Next Issue
Previous Issue

Table of Contents

Polymers, Volume 3, Issue 3 (September 2011), Pages 975-1574

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-36
Export citation of selected articles as:
Open AccessArticle Loading of Two Related Metal-Organic Frameworks (MOFs), [Cu2(bdc)2(dabco)] and [Cu2(ndc)2(dabco)], with Ferrocene
Polymers 2011, 3(3), 1565-1574; https://doi.org/10.3390/polym3031565
Received: 9 July 2011 / Revised: 30 August 2011 / Accepted: 20 September 2011 / Published: 21 September 2011
Cited by 5 | PDF Full-text (1082 KB) | HTML Full-text | XML Full-text
Abstract
We have studied the loading of two related, similar porous metal-organic frameworks (MOFs) [Cu2(bdc)2(dabco)] (1), and [Cu2(ndc)2(dabco)] (2) with ferrocene by exposing bulk powder samples to the corresponding vapor. On the
[...] Read more.
We have studied the loading of two related, similar porous metal-organic frameworks (MOFs) [Cu2(bdc)2(dabco)] (1), and [Cu2(ndc)2(dabco)] (2) with ferrocene by exposing bulk powder samples to the corresponding vapor. On the basis of powder X-ray diffraction data and molecular dynamics (MD) calculations we propose that each pore can store one ferrocene molecule. Despite the rather pronounced similarity of the two MOFs a quite different behavior is observed, for 1 loading with ferrocene leads to an anisotropic 1% contraction, whereas for 2 no deformation is observed. Mössbauer spectroscopy studies reveal that the Fe oxidation level remains unchanged during the process. Time dependent studies reveal that the diffusion constant governing the loading from the gas-phase for 1 is approximately three times larger than the value for 2. Full article
(This article belongs to the Special Issue Coordination Polymers)
Open AccessArticle Polymeric Optical Code-Division Multiple-Access (CDMA) Encoder and Decoder Modules
Polymers 2011, 3(3), 1554-1564; https://doi.org/10.3390/polym3031554
Received: 1 August 2011 / Revised: 31 August 2011 / Accepted: 13 September 2011 / Published: 19 September 2011
Cited by 1 | PDF Full-text (631 KB) | HTML Full-text | XML Full-text
Abstract
We propose a low cost polymeric optical waveguides-based optical CDMA encoder and decoder modules. The structures of the optical CDMA encoder and decoder modules are presented. The performance of the optical CDMA encoder and decoder modules is simulated using 10-chip binary phase-shift keying
[...] Read more.
We propose a low cost polymeric optical waveguides-based optical CDMA encoder and decoder modules. The structures of the optical CDMA encoder and decoder modules are presented. The performance of the optical CDMA encoder and decoder modules is simulated using 10-chip binary phase-shift keying (BPSK) coding schemes. The optical CDMA encoder and decoder modules can effectively transmit and recover optical CDMA data streams. The SNR of the received signal is analyzed and determined to be primarily from the cross correlation with other channels. Full article
(This article belongs to the Special Issue Polymers for Optical Applications)
Open AccessArticle NMR Studies and Molecular Dynamic Simulation of Synthetic Dendritic Antigens
Polymers 2011, 3(3), 1533-1553; https://doi.org/10.3390/polym3031533
Received: 19 August 2011 / Revised: 30 August 2011 / Accepted: 9 September 2011 / Published: 13 September 2011
Cited by 12 | PDF Full-text (1302 KB) | HTML Full-text | XML Full-text
Abstract
A series of synthetic benzylpenicillinoylated dendrimers has been prepared using up to 4th generation PAMAM dendrimers. These nanoconjugates, as nanosized Dendritic Antigens, are useful in the diagnostic evaluation of drug allergy due to specific molecular recognition with the Human Immunological System (IgE). The
[...] Read more.
A series of synthetic benzylpenicillinoylated dendrimers has been prepared using up to 4th generation PAMAM dendrimers. These nanoconjugates, as nanosized Dendritic Antigens, are useful in the diagnostic evaluation of drug allergy due to specific molecular recognition with the Human Immunological System (IgE). The morphology and dimensions of the conjugates coupled to the orientation of the peripheral benzylpenicillin residues in the dendrimers may play key roles in such molecular recognition processes. Herein, the characterization and conformation of these structures are studied by a detailed analysis of 1D (1H and 13C NMR) and 2D NMR (1H,1H-NOESY) spectra. These dendrimers in explicit solvent were studied by the atomistic forcefield-based molecular dynamics. Structural properties such as shape, radius-of-gyration and distribution of the monomers will be discussed in relation to the experimental observations. Full article
(This article belongs to the Special Issue Dendrimers and Hyperbranched Polymers)
Open AccessArticle Activity and Mechanism of Antimicrobial Peptide-Mimetic Amphiphilic Polymethacrylate Derivatives
Polymers 2011, 3(3), 1512-1532; https://doi.org/10.3390/polym3031512
Received: 27 July 2011 / Revised: 22 August 2011 / Accepted: 8 September 2011 / Published: 13 September 2011
Cited by 45 | PDF Full-text (477 KB) | HTML Full-text | XML Full-text
Abstract
Cationic amphiphilic polymethacrylate derivatives (PMAs) have shown potential as a novel class of synthetic antimicrobials. A panel of PMAs with varied ratios of hydrophobic and cationic side chains were synthesized and tested for antimicrobial activity and mechanism of action. The PMAs are shown
[...] Read more.
Cationic amphiphilic polymethacrylate derivatives (PMAs) have shown potential as a novel class of synthetic antimicrobials. A panel of PMAs with varied ratios of hydrophobic and cationic side chains were synthesized and tested for antimicrobial activity and mechanism of action. The PMAs are shown to be active against a panel of pathogenic bacteria, including a drug-resistant Staphylococcus aureus, compared to the natural antimicrobial peptide magainin which did not display any activity against the same strain. The selected PMAs with 47–63% of methyl groups in the side chains showed minimum inhibitory concentrations of ≤2–31 µg/mL, but cause only minimal harm to human red blood cells. The PMAs also exhibit rapid bactericidal kinetics. Culturing Escherichia coli in the presence of the PMAs did not exhibit any potential to develop resistance against the PMAs. The antibacterial activities of PMAs against E. coli and S. aureus were slightly reduced in the presence of physiological salts. The activity of PMAs showed bactericidal effects against E. coli and S. aureus in both exponential and stationary growth phases. These results demonstrate that PMAs are a new antimicrobial platform with no observed development of resistance in bacteria. In addition, the PMAs permeabilized the E. coli outer membrane at polymer concentrations lower than their MIC values, but they did not show any effect on the bacterial inner membrane. This indicates that mechanisms other than membrane permeabilization may be the primary factors determining their antimicrobial activity. Full article
Open AccessReview An Excursion into the Intriguing World of Polymeric Tl(I) and Ag(I) Cyanoximates
Polymers 2011, 3(3), 1475-1511; https://doi.org/10.3390/polym3031475
Received: 30 June 2011 / Revised: 16 August 2011 / Accepted: 30 August 2011 / Published: 13 September 2011
Cited by 8 | PDF Full-text (1891 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The reaction of hot (~95 °C) aqueous solutions of Tl2CO3 with solid HL (HL = NC-C(=N-OH)-R is a cyanoxime, and R is an electron-withdrawing group; 37 ligands are known up-to-date) leads to crystalline yellow/orange TlL. Similarly, the reaction between AgNO
[...] Read more.
The reaction of hot (~95 °C) aqueous solutions of Tl2CO3 with solid HL (HL = NC-C(=N-OH)-R is a cyanoxime, and R is an electron-withdrawing group; 37 ligands are known up-to-date) leads to crystalline yellow/orange TlL. Similarly, the reaction between AgNO3 and ML (M = K+, Na+; L = anion of the monodeprotonated cyanoxime) this time at room temperature in mixed ethanol/aqueous solutions leads to sparingly soluble, colored AgL in high-yield. All synthesized monovalent Tl and Ag complexes were characterized using a variety of spectroscopic methods and X-ray analysis, which revealed the formation of primarily 2D coordination polymers of different complexity. In all cases cyanoxime mono-anions act as bridging ligands. Thallium(I) cyanoximates adopt in most cases a double-stranded motif that is originated from centrosymmetric (TlL)2 dimers in which two Tl2O2 rhombs are fused into infinite “ladder-type” structure. There are very short (3.65–3.85 Å) intermetallic distances in (TlL)n, which are close to that (3.46 Å) in metallic thallium. This opens the possibility for the electrochemical or chemical generation of mixed valence Tl(I)/Tl(III) polymers that may exhibit electrical conductivity. Synthesized silver(I) compounds demonstrate a very significant (for multiple years!) stability towards visible light. There are three areas of potential practical applications of these unusual complexes: (1) battery-less detectors of UV-radiation, (2) non electrical sensors for gases of industrial importance, (3) antimicrobial additives to light-curable acrylate polymeric glues, fillers and adhesives used during introduction of indwelling medical devices. Chemical, structural, technological and biological aspects of application of Tl(I) and Ag(I) cyanoximes-based coordination polymers are reviewed. Full article
(This article belongs to the Special Issue Coordination Polymers)
Open AccessArticle A Molecular Antenna Coordination Polymer from Cadmium(II) and 4,4’-Bipyridine Featuring Three Distinct Polymer Strands in the Crystal
Polymers 2011, 3(3), 1458-1474; https://doi.org/10.3390/polym3031458
Received: 26 July 2011 / Revised: 18 August 2011 / Accepted: 31 August 2011 / Published: 5 September 2011
Cited by 6 | PDF Full-text (1478 KB) | HTML Full-text | XML Full-text
Abstract
Reaction of cadmium perchlorate and the prototypical linear bridging ligand 4,4’-bipyridine (4,4’-bipy) in an ethanol/water mixture affords the one-dimensional coordination polymer, [{Cd(m-4,4’-bipy)(4,4’-bipy)2(H2O)2}(ClO4)2 × 2 4,4’-bipy × 4.5 H2O]n(
[...] Read more.
Reaction of cadmium perchlorate and the prototypical linear bridging ligand 4,4’-bipyridine (4,4’-bipy) in an ethanol/water mixture affords the one-dimensional coordination polymer, [{Cd(m-4,4’-bipy)(4,4’-bipy)2(H2O)2}(ClO4)2 × 2 4,4’-bipy × 4.5 H2O]n (1). The Cd2+ ions adopt an octahedral coordination sphere and are joined into linear chains by 4,4’-bipy via two trans coordination sites. The remaining two trans sites in the equatorial plane carry terminally monodentate-bound 4,4’-bipy ligands, resulting in a molecular antenna arrangement. The two axial sites of each Cd2+ ion are occupied by aqua ligands. Compound 1 crystallizes in the non-centrosymmetric, monoclinic space group C2 with three similar, crystallographically independent, cationic coordination polymer strands in the unit cell, which essentially differ only in the conformations of the 4,4’-bipyridyl ligands. Consistent with the similarity of the local coordination environments of the three independent Cd atoms in the structure, 113Cd MAS NMR spectroscopy reveals a single resonance line at 89 ppm. Full article
(This article belongs to the Special Issue Coordination Polymers)
Figures

Graphical abstract

Open AccessArticle Photomechanical Response of Composite Structures Built from Azobenzene Liquid Crystal Polymer Networks
Polymers 2011, 3(3), 1447-1457; https://doi.org/10.3390/polym3031447
Received: 1 August 2011 / Revised: 19 August 2011 / Accepted: 30 August 2011 / Published: 2 September 2011
Cited by 13 | PDF Full-text (997 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Optically directed shape adaptive responses have been sought after for many decades in photoresponsive polymeric materials. A number of recent examinations have elucidated elucidated the unique opportunities of photomechanical responses realized in azobenzene-functionalized liquid crystalline polymer networks (both elastomers and glasses). This work
[...] Read more.
Optically directed shape adaptive responses have been sought after for many decades in photoresponsive polymeric materials. A number of recent examinations have elucidated elucidated the unique opportunities of photomechanical responses realized in azobenzene-functionalized liquid crystalline polymer networks (both elastomers and glasses). This work summarizes and contrasts the photomechanical response of glassy polydomain, monodomain, and twisted nematic azo-LCN materials to blue-green irradiation. Building from this summary, the combinatorial photomechanical response observed upon irradiation of composite cantilevers is examined. Large scale shape adaptations are realized, with novel responses that may be of potential use in future employment of these materials in actuation. Full article
(This article belongs to the Special Issue Liquid Crystalline Polymers)
Open AccessArticle Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes
Polymers 2011, 3(3), 1433-1446; https://doi.org/10.3390/polym3031433
Received: 7 June 2011 / Revised: 13 July 2011 / Accepted: 24 August 2011 / Published: 29 August 2011
Cited by 17 | PDF Full-text (1570 KB) | HTML Full-text | XML Full-text
Abstract
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical
[...] Read more.
The inclusion of carbon nanotubes in polymer matrix has been proposed to enhance the polymer’s physical and electrical properties. In this study, microscopic and spectroscopic techniques are used to investigate the interaction between poly(3-hexylthiophene) (P3HT) and nanotubes and the reciprocal modification of physical properties. The presence of P3HT-covered nanotubes dispersed in the polymer matrix has been observed by atomic force microscopy and transmission electron microscopy. Then, the modification of P3HT optical properties due to nanotube inclusion has been evidenced with spectroscopic techniques like absorption and Raman spectroscopy. The study is completed with detailed nanoscale analysis by scanning probe techniques. The ordered self assembly of polymer adhering on the nanotube is unveiled by showing an example of helical wrapping of P3HT. Scanning tunneling spectroscopy study provides information on the electronic structure of nanotube-polymer assembly, revealing the charge transfer from P3HT to the nanotube. Full article
(This article belongs to the Special Issue Carbon Nanotubes: Synthesis, Characterization and Applications)
Open AccessArticle Consolidation of Inorganic Precipitated Silica Gel
Polymers 2011, 3(3), 1423-1432; https://doi.org/10.3390/polym3031423
Received: 25 July 2011 / Revised: 15 August 2011 / Accepted: 24 August 2011 / Published: 29 August 2011
Cited by 3 | PDF Full-text (612 KB) | HTML Full-text | XML Full-text
Abstract
Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case
[...] Read more.
Colloidal gels are possible intermediates in the generation of highly porous particle systems. In the production process the gels are fragmented after their formation. These gel fragments compact to particles whose application-technological properties are determined by their size and porosity. In the case of precipitated silica gels, this consolidation process depends on temperature and pH, among other parameters. It is shown that these dependencies can be characterized by oedometer measurements. Originally, the oedometer test (one-dimensional compression test) stemmed from soil mechanics. It has proven to be an interesting novel examination method for gels. Quantitative data of the time-dependent shrinkage of gel samples can be obtained. The consolidation of the gels shows a characteristic dependence on the above parameters. Full article
(This article belongs to the Special Issue Polymer Nanogels and Microgels)
Open AccessArticle Synthesis of Stimuli-responsive, Water-soluble Poly[2-(dimethylamino)ethyl methacrylate/styrene] Statistical Copolymers by Nitroxide Mediated Polymerization
Polymers 2011, 3(3), 1398-1422; https://doi.org/10.3390/polym3031398
Received: 20 July 2011 / Revised: 15 August 2011 / Accepted: 25 August 2011 / Published: 26 August 2011
Cited by 26 | PDF Full-text (778 KB) | HTML Full-text | XML Full-text
Abstract
2-(Dimethylamino)ethyl methacrylate/styrene statistical copolymers (poly(DMAEMA-stat-styrene)) with feed compositions fDMAEMA = 80–95 mol%, (number average molecular weights Mn = 9.5–11.2 kg mol−1) were synthesized using succinimidyl ester-functionalized BlocBuilder alkoxyamine initiator at 80 °C in bulk. Polymerization
[...] Read more.
2-(Dimethylamino)ethyl methacrylate/styrene statistical copolymers (poly(DMAEMA-stat-styrene)) with feed compositions fDMAEMA = 80–95 mol%, (number average molecular weights Mn = 9.5–11.2 kg mol−1) were synthesized using succinimidyl ester-functionalized BlocBuilder alkoxyamine initiator at 80 °C in bulk. Polymerization rate increased three-fold on increasing fDMAEMA = 80 to 95 mol%. Linear Mn increases with conversion were observed up to about 50% conversion and obtained copolymers possessed monomodal, relatively narrow molecular weight distributions (polydispersity = 1.32–1.59). Copolymers with fDMAEMA = 80 and 90 mol% were also cleanly chain-extended with DMAEMA/styrene mixtures of 95 and 90 mol% DMAEMA, respectively, confirming the livingness of the copolymers. Copolymer phase behavior in aqueous solutions was examined by dynamic light scattering and UV-Vis spectroscopy. All copolymers exhibited lower critical solution temperature (LCST)-type behavior. LCST decreased with increasing styrene content in the copolymer and with increasing solution concentration. All copolymers were completely water-soluble and temperature insensitive at pH 4 but were more hydrophobic at pH 10, particularly copolymers with fDMAEMA = 80 and 85 mol%, which were water-insoluble. At pH 10, LCST of copolymers with fDMAEMA = 90 and 95 mol% were more than 10 °C lower compared to their solutions in neutral, de-ionized water. Block copolymers with two statistical blocks with different DMAEMA compositions exhibited a single LCST, suggesting the block segments were not distinct enough to exhibit separate LCSTs in water. Full article
(This article belongs to the Special Issue Water-Soluble Polymers)
Figures

Graphical abstract

Open AccessReview Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier
Polymers 2011, 3(3), 1377-1397; https://doi.org/10.3390/polym3031377
Received: 20 June 2011 / Revised: 8 August 2011 / Accepted: 22 August 2011 / Published: 26 August 2011
Cited by 880 | PDF Full-text (312 KB) | HTML Full-text | XML Full-text
Abstract
In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties
[...] Read more.
In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release. Full article
(This article belongs to the Special Issue Bioinspired Polymers)
Open AccessArticle Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape
Polymers 2011, 3(3), 1363-1376; https://doi.org/10.3390/polym3031363
Received: 5 July 2011 / Revised: 12 August 2011 / Accepted: 22 August 2011 / Published: 25 August 2011
Cited by 4 | PDF Full-text (634 KB) | HTML Full-text | XML Full-text
Abstract
Polyelectrolyte complexes (PECs) were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene). Additionally, the n/n+ ratio of the molar
[...] Read more.
Polyelectrolyte complexes (PECs) were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene). Additionally, the n/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS) and atomic force microscopy (AFM). Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene). These findings could be proved by AFM. Fractal dimension (D), root mean square (RMS) roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer. Full article
(This article belongs to the Special Issue Polymer Nanogels and Microgels)
Open AccessArticle Nanocomposites Based on Metal and Metal Sulfide Clusters Embedded in Polystyrene
Polymers 2011, 3(3), 1352-1362; https://doi.org/10.3390/polym3031352
Received: 9 July 2011 / Accepted: 10 August 2011 / Published: 22 August 2011
Cited by 2 | PDF Full-text (3963 KB) | HTML Full-text | XML Full-text
Abstract
Transition-metal alkane-thiolates (i.e., organic salts with formula Me(SR)x, where R is a linear aliphatic hydrocarbon group, –CnH2n+1) undergo a thermolysis reaction at moderately low temperatures (close to 200 °C), which produces metal atoms or metal
[...] Read more.
Transition-metal alkane-thiolates (i.e., organic salts with formula Me(SR)x, where R is a linear aliphatic hydrocarbon group, –CnH2n+1) undergo a thermolysis reaction at moderately low temperatures (close to 200 °C), which produces metal atoms or metal sulfide species and an organic by-product, disulfide (RSSR) or thioether (RSR) molecules, respectively. Alkane-thiolates are non-polar chemical compounds that dissolve in most techno-polymers and the resulting solid solutions can be annealed to generate polymer-embedded metal or metal sulfide clusters. Here, the preparation of silver and gold clusters embedded into amorphous polystyrene by thermolysis of a dodecyl-thiolate precursor is described in detail. However, this chemical approach is quite universal and a large variety of polymer-embedded metals or metal sulfides could be similarly prepared. Full article
(This article belongs to the Special Issue Polymer-Inorganic Hybrids and Their Applications)
Open AccessReview Theory-Guided Design of Organic Electro-Optic Materials and Devices
Polymers 2011, 3(3), 1325-1351; https://doi.org/10.3390/polym3031325
Received: 15 July 2011 / Revised: 2 August 2011 / Accepted: 16 August 2011 / Published: 19 August 2011
Cited by 32 | PDF Full-text (1100 KB) | HTML Full-text | XML Full-text
Abstract
Integrated (multi-scale) quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination
[...] Read more.
Integrated (multi-scale) quantum and statistical mechanical theoretical methods have guided the nano-engineering of controlled intermolecular electrostatic interactions for the dramatic improvement of acentric order and thus electro-optic activity of melt-processable organic polymer and dendrimer electro-optic materials. New measurement techniques have permitted quantitative determination of the molecular order parameters, lattice dimensionality, and nanoscale viscoelasticity properties of these new soft matter materials and have facilitated comparison of theoretically-predicted structures and thermodynamic properties with experimentally-defined structures and properties. New processing protocols have permitted further enhancement of material properties and have facilitated the fabrication of complex device structures. The integration of organic electro-optic materials into silicon photonic, plasmonic, and metamaterial device architectures has led to impressive new performance metrics for a variety of technological applications. Full article
(This article belongs to the Special Issue Polymers for Optical Applications)
Open AccessArticle Simplified Reflection Fabry-Perot Method for Determination of Electro-Optic Coefficients of Poled Polymer Thin Films
Polymers 2011, 3(3), 1310-1324; https://doi.org/10.3390/polym3031310
Received: 15 July 2011 / Revised: 12 August 2011 / Accepted: 16 August 2011 / Published: 18 August 2011
Cited by 7 | PDF Full-text (1001 KB) | HTML Full-text | XML Full-text
Abstract
We report a simplified reflection mode Fabry-Perot interferometry method for determination of electro-optic (EO) coefficients of poled polymer thin films. Rather than fitting the detailed shape of the Fabry-Perot resonance curve, our simplification involves a technique to experimentally determine the voltage-induced shift in
[...] Read more.
We report a simplified reflection mode Fabry-Perot interferometry method for determination of electro-optic (EO) coefficients of poled polymer thin films. Rather than fitting the detailed shape of the Fabry-Perot resonance curve, our simplification involves a technique to experimentally determine the voltage-induced shift in the angular position of the resonance minimum. Rigorous analysis based on optical properties of individual layers of the multilayer structure is not necessary in the data analysis. Although angle scans are involved, the experimental setup does not require a θ-2θ rotation stage and the simplified analysis is an advantage for polymer synthetic efforts requiring quick and reliable screening of new materials. Numerical and experimental results show that our proposed method can determine EO coefficients to within an error of ~8% if poled values for the refractive indices are used. Full article
(This article belongs to the Special Issue Polymers for Optical Applications)
Back to Top