tumor that may arise from the abnormal development of ESCs. Here we show that RA impairs the viability of SK-ES-1 ES cells and affects the cell cycle. Cells treated with RA showed increased levels of p21 and its encoding gene, CDKN1A. RA reduced mRNA and protein levels of SRY-box transcription factor 2 (SOX2) as well as mRNA levels of beta III Tubulin (TUBB3), whereas the levels of CD99 increased. Exposure to RA reduced the capability of SK-ES-1 to form tumorspheres with high expression of SOX2 and Nestin. Gene expression of CD99 and CDKN1A was reduced in ES tumors compared to non-tumoral tissue, whereas transcript levels of SOX2 were significantly higher in tumors. For NES and TUBB3, differences between tumors and control tissue did not reach statistical significance. Low expression of CD99 and NES, and high expression of SOX2, were significantly associated with a poorer patient prognosis indicated by shorter overall survival (OS). Our results indicate that RA may display rather complex modulatory effects on multiple target genes associated with the maintenance of stem cell’s features versus their differentiation, cell cycle regulation, and patient prognosis in ES. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop