Next Issue
Volume 7, March
Previous Issue
Volume 7, January
 
 

Toxins, Volume 7, Issue 2 (February 2015) – 26 articles , Pages 219-637

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2221 KiB  
Article
DXD Motif-Dependent and -Independent Effects of the Chlamydia trachomatis Cytotoxin CT166
by Miriam Bothe, Pavel Dutow, Andreas Pich, Harald Genth and Andreas Klos
Toxins 2015, 7(2), 621-637; https://doi.org/10.3390/toxins7020621 - 17 Feb 2015
Cited by 14 | Viewed by 6735
Abstract
The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial [...] Read more.
The Gram-negative, intracellular bacterium Chlamydia trachomatis causes acute and chronic urogenital tract infection, potentially leading to infertility and ectopic pregnancy. The only partially characterized cytotoxin CT166 of serovar D exhibits a DXD motif, which is important for the enzymatic activity of many bacterial and mammalian type A glycosyltransferases, leading to the hypothesis that CT166 possess glycosyltransferase activity. CT166-expressing HeLa cells exhibit actin reorganization, including cell rounding, which has been attributed to the inhibition of the Rho-GTPases Rac/Cdc42. Exploiting the glycosylation-sensitive Ras(27H5) antibody, we here show that CT166 induces an epitope change in Ras, resulting in inhibited ERK and PI3K signaling and delayed cell cycle progression. Consistent with the hypothesis that these effects strictly depend on the DXD motif, CT166 with the mutated DXD motif causes neither Ras-ERK inhibition nor delayed cell cycle progression. In contrast, CT166 with the mutated DXD motif is still capable of inhibiting cell migration, suggesting that CT166 with the mutated DXD motif cannot be regarded as inactive in any case. Taken together, CT166 affects various fundamental cellular processes, strongly suggesting its importance for the intracellular survival of chlamydia. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

1626 KiB  
Article
Altered Gene Expression Profiles of Wheat Genotypes against Fusarium Head Blight
by Ayumi Kosaka, Alagu Manickavelu, Daniela Kajihara, Hiroyuki Nakagawa and Tomohiro Ban
Toxins 2015, 7(2), 604-620; https://doi.org/10.3390/toxins7020604 - 16 Feb 2015
Cited by 25 | Viewed by 8730
Abstract
Fusarium graminearum is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time [...] Read more.
Fusarium graminearum is responsible for Fusarium head blight (FHB), which is a destructive disease of wheat that makes its quality unsuitable for end use. To understand the temporal molecular response against this pathogen, microarray gene expression analysis was carried out at two time points on three wheat genotypes, the spikes of which were infected by Fusarium graminearum. The greatest number of genes was upregulated in Nobeokabouzu-komugi followed by Sumai 3, whereas the minimum expression in Gamenya was at three days after inoculation (dai). In Nobeokabouzu-komugi, high expression of detoxification genes, such as multidrug-resistant protein, multidrug resistance-associated protein, UDP-glycosyltransferase and ABC transporters, in addition to systemic defense-related genes, were identified at the early stage of infection. This early response of the highly-resistant genotype implies a different resistance response from the other resistant genotype, Sumai 3, primarily containing local defense-related genes, such as cell wall defense genes. In Gamenya, the expression of all three functional groups was minimal. The differences in these molecular responses with respect to the time points confirmed the variation in the genotypes. For the first time, we report the nature of gene expression in the FHB-highly resistant cv. Nobeokabouzu-komugi during the disease establishment stage and the possible underlying molecular response. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

718 KiB  
Communication
Dual Effects Exerted in Vitro by Micromolar Concentrations of Deoxynivalenol on Undifferentiated Caco-2 Cells
by Gina Manda, Mihaela Andreea Mocanu, Daniela Eliza Marin and Ionelia Taranu
Toxins 2015, 7(2), 593-603; https://doi.org/10.3390/toxins7020593 - 16 Feb 2015
Cited by 20 | Viewed by 6442
Abstract
Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower [...] Read more.
Contamination of crops used for food and feed production with Fusarium mycotoxins, such as deoxynivalenol (DON), raise important health and economic issues all along the food chain. Acute exposure to high DON concentrations can alter the intestinal barrier, while chronic exposure to lower doses may exert more subtle effects on signal transduction pathways, leading to disturbances in cellular homeostasis. Using real-time cellular impedance measurements, we studied the effects exerted in vitro by low concentrations of DON (0.37–1.50 μM), relevant for mycotoxin-contaminated food, on the proliferation of undifferentiated Caco-2 cells presenting a tumorigenic phenotype. A 1.5 μM concentration of DON maintained cell adherence of non-proliferating Caco-2 cells, whilst arresting the growth of actively proliferating cells compared with control Caco-2 cells in vitro. At 0.37 μM, DON enhanced Caco-2 cell metabolism, thereby triggering a moderate increase in cell proliferation. The results of the current study suggested that low concentrations of DON commonly detected in food may either limit or sustain the proliferation of colon cancer cells, depending on their proliferation status and on DON concentration. Soluble factors released by Lactobacillus strains can partially counteract the inhibitory action of DON on actively proliferating colon cancer cells. The study also emphasized that real-time cellular impedance measurements were a valuable tool for investigating the dynamics of cellular responses to xenobiotics. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Graphical abstract

439 KiB  
Article
Identification and Quantification of Fumonisin A1, A2, and A3 in Corn by High-Resolution Liquid Chromatography-Orbitrap Mass Spectrometry
by Masayoshi Tamura, Naoki Mochizuki, Yasushi Nagatomi, Koichi Harayama, Akira Toriba and Kazuichi Hayakawa
Toxins 2015, 7(2), 582-592; https://doi.org/10.3390/toxins7020582 - 16 Feb 2015
Cited by 12 | Viewed by 6578
Abstract
Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation [...] Read more.
Three compounds, hypothesized as fumonisin A1 (FA1), fumonisin A2 (FA2), and fumonisin A3 (FA3), were detected in a corn sample contaminated with mycotoxins by high-resolution liquid chromatography-Orbitrap mass spectrometry (LC-Orbitrap MS). One of them has been identified as FA1 synthesized by the acetylation of fumonisin B1 (FB1), and established a method for its quantification. Herein, we identified the two remaining compounds as FA2 and FA3, which were acetylated fumonisin B2 (FB2) and fumonisin B3 (FB3), respectively. Moreover, we examined a method for the simultaneous analysis of FA1, FA2, FA3, FB1, FB2, and FB3. The corn samples were prepared by extraction using a QuEChERS kit and purification using a multifunctional cartridge. The linearity, recovery, repeatability, limit of detection, and limit of quantification of the method were >0.99, 82.9%–104.6%, 3.7%–9.5%, 0.02–0.60 μg/kg, and 0.05–1.98 μg/kg, respectively. The simultaneous analysis of the six fumonisins revealed that FA1, FA2, and FA3 were present in all corn samples contaminated with FB1, FB2, and FB3. The results suggested that corn marketed for consumption can be considered as being contaminated with both the fumonisin B-series and with fumonisin A-series. This report presents the first identification and quantification of FA1, FA2, and FA3 in corn samples. Full article
(This article belongs to the Collection Understanding Mycotoxin Occurrence in Food and Feed Chains)
Show Figures

Graphical abstract

422 KiB  
Communication
Antivenom Cross-Neutralization of the Venoms of Hydrophis schistosus and Hydrophis curtus, Two Common Sea Snakes in Malaysian Waters
by Choo Hock Tan, Nget Hong Tan, Kae Yi Tan and Kok Onn Kwong
Toxins 2015, 7(2), 572-581; https://doi.org/10.3390/toxins7020572 - 16 Feb 2015
Cited by 39 | Viewed by 7466
Abstract
Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis [...] Read more.
Sea snake envenomation is a serious occupational hazard in tropical waters. In Malaysia, the beaked sea snake (Hydrophis schistosus, formerly known as Enhydrina schistosa) and the spine-bellied sea snake (Hydrophis curtus, formerly known as Lapemis curtus or Lapemis hardwickii) are two commonly encountered species. Australian CSL sea snake antivenom is the definitive treatment for sea snake envenomation; it is unfortunately extremely costly locally and is not widely available or adequately stocked in local hospitals. This study investigated the cross-neutralizing potential of three regionally produced anti-cobra antivenoms against the venoms of Malaysian H. schistosus and H. curtus. All three antivenoms conferred paraspecific protection from sea snake venom lethality in mice, with potency increasing in the following order: Taiwan bivalent antivenom < Thai monocled cobra monovalent antivenom < Thai neuro polyvalent antivenom (NPAV). NPAV demonstrated cross-neutralizing potencies of 0.4 mg/vial for H. schistosus venom and 0.8 mg/vial for H. curtus, which translates to a dose of less than 20 vials of NPAV to neutralize an average amount of sea snake venom per bite (inferred from venom milking). The cross-neutralization activity was supported by ELISA cross-reactivity between NPAV and the venoms of H. schistosus (58.4%) and H. curtus (70.4%). These findings revealed the potential of NPAV as a second-line treatment for sea snake envenomation in the region. Further profiling of the cross-neutralization activity should address the antivenomic basis using purified toxin-based assays. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

321 KiB  
Communication
Chronic Exposure to Deoxynivalenol Has No Influence on the Oral Bioavailability of Fumonisin B1 in Broiler Chickens
by Gunther Antonissen, Mathias Devreese, Filip Van Immerseel, Siegrid De Baere, Sabine Hessenberger, An Martel and Siska Croubels
Toxins 2015, 7(2), 560-571; https://doi.org/10.3390/toxins7020560 - 16 Feb 2015
Cited by 15 | Viewed by 6012
Abstract
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and [...] Read more.
Both deoxynivalenol (DON) and fumonisin B1 (FB1) are common contaminants of feed. Fumonisins (FBs) in general have a very limited oral bioavailability in healthy animals. Previous studies have demonstrated that chronic exposure to DON impairs the intestinal barrier function and integrity, by affecting the intestinal surface area and function of the tight junctions. This might influence the oral bioavailability of FB1, and possibly lead to altered toxicity of this mycotoxin. A toxicokinetic study was performed with two groups of 6 broiler chickens, which were all administered an oral bolus of 2.5 mg FBs/kg BW after three-week exposure to either uncontaminated feed (group 1) or feed contaminated with 3.12 mg DON/kg feed (group 2). No significant differences in toxicokinetic parameters of FB1 could be demonstrated between the groups. Also, no increased or decreased body exposure to FB1 was observed, since the relative oral bioavailability of FB1 after chronic DON exposure was 92.2%. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Figure 1

646 KiB  
Article
Sulfasalazine Attenuates Staphylococcal Enterotoxin B-Induced Immune Responses
by Teresa Krakauer
Toxins 2015, 7(2), 553-559; https://doi.org/10.3390/toxins7020553 - 13 Feb 2015
Cited by 7 | Viewed by 6032
Abstract
Staphylococcal enterotoxin B (SEB) and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T [...] Read more.
Staphylococcal enterotoxin B (SEB) and related exotoxins are important virulence factors produced by Staphylococcus aureus as they cause human diseases such as food poisoning and toxic shock. These toxins bind directly to cells of the immune system resulting in hyperactivation of both T lymphocytes and monocytes/macrophages. The excessive release of proinflammatory cytokines from these cells mediates the toxic effects of SEB. This study examined the inhibitory activities of an anti-inflammatory drug, sulfasalazine, on SEB-stimulated human peripheral blood mononuclear cells (PBMC). Sulfasalazine dose-dependently inhibited tumor necrosis factor α, interleukin 1 (IL-1) β, IL-2, IL-6, interferon γ (IFNγ), and various chemotactic cytokines from SEB-stimulated human PBMC. Sulfasalazine also potently blocked SEB-induced T cell proliferation and NFκB activation. These results suggest that sulfasalazine might be useful in mitigating the toxic effects of SEB by blocking SEB-induced host inflammatory cascade and signaling pathways. Full article
(This article belongs to the Special Issue Enterotoxins: Microbial Proteins and Host Cell Dysregulation)
Show Figures

Figure 1

1118 KiB  
Article
Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells
by Elena De Gianni, Eleonora Turrini, Andrea Milelli, Francesca Maffei, Marco Carini, Anna Minarini, Vincenzo Tumiatti, Tatiana Da Ros, Maurizio Prato and Carmela Fimognari
Toxins 2015, 7(2), 535-552; https://doi.org/10.3390/toxins7020535 - 11 Feb 2015
Cited by 6 | Viewed by 6134
Abstract
One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types [...] Read more.
One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types of cancers. A great number of in vitro, in vivo and clinical reports document the multi-target anticancer activities of isothiocyanates and of compounds characterized by a naphthalenetetracarboxylic diimide scaffold. In order to search for new anticancer agents with a better pharmaco-toxicological profile, we investigated hybrid compounds obtained by inserting isothiocyanate group(s) on a naphthalenetetracarboxylic diimide scaffold. Moreover, since water-soluble fullerene derivatives can cross cell membranes thus favoring the delivery of anticancer therapeutics, we explored the cytostatic and cytotoxic activity of hybrid compounds conjugated with fullerene. We studied their cytostatic and cytotoxic effects on a human T-lymphoblastoid cell line by using different flow cytometric assays. In order to better understand their pharmaco-toxicological potential, we also analyzed their genotoxicity. Our global results show that the synthesized compounds reduced significantly the viability of leukemia cells. However, the conjugation with a non-toxic vector did not increase their anticancer potential. This opens an interesting research pattern for certain fullerene properties. Full article
Show Figures

Graphical abstract

556 KiB  
Article
The Pore-Forming α-Toxin from Clostridium septicum Activates the MAPK Pathway in a Ras-c-Raf-Dependent and Independent Manner
by Anjana Chakravorty, Milena M. Awad, Jackie K. Cheung, Thomas J. Hiscox, Dena Lyras and Julian I. Rood
Toxins 2015, 7(2), 516-534; https://doi.org/10.3390/toxins7020516 - 10 Feb 2015
Cited by 19 | Viewed by 5980
Abstract
Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host’s innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and [...] Read more.
Clostridium septicum is the causative agent of atraumatic gas gangrene, with α-toxin, an extracellular pore-forming toxin, essential for disease. How C. septicum modulates the host’s innate immune response is poorly defined, although α-toxin-intoxicated muscle cells undergo cellular oncosis, characterised by mitochondrial dysfunction and release of reactive oxygen species. Nonetheless, the signalling events that occur prior to the initiation of oncosis are poorly characterised. Our aims were to characterise the ability of α-toxin to activate the host mitogen activated protein kinase (MAPK) signalling pathway both in vitro and in vivo. Treatment of Vero cells with purified α-toxin activated the extracellular-signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 arms of the MAPK pathway and stimulated the release of TNF-α in a dose-dependent manner. Studies using inhibitors of all three MAPK components suggested that activation of ERK occurred in a Ras-c-Raf dependent manner, whereas activation of JNK and p38 occurred by a Ras-independent mechanism. Toxin-mediated activation was dependent on efficient receptor binding and pore formation and on an influx of extracellular calcium ions. In the mouse myonecrosis model we showed that the MAPK pathway was activated in tissues of infected mice, implying that it has an important role in the disease process. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

811 KiB  
Article
Further Characterization of Glycine-Containing Microcystins from the McMurdo Dry Valleys of Antarctica
by Jonathan Puddick, Michèle R. Prinsep, Susanna A. Wood, Stephen Craig Cary, David P. Hamilton and Patrick T. Holland
Toxins 2015, 7(2), 493-515; https://doi.org/10.3390/toxins7020493 - 10 Feb 2015
Cited by 37 | Viewed by 7084
Abstract
Microcystins are hepatotoxic cyclic peptides produced by several cyanobacterial genera worldwide. In 2008, our research group identified eight new glycine-containing microcystin congeners in two hydro-terrestrial mat samples from the McMurdo Dry Valleys of Eastern Antarctica. During the present study, high-resolution mass spectrometry, amino [...] Read more.
Microcystins are hepatotoxic cyclic peptides produced by several cyanobacterial genera worldwide. In 2008, our research group identified eight new glycine-containing microcystin congeners in two hydro-terrestrial mat samples from the McMurdo Dry Valleys of Eastern Antarctica. During the present study, high-resolution mass spectrometry, amino acid analysis and micro-scale thiol derivatization were used to further elucidate their structures. The Antarctic microcystin congeners contained the rare substitution of the position-1 ᴅ-alanine for glycine, as well as the acetyl desmethyl modification of the position-5 Adda moiety (3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyldeca-4E,6E-dienoic acid). Amino acid analysis was used to determine the stereochemistry of several of the amino acids and conclusively demonstrated the presence of glycine in the microcystins. A recently developed thiol derivatization technique showed that each microcystin contained dehydrobutyrine in position-7 instead of the commonly observed N-methyl dehydroalanine. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Graphical abstract

846 KiB  
Article
Coupling between the Basic Replicon and the Kis-Kid Maintenance System of Plasmid R1: Modulation by Kis Antitoxin Levels and Involvement in Control of Plasmid Replication
by Juan López-Villarejo, Damián Lobato-Márquez and Ramón Díaz-Orejas
Toxins 2015, 7(2), 478-492; https://doi.org/10.3390/toxins7020478 - 05 Feb 2015
Cited by 9 | Viewed by 6082
Abstract
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease [...] Read more.
kis-kid, the auxiliary maintenance system of plasmid R1 and copB, the auxiliary copy number control gene of this plasmid, contribute to increase plasmid replication efficiency in cells with lower than average copy number. It is thought that Kis antitoxin levels decrease in these cells and that this acts as the switch that activates the Kid toxin; activated Kid toxin reduces copB-mRNA levels and this increases RepA levels that increases plasmid copy number. In support of this model we now report that: (i) the Kis antitoxin levels do decrease in cells containing a mini-R1 plasmid carrying a repA mutation that reduces plasmid copy number; (ii) kid-dependent replication rescue is abolished in cells in which the Kis antitoxin levels or the CopB levels are increased. Unexpectedly we found that this coordination significantly increases both the copy number of the repA mutant and of the wt mini-R1 plasmid. This indicates that the coordination between plasmid replication functions and kis-kid system contributes significantly to control plasmid R1 replication. Full article
(This article belongs to the Special Issue Toxin-Antitoxin System)
Show Figures

Figure 1

634 KiB  
Article
Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms
by David Farrer, Marina Counter, Rebecca Hillwig and Curtis Cude
Toxins 2015, 7(2), 457-477; https://doi.org/10.3390/toxins7020457 - 05 Feb 2015
Cited by 47 | Viewed by 9692
Abstract
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of [...] Read more.
Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. Full article
Show Figures

Graphical abstract

1029 KiB  
Article
Metabolomics of the Bio-Degradation Process of Aflatoxin B1 by Actinomycetes at an Initial pH of 6.0
by Manal Eshelli, Linda Harvey, RuAngelie Edrada-Ebel and Brian McNeil
Toxins 2015, 7(2), 439-456; https://doi.org/10.3390/toxins7020439 - 04 Feb 2015
Cited by 87 | Viewed by 9543
Abstract
Contamination of food and feed by Aflatoxin B1 (AFB1) is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC [...] Read more.
Contamination of food and feed by Aflatoxin B1 (AFB1) is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC 4277, Streptomyces lividans TK 24, and S. aureofaciens ATCC 10762, in liquid cultures. Biodegradation of AFB1 was optimised under a range of temperatures from 25 to 40 °C and pH values of 4.0 to 8.0. An initial concentration of 20 µg/mL of AFB1 was used in this study. The amount of AFB1 remaining was measured against time by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), coupled with UV and mass spectrometry (LC-MS). All species were able to degrade the AFB1, and no significant difference was found between them. AFB1 remained in the liquid culture for R. erythropolis, S. lividans and S. aureofaciens were 0.81 µg/mL, 2.41 µg/mL and 2.78 µg/mL respectively, at the end of the first 24 h. Degradation occurred at all incubation temperatures and the pH with the optimal conditions for R. erythropolis was achieved at 30 °C and pH 6, whereas for S. lividans and S. aureofaciens the optimum conditions for degradation were 30 °C and pH 5. Analysis of the degradative route indicated that each microorganism has a different way of degrading AFB1. The metabolites produced by R. erythropolis were significantly different from the other two microorganisms. Products of degradation were identified through metabolomic studies by utilizing high-resolution mass spectral data. Mass spectrometric analysis indicated that the degradation of AFB1 was associated with the appearance of a range of lower molecular weight compounds. The pathway of degradation or chemical alteration of AFB1 was followed by means of high resolution Fourier transform mass spectrometry (HR-FTMS) analysis as well as through the MS2 fragmentation to unravel the degradative pathway for AFB1. AFB1 bio-degradation was coupled with the accumulation of intermediates of fatty acid metabolism and glycolysis. A plausible mechanism of degradation of AFB1 by Rhodococcus was hypothesized. Full article
(This article belongs to the Special Issue Detoxification of Mycotoxins)
Show Figures

Figure 1

1361 KiB  
Article
The Anti-Cancer Potency and Mechanism of a Novel Tumor-Activated Fused Toxin, DLM
by Dejun Sun, Miaonan Sun, Wenhe Zhu, Zhiding Wang, Yuefei Li and Jie Ma
Toxins 2015, 7(2), 423-438; https://doi.org/10.3390/toxins7020423 - 04 Feb 2015
Cited by 21 | Viewed by 6690
Abstract
Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed [...] Read more.
Melittin, which acts as a membrane-disrupting lytic peptide, is not only cytotoxic to tumors, but also vital to normal cells. Melittin had low toxicity when coupled with target peptides. Despite significant research development with the fused toxin, a new fused toxin is needed which has a cleavable linker such that the fused toxin can release melittin after protease cleavage on the tumor cell surface. We describe a novel fused toxin, composed of disintegrin, uPA (urokinase-type plasminogen activator)-cleavable linker, and melittin. Disintegrin is a single strand peptide (73 aa) isolated from Gloydius Ussuriensis venom. The RGD (Arg-Gly-Asp) site of disintegrin dominates its interaction with integrins on the surface of the tumor cells. uPA is over-expressed and plays an important role in tumor cell invasiveness and metastatic progression. The DLM (disintegrin-linker-melittin) linker is uPA-cleavable, enabling DLM to release melittin. We compared binding activity of our synthesized disintegrin with native disintegrin and report that DLM had less binding activity than the native form. uPA-cleavage was evaluated in vitro and the uPA-cleavable linker released melittin. Treating tumors expressing uPA with DLM enhanced tumor cell killing as well as reduced toxicity to erythrocytes and other non-cancerous normal cells. The mechanism behind DLM tumor cell killing was tested using a DNA ladder assay, fluorescent microscopy, flow cytometry, and transmission electron microscopy. Data revealed tumor cell necrosis as the mechanism of cell death, and the fused DLM toxin with an uPA-cleavable linker enhanced tumor selectivity and killing ability. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

1050 KiB  
Article
Mutagenesis and Functional Analysis of the Pore-Forming Toxin HALT-1 from Hydra magnipapillata
by Yvonne Jing Mei Liew, Wai Tuck Soh, William Febry Jiemy and Jung Shan Hwang
Toxins 2015, 7(2), 407-422; https://doi.org/10.3390/toxins7020407 - 03 Feb 2015
Cited by 14 | Viewed by 5747
Abstract
Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed [...] Read more.
Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1–4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

431 KiB  
Review
Recent Insights into Clostridium perfringens Beta-Toxin
by Masahiro Nagahama, Sadayuki Ochi, Masataka Oda, Kazuaki Miyamoto, Masaya Takehara and Keiko Kobayashi
Toxins 2015, 7(2), 396-406; https://doi.org/10.3390/toxins7020396 - 03 Feb 2015
Cited by 41 | Viewed by 7389
Abstract
Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT) that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important [...] Read more.
Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT) that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin. Full article
(This article belongs to the Special Issue Enterotoxins: Microbial Proteins and Host Cell Dysregulation)
1343 KiB  
Article
Uptake of Clostridium botulinum C3 Exoenzyme into Intact HT22 and J774A.1 Cells
by Astrid Rohrbeck, Leonie Von Elsner, Sandra Hagemann and Ingo Just
Toxins 2015, 7(2), 380-395; https://doi.org/10.3390/toxins7020380 - 02 Feb 2015
Cited by 15 | Viewed by 7877
Abstract
The Clostridium botulinum C3 exoenzyme selectively ADP-ribosylates low molecular weight GTP-binding proteins RhoA, B and C. This covalent modification inhibits Rho signaling activity, resulting in distinct actin cytoskeleton changes. Although C3 exoenzyme has no binding, the translocation domain assures that C3 enters cells [...] Read more.
The Clostridium botulinum C3 exoenzyme selectively ADP-ribosylates low molecular weight GTP-binding proteins RhoA, B and C. This covalent modification inhibits Rho signaling activity, resulting in distinct actin cytoskeleton changes. Although C3 exoenzyme has no binding, the translocation domain assures that C3 enters cells and acts intracellularly. C3 uptake is thought to occur due to the high concentration of the C3 enzyme. However, recent work indicates that C3 is selectively endocytosed, suggesting a specific endocytotic pathway, which is not yet understood. In this study, we show that the C3 exoenzyme binds to cell surfaces and is internalized in a time-dependent manner. We show that the intermediate filament, vimentin, is involved in C3 uptake, as indicated by the inhibition of C3 internalization by acrylamide, a known vimentin disruption agent. Inhibition of C3 internalization was not observed by chemical inhibitors, like bafilomycin A, methyl-β-cyclodextrin, nocodazole or latrunculin B. Furthermore, the internalization of C3 exoenzyme was markedly inhibited in dynasore-treated HT22 cells. Our results indicate that C3 internalization depends on vimentin and does not depend strictly on both clathrin and caveolae. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

1200 KiB  
Article
Toxicity of the Anti-ribosomal Lectin Ebulin f in Lungs and Intestines in Elderly Mice
by Manuel Garrosa, Pilar Jiménez, Jesús Tejero, Patricia Cabrero, Damián Cordoba-Diaz, Emiliano J. Quinto, Manuel J. Gayoso and Tomás Girbés
Toxins 2015, 7(2), 367-379; https://doi.org/10.3390/toxins7020367 - 02 Feb 2015
Cited by 11 | Viewed by 5750
Abstract
All parts of dwarf elder (Sambucus ebulus L.) studied so far contain a ribosome-inactivating protein with lectin activity (ribosome-inactivating lectin; RIL), known as ebulin. Green fruits contain ebulin f, the toxicity of which has been studied in six-week-old mice, where it was [...] Read more.
All parts of dwarf elder (Sambucus ebulus L.) studied so far contain a ribosome-inactivating protein with lectin activity (ribosome-inactivating lectin; RIL), known as ebulin. Green fruits contain ebulin f, the toxicity of which has been studied in six-week-old mice, where it was found that the intestines were primary targets for it when administered intraperitoneally (i.p.). We performed experiments to assess whether ebulin f administration to six- and 12-month-old mice would trigger higher toxicity than that displayed in six-week-old mice. In the present report, we present evidence indicating that the toxicological effects of ebulin f after its i.p. administration to elderly mice are exerted on the lungs and intestines by an increased rate of apoptosis. We hypothesize that the ebulin f apoptosis-promoting action together with the age-dependent high rate of apoptosis result in an increase in the lectin’s toxicity, leading to a higher lethality level. Full article
(This article belongs to the Special Issue Plant Toxins)
Show Figures

Figure 1

460 KiB  
Article
Human Illnesses and Animal Deaths Associated with Freshwater Harmful Algal Blooms—Kansas
by Ingrid Trevino-Garrison, Jamie DeMent, Farah S. Ahmed, Patricia Haines-Lieber, Thomas Langer, Henri Ménager, Janet Neff, Deon Van der Merwe and Edward Carney
Toxins 2015, 7(2), 353-366; https://doi.org/10.3390/toxins7020353 - 30 Jan 2015
Cited by 60 | Viewed by 9648
Abstract
Freshwater harmful algal bloom (FHAB) toxins can cause morbidity and mortality in both humans and animals, and the incidence of FHABs in the United States and Kansas has increased. In 2010, the Kansas Department of Health and Environment (KDHE) developed a FHAB policy [...] Read more.
Freshwater harmful algal bloom (FHAB) toxins can cause morbidity and mortality in both humans and animals, and the incidence of FHABs in the United States and Kansas has increased. In 2010, the Kansas Department of Health and Environment (KDHE) developed a FHAB policy and response plan. We describe the epidemiology of FHAB-associated morbidity and mortality in humans and animals in Kansas. Healthcare providers and veterinarians voluntarily reported FHAB-associated cases to KDHE. An investigation was initiated for each report to determine the source of exposure and to initiate public health mitigation actions. There were 38 water bodies with a confirmed FHAB in 2011. There were 34 reports of human and animal FHAB-associated health events in 2011, which included five dog deaths and hospitalization of two human case patients. Five confirmed human illnesses, two dog illnesses and five dog deaths were associated with one lake. Four human and seven dog cases were exposed to the lake after a public health alert was issued. Public health officials and FHAB partners must ensure continued awareness of the risks to the public, educate healthcare providers and veterinarians on FHAB-related health events and encourage timely reporting to public health authorities. Full article
3114 KiB  
Article
Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)
by Zidong Liu, Rong Tang, Dapeng Li, Qing Hu and Ying Wang
Toxins 2015, 7(2), 337-352; https://doi.org/10.3390/toxins7020337 - 30 Jan 2015
Cited by 30 | Viewed by 7766
Abstract
Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile [...] Read more.
Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs) and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4) content but decreased whole-body triiodothyronine (T3) content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroid peroxidase (TPO), and transthyretin (TTR) genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

340 KiB  
Article
Detection of Cyanotoxins, β-N-methylamino-L-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis
by Sandra Anne Banack, Tracie Caller, Patricia Henegan, James Haney, Amanda Murby, James S. Metcalf, James Powell, Paul Alan Cox and Elijah Stommel
Toxins 2015, 7(2), 322-336; https://doi.org/10.3390/toxins7020322 - 29 Jan 2015
Cited by 79 | Viewed by 9745
Abstract
A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a [...] Read more.
A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. Full article
(This article belongs to the Collection Marine and Freshwater Toxins)
Show Figures

Figure 1

1028 KiB  
Article
Orphan Toxin OrtT (YdcX) of Escherichia coli Reduces Growth during the Stringent Response
by Sabina Islam, Michael J. Benedik and Thomas K. Wood
Toxins 2015, 7(2), 299-321; https://doi.org/10.3390/toxins7020299 - 29 Jan 2015
Cited by 11 | Viewed by 8411
Abstract
Toxin/antitoxin (TA) systems are nearly universal in prokaryotes; toxins are paired with antitoxins which inactivate them until the toxins are utilized. Here we explore whether toxins may function alone; i.e., whether a toxin which lacks a corresponding antitoxin (orphan toxin) is physiologically [...] Read more.
Toxin/antitoxin (TA) systems are nearly universal in prokaryotes; toxins are paired with antitoxins which inactivate them until the toxins are utilized. Here we explore whether toxins may function alone; i.e., whether a toxin which lacks a corresponding antitoxin (orphan toxin) is physiologically relevant. By focusing on a homologous protein of the membrane-damaging toxin GhoT of the Escherichia coli GhoT/GhoS type V TA system, we found that YdcX (renamed OrtT for orphan toxin related to tetrahydrofolate) is toxic but is not part of TA pair. OrtT is not inactivated by neighboring YdcY (which is demonstrated to be a protein), nor is it inactivated by antitoxin GhoS. Also, OrtT is not inactivated by small RNA upstream or downstream of ortT. Moreover, screening a genomic library did not identify an antitoxin partner for OrtT. OrtT is a protein and its toxicity stems from membrane damage as evidenced by transmission electron microscopy and cell lysis. Furthermore, OrtT reduces cell growth and metabolism in the presence of both antimicrobials trimethoprim and sulfamethoxazole; these antimicrobials induce the stringent response by inhibiting tetrahydrofolate synthesis. Therefore, we demonstrate that OrtT acts as an independent toxin to reduce growth during stress related to amino acid and DNA synthesis. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

462 KiB  
Review
Pokeweed Antiviral Protein, a Ribosome Inactivating Protein: Activity, Inhibition and Prospects
by Artem V. Domashevskiy and Dixie J. Goss
Toxins 2015, 7(2), 274-298; https://doi.org/10.3390/toxins7020274 - 28 Jan 2015
Cited by 42 | Viewed by 12211
Abstract
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that [...] Read more.
Viruses employ an array of elaborate strategies to overcome plant defense mechanisms and must adapt to the requirements of the host translational systems. Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome inactivating protein (RIP) and is an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin (S/R) loop of large rRNA, arresting protein synthesis at the translocation step. PAP is thought to play an important role in the plant’s defense mechanism against foreign pathogens. This review focuses on the structure, function, and the relationship of PAP to other RIPs, discusses molecular aspects of PAP antiviral activity, the novel inhibition of this plant toxin by a virus counteraction—a peptide linked to the viral genome (VPg), and possible applications of RIP-conjugated immunotoxins in cancer therapeutics. Full article
(This article belongs to the Special Issue Plant Toxins)
Show Figures

Graphical abstract

800 KiB  
Article
No Evidence for a Culturable Bacterial Tetrodotoxin Producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida)
by Lauren R. Salvitti, Susanna A. Wood, Paul McNabb and Stephen Craig Cary
Toxins 2015, 7(2), 255-273; https://doi.org/10.3390/toxins7020255 - 28 Jan 2015
Cited by 19 | Viewed by 6186
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported [...] Read more.
Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

1066 KiB  
Article
Rapid Multiple Immunoenzyme Assay of Mycotoxins
by Alexandr E. Urusov, Anatoly V. Zherdev, Alina V. Petrakova, Elchin G. Sadykhov, Olga V. Koroleva and Boris B. Dzantiev
Toxins 2015, 7(2), 238-254; https://doi.org/10.3390/toxins7020238 - 27 Jan 2015
Cited by 53 | Viewed by 9177
Abstract
Mycotoxins are low molecular weight fungal metabolites that pose a threat as toxic contaminants of food products, thereby necessitating their effective monitoring and control. Microplate ELISA can be used for this purpose, but this method is characteristically time consuming, with a duration extending [...] Read more.
Mycotoxins are low molecular weight fungal metabolites that pose a threat as toxic contaminants of food products, thereby necessitating their effective monitoring and control. Microplate ELISA can be used for this purpose, but this method is characteristically time consuming, with a duration extending to several hours. This report proposes a variant of the ELISA method for the detection and quantification of three mycotoxins, ochratoxin A, aflatoxin B1 and zearalenone, in the kinetic regime. The main requirement for the proposed kinetic protocol was to provide a rapid method that combined sensitivity and accuracy. The use of biotin with an extended spacer together with a streptavidin–polyperoxidase conjugate provided high signal levels, despite these interactions occurring under non-equilibrium conditions. Duration of the individual mycotoxin assays was 20 min, whereas the analysis of all three mycotoxins in parallel reached a maximum duration of 25 min. Recovery of at least 95% mycotoxins in water-organic extracts was shown. The developed assays were successfully validated using poultry processing products and corn samples spiked with known quantities of mycotoxins. The detection limits for aflatoxin B1, ochratoxin A and zearalenone in these substances were 0.24, 1.2 and 3 ng/g, respectively. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

876 KiB  
Article
AaeAP1 and AaeAP2: Novel Antimicrobial Peptides from the Venom of the Scorpion, Androctonus aeneas: Structural Characterisation, Molecular Cloning of Biosynthetic Precursor-Encoding cDNAs and Engineering of Analogues with Enhanced Antimicrobial and Anticancer Activities
by Qiang Du, Xiaojuan Hou, Lei Wang, Yingqi Zhang, Xinping Xi, Hui Wang, Mei Zhou, Jinao Duan, Minjie Wei, Tianbao Chen and Chris Shaw
Toxins 2015, 7(2), 219-237; https://doi.org/10.3390/toxins7020219 - 23 Jan 2015
Cited by 35 | Viewed by 7634
Abstract
The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. [...] Read more.
The main functions of the abundant polypeptide toxins present in scorpion venoms are the debilitation of arthropod prey or defence against predators. These effects are achieved mainly through the blocking of an array of ion channel types within the membranes of excitable cells. However, while these ion channel-blocking toxins are tightly-folded by multiple disulphide bridges between cysteine residues, there are additional groups of peptides in the venoms that are devoid of cysteine residues. These non-disulphide bridged peptides are the subject of much research interest, and among these are peptides that exhibit antimicrobial activity. Here, we describe two novel non-disulphide-bridged antimicrobial peptides that are present in the venom of the North African scorpion, Androctonus aeneas. The cDNAs encoding the biosynthetic precursors of both peptides were cloned from a venom-derived cDNA library using 3'- and 5'-RACE strategies. Both translated precursors contained open-reading frames of 74 amino acid residues, each encoding one copy of a putative novel nonadecapeptide, whose primary structures were FLFSLIPSVIAGLVSAIRN and FLFSLIPSAIAGLVSAIRN, respectively. Both peptides were C-terminally amidated. Synthetic versions of each natural peptide displayed broad-spectrum antimicrobial activities, but were devoid of antiproliferative activity against human cancer cell lines. However, synthetic analogues of each peptide, engineered for enhanced cationicity and amphipathicity, exhibited increases in antimicrobial potency and acquired antiproliferative activity against a range of human cancer cell lines. These data clearly illustrate the potential that natural peptide templates provide towards the design of synthetic analogues for therapeutic exploitation. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop