Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana)
Abstract
:1. Introduction
1.1. Adaptive Divergence along Ecological Gradients and Reproductive Isolation
1.2. Ecological Speciation and Reproductive Isolation of H2S-Adapted Poecilia spp.
2. Materials and Methods
2.1. Study System and Details on the Study Populations
2.2. Female Mate Choice within and across Drainages
2.3. Body Color Divergence in Sulfide-Adapted Populations
2.4. Estimating Broad-Sense Heritability of Color Divergence
2.5. Does Divergence in Male Coloration Predict Variation in Females’ SOP?
3. Results
3.1. Female Mate Choice within and among Drainages
3.2. Divergence in Male Body Coloration
3.3. Broad-Sense Heritability of Population Differences
3.4. Does Divergence in Male Body Coloration Predict Variation in SOPs?
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Photographs and Color Adjustment of Pictures
Appendix A.2. Principal Component Analysis to Analyze the Divergence of Male Body Coloration
PC | Eigenvalue | Percent Variance Explained | Loadings > 0.75 | Identifier |
---|---|---|---|---|
1 | 6.573 | 21.911 | a* 3, 4, 8, 9 | a* ventral and fins |
2 | 5.420 | 18.066 | b* 2, 3, 5, 7 | b* dorsal and ventral |
3 | 3.640 | 12.134 | L* 2, 5, 7 | L* dorsal |
4 | 2.948 | 9.826 | a* 2, 5, 7 | a* dorsal |
5 | 2.174 | 7.248 | L* 10 | L* fins |
6 | 1.703 | 5.675 | L* 1,4 | L* ventral |
7 | 1.285 | 4.285 | b* 6, 10 | b* fins |
Variable | PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | PC 6 | PC 7 |
---|---|---|---|---|---|---|---|
L* 1 | −0.04 | −0.20 | 0.01 | −0.14 | <0.01 | 0.87 | 0.07 |
a* 1 | 0.66 | −0.01 | 0.16 | 0.26 | 0.06 | −0.43 | 0.23 |
b* 1 | 0.10 | 0.57 | −0.02 | 0.05 | 0.31 | −0.44 | 0.30 |
L* 2 | 0.08 | 0.11 | 0.90 | −0.25 | 0.08 | 0.04 | −0.05 |
a* 2 | 0.35 | <0.01 | −0.30 | 0.80 | −0.13 | −0.05 | −0.06 |
b* 2 | 0.04 | 0.81 | 0.27 | −0.17 | −0.07 | −0.20 | 0.11 |
L* 3 | −0.27 | −0.06 | 0.47 | 0.55 | 0.09 | 0.10 | −0.10 |
a* 3 | 0.86 | 0.08 | 0.02 | 0.14 | −0.09 | −0.01 | 0.02 |
b* 3 | 0.12 | 0.85 | 0.03 | 0.06 | −0.14 | −0.03 | 0.02 |
L* 4 | −0.15 | −0.18 | 0.28 | 0.22 | 0.16 | 0.80 | 0.02 |
a* 4 | 0.82 | 0.07 | −0.05 | 0.21 | −0.11 | −0.22 | 0.21 |
b* 4 | 0.09 | 0.58 | −0.32 | 0.03 | 0.17 | −0.02 | 0.50 |
L* 5 | 0.02 | 0.11 | 0.93 | −0.08 | 0.09 | 0.08 | −0.05 |
a* 5 | 0.47 | <0.01 | −0.21 | 0.82 | 0.02 | −0.04 | −0.05 |
b* 5 | 0.01 | 0.87 | 0.23 | 0.03 | 0.03 | −0.24 | −0.11 |
L* 6 | −0.06 | −0.10 | 0.33 | −0.07 | 0.64 | <0.01 | 0.10 |
a* 6 | 0.59 | −0.36 | <0.01 | 0.31 | −0.30 | 0.09 | 0.32 |
b* 6 | −0.05 | 0.05 | −0.03 | −0.14 | 0.09 | 0.05 | 0.89 |
L* 7 | −0.04 | 0.17 | 0.88 | −0.09 | 0.27 | <0.01 | −0.04 |
a* 7 | 0.52 | <0.01 | −0.19 | 0.76 | 0.06 | 0.07 | −0.08 |
b* 7 | −0.06 | 0.86 | 0.20 | 0.06 | 0.13 | −0.12 | −0.13 |
L* 8 | −0.28 | −0.17 | −0.01 | 0.34 | 0.47 | 0.54 | −0.01 |
a* 8 | 0.83 | 0.21 | −0.02 | 0.01 | <0.01 | <0.01 | −0.05 |
b* 8 | 0.13 | 0.45 | −0.32 | −0.16 | 0.41 | 0.38 | −0.16 |
L* 9 | −0.03 | 0.14 | 0.40 | 0.34 | 0.66 | 0.19 | −0.24 |
a* 9 | 0.89 | 0.05 | −0.04 | 0.07 | −0.13 | −0.02 | −0.10 |
b* 9 | 0.25 | 0.59 | −0.25 | −0.19 | 0.27 | 0.19 | 0.03 |
L* 10 | −0.16 | 0.13 | 0.07 | −0.02 | 0.77 | 0.05 | −0.05 |
a* 10 | 0.43 | −0.35 | 0.01 | 0.31 | −0.51 | −0.02 | 0.41 |
b* 10 | 0.14 | −0.03 | −0.06 | −0.04 | −0.28 | −0.04 | 0.89 |
Appendix A.3. Additional Results on Population Differences in Male Body Coloration (Wild-Caught Males)
Effect | F | Hypothesis df, Error df | p | Wilks’ Partial η2 |
---|---|---|---|---|
PC 1 (a* ventral, a* fins) | ||||
drainage | 3.992 | 2, 85 | 0.022 | 0.086 |
presence of H2S | 2.051 | 1, 85 | 0.156 | 0.024 |
PC 2 (b* body) | ||||
drainage | 3.578 | 2, 83 | 0.032 | 0.079 |
presence of H2S | 2.566 | 1, 83 | 0.113 | 0.030 |
drainage × presence of H2S | 3.991 | 2, 83 | 0.022 | 0.088 |
PC 3 (L* dorsal) | ||||
drainage | 3.307 | 2, 80 | 0.042 | 0.076 |
presence of H2S | 0.232 | 1, 80 | 0.632 | 0.003 |
SL | 1.363 | 1, 80 | 0.246 | 0.017 |
drainage × presence of H2S | 24.432 | 2, 80 | <0.0001 | 0.379 |
drainage × SL | 3.645 | 2, 80 | 0.031 | 0.084 |
PC 4 (a* dorsal) | ||||
drainage | 5.666 | 2, 83 | 0.005 | 0.120 |
presence of H2S | 47.342 | 1, 83 | <0.0001 | 0.363 |
drainage × presence of H2S | 4.486 | 2, 83 | 0.014 | 0.098 |
PC 5 (L* fins) | ||||
drainage | 3.663 | 2, 80 | 0.030 | 0.084 |
presence of H2S | 0.182 | 1, 80 | 0.671 | 0.002 |
SL | 20.969 | 1, 80 | <0.0001 | 0.208 |
drainage × presence of H2S | 9.441 | 2, 80 | <0.0001 | 0.191 |
drainage × SL | 3.864 | 2, 80 | 0.025 | 0.088 |
PC 6 (L* ventral) | ||||
drainage | 9.380 | 2, 85 | <0.0001 | 0.181 |
presence of H2S | 6.826 | 1, 85 | 0.011 | 0.074 |
PC 7 (b* fins) | ||||
drainage | 4.630 | 2, 82 | 0.012 | 0.101 |
presence of H2S | 3.367 | 1, 82 | 0.070 | 0.039 |
SL | 10.811 | 1, 82 | 0.001 | 0.116 |
drainage × SL | 7.575 | 2, 82 | 0.001 | 0.156 |
Appendix B
Broad-Sense Heritability
PC | Eigenvalue | Percent Variance Explained | Loadings > 0.75 | Identifier |
---|---|---|---|---|
1 | 8.966 | 29.888 | L* 2, 5, 7 | L* dorsal |
2 | 4.892 | 16.307 | a* 3, 9 | a* ventral |
3 | 3.867 | 12.889 | a* 2, 5, 7, L* 8 | a* dorsal |
4 | 2.760 | 9.201 | a* 10, b* 6, 10 | a* and b* fins |
5 | 2.325 | 7.751 | b* 8, 9 | b* fin roots |
6 | 1.271 | 4.238 | b* 1 | b* head |
Variable | PC 1 | PC 2 | PC 3 | PC 4 | PC 5 | PC 6 |
---|---|---|---|---|---|---|
L* 1 | −0.63 | −0.40 | −0.37 | −0.06 | 0.19 | −0.02 |
a* 1 | 0.37 | 0.72 | 0.30 | 0.18 | −0.15 | −0.03 |
b* 1 | 0.29 | 0.08 | 0.12 | 0.19 | 0.10 | 0.81 |
L* 2 | 0.90 | 0.09 | −0.28 | −0.07 | 0.08 | 0.06 |
a* 2 | −0.22 | 0.23 | 0.77 | 0.09 | −0.11 | 0.33 |
b* 2 | 0.57 | 0.22 | −0.07 | 0.18 | 0.57 | 0.36 |
L* 3 | 0.51 | 0.20 | 0.72 | 0.11 | −0.06 | −0.02 |
a* 3 | 0.10 | 0.85 | 0.10 | 0.17 | 0.16 | −0.04 |
b* 3 | 0.23 | −0.36 | 0.34 | −0.10 | 0.11 | 0.61 |
L* 4 | −0.18 | −0.71 | 0.19 | −0.28 | −0.26 | 0.06 |
a* 4 | −0.21 | 0.72 | 0.06 | 0.09 | 0.12 | −0.04 |
b* 4 | −0.06 | 0.12 | 0.17 | 0.32 | 0.36 | 0.69 |
L* 5 | 0.94 | 0.07 | −0.06 | −0.06 | 0.02 | 0.13 |
a* 5 | −0.11 | 0.35 | 0.78 | 0.20 | −0.08 | 0.36 |
b* 5 | 0.64 | 0.22 | 0.15 | 0.17 | 0.48 | 0.42 |
L* 6 | 0.60 | −0.33 | −0.05 | 0.44 | 0.15 | −0.03 |
a* 6 | 0.04 | 0.55 | 0.30 | 0.61 | −0.15 | 0.06 |
b* 6 | 0.10 | 0.19 | −0.01 | 0.87 | 0.30 | −0.01 |
L* 7 | 0.95 | 0.08 | 0.09 | −0.06 | <0.01 | <0.01 |
a* 7 | −0.07 | 0.43 | 0.76 | 0.15 | −0.05 | 0.32 |
b* 7 | 0.62 | 0.23 | 0.31 | 0.12 | 0.49 | 0.34 |
L* 8 | −0.01 | −0.27 | 0.83 | 0.04 | 0.20 | −0.15 |
a* 8 | 0.07 | 0.71 | −0.03 | −0.16 | 0.12 | 0.36 |
b* 8 | −0.13 | 0.14 | −0.10 | −0.21 | 0.88 | 0.14 |
L* 9 | 0.57 | −0.09 | 0.56 | −0.27 | 0.11 | 0.07 |
a* 9 | 0.25 | 0.77 | 0.17 | 0.25 | 0.26 | 0.10 |
b* 9 | 0.15 | 0.18 | <0.01 | 0.09 | 0.89 | 0.09 |
L* 10 | 0.36 | −0.25 | 0.42 | −0.16 | −0.20 | 0.15 |
a* 10 | −0.13 | 0.32 | 0.23 | 0.78 | −0.22 | 0.11 |
b* 10 | −0.06 | 0.07 | −0.02 | 0.86 | −0.05 | 0.25 |
PC | ICC | F (df = 1) | p |
---|---|---|---|
1 | −0.225 | 0.816 | 0.532 |
2 | 0.575 | 2.352 | 0.368 |
3 | −6.089 | 0.141 | 0.771 |
4 | 0.991 | 105.307 | 0.062 |
5 | 0.305 | 1.440 | 0.442 |
6 | −2.331 | 0.300 | 0.681 |
References
- Deacon, A.E.; Jones, F.A.; Magurran, A.E. Gradients in predation risk in a tropical river system. Curr. Zool. 2018, 64, 213–221. [Google Scholar] [CrossRef]
- Diamond, S.E.; Chick, L.D. The Janus of macrophysiology: Stronger effects of evolutionary history, but weaker effects of climate on upper thermal limits are reversed for lower thermal limits in ants. Curr. Zool. 2018. [Google Scholar] [CrossRef]
- Riesch, R.; Plath, M.; Bierbach, D. Ecology and Evolution along environmental gradients. Curr. Zool. 2018, 64, 193–196. [Google Scholar] [CrossRef]
- Schluter, D. Ecology and the origin of species. Trends Ecol. Evol. 2001, 16, 372–380. [Google Scholar] [CrossRef]
- Coyne, J.A.; Orr, H.A. Speciation; Sinauer Associates: Sunderland, MA, USA, 2004. [Google Scholar]
- Lowry, D.B.; Rockwood, R.C.; Willis, J.H. Ecological reproductive isolation of coast and inland races of Mimulus guttatus. Evolution 2008, 62, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Rundle, H.D.; Nosil, P. Ecological speciation. Ecol. Lett. 2005, 8, 336–352. [Google Scholar] [CrossRef]
- Nosil, P. Ecological Speciation; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ravinet, M.; Faria, R.; Butlin, R.K.; Galindo, J.; Bierne, N.; Rafajlović, M.; Noor, M.A.F.; Mehlig, B.; Westram, A.M. Interpreting the genomic landscape of speciation: A road map for finding barriers to gene flow. J. Evol. Biol. 2017, 30, 1450–1477. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P.; Vines, T.H.; Funk, D.J. Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 2005, 59, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Nosil, P. Reproductive isolation caused by visual predation on migrants between divergent environments. Proc. R. Soc. B 2004, 271, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Pfenninger, M.; Lerp, H.; Riesch, R.; Eschenbrenner, C.; Slattery, P.A.; Bierbach, D.; Herrmann, N.; Schulte, M.; Arias-Rodriguez, L.; et al. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments. Evolution 2013, 67, 2647–2661. [Google Scholar] [CrossRef] [PubMed]
- Räsänen, K.; Hendry, A.P. Asymmetric reproductive barriers and mosaic reproductive isolation: Insights from misty lake-stream stickleback. Ecol. Evol. 2014, 4, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W.; Benkman, C.W. A coevolutionary arms race causes ecological speciation in crossbills. Am. Nat. 2007, 169, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, T.; Schluter, D. Ecological speciation in sticklebacks: Environment-dependent hybrid fitness. Evolution 1999, 53, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Rundle, H.D.; Nagel, L.; Wenrick Boughman, J.; Schluter, D. Natural selection and parallel speciation in sympatric sticklebacks. Science 2000, 287, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D. The Ecology of Adaptive Radiation; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Rundle, H.D.; Whitlock, M.C. A Genetic interpretation of ecologically dependent isolation. Evolution 2001, 55, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Rundle, H.D. A test of ecologically dependent postmating isolation between sympatric sticklebacks. Evolution 2002, 56, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, H.; Kort, H.D.; Broeck, A.V.; Brys, R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae). Oikos 2018, 127, 73–84. [Google Scholar] [CrossRef]
- Seehausen, O.; van Alphen, J.J.M. The effect of male coloration on female mate choice in closely related Lake Victoria cichlids (Haplochromis nyererei complex). Behav. Ecol. Sociobiol. 1998, 42, 1–8. [Google Scholar] [CrossRef]
- Bay, R.A.; Arnegard, M.E.; Conte, G.L.; Best, J.; Bedford, N.L.; McCann, S.R.; Dubin, M.E.; Chan, Y.F.; Jones, F.C.; Kingsley, D.M.; et al. Genetic coupling of female mate choice with polygenic ecological divergence facilitates stickleback speciation. Curr. Biol. 2017, 27, 3344–3349. [Google Scholar] [CrossRef] [PubMed]
- Aspbury, A.S.; Gabor, C.R. Discriminating males alter sperm production between species. Proc. Natl. Acad. Sci. USA 2004, 101, 15970–15973. [Google Scholar] [CrossRef] [PubMed]
- Espinedo, C.M.; Gabor, C.R.; Aspbury, A.S. Males, but not females, contribute to sexual isolation between two sympatric species of Gambusia. Evol. Ecol. 2010, 24, 865–878. [Google Scholar] [CrossRef]
- Bierbach, D.; Girndt, A.; Hamfler, S.; Klein, M.; Mücksch, F.; Penshorn, M.; Schwinn, M.; Zimmer, C.; Schlupp, I.; Streit, B.; et al. Male fish use prior knowledge about rivals to adjust their mate choice. Biol. Lett. 2011, 7, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Seehausen, O. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 1997, 277, 1808–1811. [Google Scholar] [CrossRef]
- Egger, B.; Mattersdorfer, K.; Sefc, K.M. Variable discrimination and asymmetric preferences in laboratory tests of reproductive isolation between cichlid colour morphs. J. Evol. Biol. 2009, 23, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Maan, M.E.; Seehausen, O. Ecology, sexual selection and speciation. Ecol. Lett. 2011, 14, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Van Doorn, G.S.; Weissing, F.J. The evolution of female preferences for multiple indicators of quality. Am. Nat. 2004, 164, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Servedio, M.R. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol. Appl. 2015, 9, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Servedio, M.R.; Boughman, J.W. The role of sexual selection in local adaptation and speciation. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 85–109. [Google Scholar] [CrossRef]
- Shafer, A.B.A.; Wolf, J.B.W. Widespread evidence for incipient ecological speciation: A meta-analysis of isolation-by-ecology. Ecol. Lett. 2013, 16, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Crapon de Caprona, M.-D.; Ryan, M.J. Conspecific mate recognition in swordtails, Xiphophorus nigrensis and X. pygmaeus (Poeciliidae): Olfactory and visual cues. Anim. Behav. 1990, 39, 290–296. [Google Scholar] [CrossRef]
- Phelps, S.M.; Rand, A.S.; Ryan, M.J. A cognitive framework for mate choice and species recognition. Am. Nat. 2006, 167, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Schumer, M.; Powell, D.L.; Delclós, P.J.; Squire, M.; Cui, R.; Andolfatto, P.; Rosenthal, G.G. Assortative mating and persistent reproductive isolation in hybrids. Proc. Natl. Acad. Sci. USA 2017, 114, 10936–10941. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J. Sexual selection on p-alleles and the evolution of mating asymetries in swordtails (Xiphophorus nigrensis and X. pygmeaus). In Trends in Ichthyology, an International Perspective; Schröder, J.H., Bauer, J., Schartl, M., Eds.; Blackwell Scientific Publications: Oxford, UK, 1993; pp. 269–277. [Google Scholar]
- Bagemihl, B. Biological Exuberance. Animal Homosexuality and Natural Diversity; Profile: London, UK, 1999. [Google Scholar]
- Bailey, N.W.; Zuk, M. Same-sex sexual behavior and evolution. Trends Ecol. Evol. 2009, 24, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Rand, A.S. Species recognition and sexual selection as a unitary problem in animal communication. Evolution 1993, 47, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Sherman, P.W.; Reeve, H.K.; Pfennig, D.W. Recognition systems. In Behavioural Ecology: An Evolutionary Approach, 4th ed.; Krebs, J.R., Davies, N.B., Eds.; Blackwell Scientific Publications: London, UK, 1997; pp. 69–96. [Google Scholar]
- Endler, J.A.; Basolo, A.L. Sensory ecology, receiver biases and sexual selection. Trends Ecol. Evol. 1998, 13, 415–420. [Google Scholar] [CrossRef]
- Panhuis, T.M.; Butlin, R.K.; Zuk, M.; Tregenza, T. Sexual selection and speciation. Trends Ecol. Evol. 2001, 16, 364–371. [Google Scholar] [CrossRef]
- Plath, M.; Heubel, K.U.; García de León, F.J.; Schlupp, I. Cave molly females (Poecilia mexicana, Poeciliidae, Teleostei) like well-fed males. Behav. Ecol. Sociobiol. 2005, 58, 144–151. [Google Scholar] [CrossRef]
- Plath, M.; Schlupp, I.; Parzefall, J.; Riesch, R. Female choice for large body size in the cave molly, Poecilia mexicana (Poeciliidae, Teleostei): Influence of species- and sex-specific cues. Behaviour 2007, 144, 1147–1160. [Google Scholar] [CrossRef]
- Møller, A.P. Fluctuating asymmetry in male sexual ornaments may reliably reveal male quality. Anim. Behav. 1990, 40, 1185–1187. [Google Scholar] [CrossRef]
- Petrie, M. Improved growth and survival of offspring of peacocks with more elaborate trains. Nature 1994, 371, 598–599. [Google Scholar] [CrossRef]
- Basolo, A.L. Female preference for male sword length in the green swordtail, Xiphophorus helleri (Pisces: Poeciliidae). Anim. Behav. 1990, 40, 332–338. [Google Scholar] [CrossRef]
- Basolo, A.L. Female preference predates the evolution of the sword in swordtail fish. Science 1990, 250, 808–810. [Google Scholar] [CrossRef] [PubMed]
- Basolo, A.L. Phylogenetic evidence for the role of a pre-existing bias in sexual selection. Proc. R. Soc. B 1995, 259, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, G.G.; Evans, C.S. Female preference for swords in Xiphophorus helleri reflects a bias for large apparent size. Proc. Natl. Acad. Sci. USA 1998, 95, 4431–4436. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.R.; Mussel, M.; Ryan, M.J. Vertical bars on male Xiphophorus multilineatus: A signal that deters rival males and attracts females. Behav. Ecol. 1995, 6, 274–279. [Google Scholar] [CrossRef]
- Ryan, M.J.; Wagner, W.E. Asymetries in mating preferences between species: Female swordtails prefer heterospecific males. Science 1987, 236, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.J.; Hews, D.K.; Wagner, W.E. Sexual selection on alleles that determine body size in the swordtail Xiphophorus nigrensis. Behav. Ecol. Sociobiol. 1990, 26, 231–237. [Google Scholar] [CrossRef]
- Morris, M.R.; Wagner, W.E.; Ryan, M.J. A negative correlation between trait and mate preference in Xiphophorus pygmaeus. Anim. Behav. 1996, 52, 1193–1203. [Google Scholar] [CrossRef]
- Meyer, A.; Salzburger, W.; Schartl, M. Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Mol. Ecol. 2006, 15, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Schartl, M.; Walter, R.B.; Meyer, A. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily. BMC Evol. Biol. 2013, 13, 25. [Google Scholar] [CrossRef]
- Endler, J.A. A predator’s view of animal color patterns. In Evolutionary Biology; Hecht, M.K., Steere, W.C., Wallace, B., Eds.; Springer: Boston, MA, USA, 1978; pp. 319–364. [Google Scholar]
- Endler, J.A. Natural Selection in the Wild; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar]
- Houde, A.E. Sex, Color, and Mate Choice in Guppies; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Greenway, R.; Drexler, S.; Arias-Rodriguez, L.; Tobler, M. Adaptive, but not condition-dependent, body shape differences contribute to assortative mating preferences during ecological speciation. Evolution 2016, 70, 2809–2822. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Kelley, J.L.; Plath, M.; Riesch, R. Extreme environments and the origins of biodiversity: Adaptation and speciation in sulfide spring fishes. Mol. Ecol. 2018, 27, 843–859. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Palacios, M.; Chapman, L.J.; Mitrofanov, I.; Bierbach, D.; Plath, M.; Arias-Rodriguez, L.; García de León, F.J.; Mateos, M. Evolution in extreme environments: Replicated phenotypic differentiation in livebearing fish inhabiting sulfidic springs. Evolution 2011, 65, 2213–2228. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Tobler, M.; Plath, M. Hydrogen sulfide-toxic habitats. In Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Riesch, R., Tobler, M., Plath, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 137–159. [Google Scholar]
- Riesch, R.; Tobler, M.; Plath, M. (Eds.) Extremophile Fishes. Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Pfenninger, M.; Lerp, H.; Tobler, M.; Passow, C.N.; Kelley, J.L.; Funke, E.; Greshake, B.; Erkoc, U.K.; Berberich, T.; Plath, M. Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment. Nat. Commun. 2014, 5, 3873. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.; Arias-Rodriguez, L.; Plath, M.; Eifert, C.; Lerp, H.; Lamboj, A.; Voelker, G.; Tobler, M. The rediscovery of a long described species reveals additional complexity in speciation patterns of poeciliid fishes in sulfide springs. PLoS ONE 2013, 8, e71069. [Google Scholar] [CrossRef] [PubMed]
- Palacios, M.; Voelker, G.; Arias-Rodriguez, L.; Mateos, M.; Tobler, M. Phylogenetic analyses of the subgenus Mollienesia (Poecilia, Poeciliidae, Teleostei) reveal taxonomic inconsistencies, cryptic biodiversity, and spatio-temporal aspects of diversification in Middle America. Mol. Phylogenet. Evol. 2016, 103, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.P.; Greenway, R.; Morgan, S.; Quackenbush, C.R.; Giordani, L.; Arias-Rodriguez, L.; Tobler, M.; Kelley, J.L. Genome-scale data reveal that endemic Poecilia populations from small sulphidic springs display no evidence of inbreeding. Mol. Ecol. 2017, 26, 4920–4934. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Riesch, R.; Tobler, C.M.; Schulz-Mirbach, T.; Plath, M. Natural and sexual selection against immigrants maintains differentiation among micro-allopatric populations. J. Evol. Biol. 2009, 22, 2298–2304. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Riesch, R.; Oranth, A.; Dzienko, J.; Karau, N.; Schießl, A.; Stadler, S.; Wigh, A.; Zimmer, C.; Arias-Rodriguez, L.; et al. Complementary effect of natural and sexual selection against immigrants maintains differentiation between locally adapted fish. Naturwissenschaften 2010, 97, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Bierbach, D.; Arias-Rodriguez, L.; Plath, M. Intrasexual competition enhances reproductive isolation between locally adapted populations. Curr. Zool. 2018, 64, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Bagarinao, T. Sulfide as an environmental factor and toxicant: Tolerance and adaptations in aquatic organisms. Aquat. Toxicol. 1992, 24, 21–62. [Google Scholar] [CrossRef]
- Grieshaber, M.K.; Völkel, S. Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu. Rev. Physiol. 1998, 60, 33–53. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Hastings, L. Convergent patterns of body shape differentiation in four different clades of poeciliid fishes inhabiting sulfide springs. Evol. Biol. 2011, 38, 412–421. [Google Scholar] [CrossRef]
- Riesch, R.; Tobler, M.; Lerp, H.; Jourdan, J.; Doumas, T.; Nosil, P.; Langerhans, R.B.; Plath, M. Extremophile Poeciliidae: Multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evol. Biol. 2016, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Kramer, D.L.; McClure, M. Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Environ. Biol. Fishes 1982, 7, 47–55. [Google Scholar] [CrossRef]
- Plath, M.; Tobler, M.; Riesch, R.; García de León, F.J.; Giere, O.; Schlupp, I. Survival in an extreme habitat: The roles of behaviour and energy limitation. Naturwissenschaften 2007, 94, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Riesch, R.; Tobler, C.M.; Plath, M. Compensatory behaviour in response to sulphide-induced hypoxia affects time budgets, feeding efficiency, and predation risk. Evol. Ecol. Res. 2009, 11, 935–948. [Google Scholar]
- Riesch, R.; Plath, M.; García de León, F.J.; Schlupp, I. Convergent life-history shifts: Toxic environments result in big babies in two clades of poeciliids. Naturwissenschaften 2010, 97, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Plath, M.; Schlupp, I. Toxic hydrogen sulfide and dark caves: Life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 2010, 91, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Plath, M.; Schlupp, I. Toxic hydrogen sulphide and dark caves: Pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae). J. Evol. Biol. 2011, 24, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Passow, C.N.; Brown, A.P.; Arias-Rodriguez, L.; Yee, M.-C.; Sockell, A.; Schartl, M.; Warren, W.C.; Bustamante, C.; Kelley, J.L.; Tobler, M. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae). Mol. Ecol. 2017, 26, 4211–4225. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Henpita, C.; Bassett, B.; Kelley, J.L.; Shaw, J.H. H2S exposure elicits differential expression of candidate genes in fish adapted to sulfidic and non-sulfidic environments. Comp. Biochem. Phys. A 2014, 175, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Pfenninger, M.; Patel, S.; Arias-Rodriguez, L.; Feldmeyer, B.; Riesch, R.; Plath, M. Unique evolutionary trajectories in repeated adaptation to hydrogen sulphide-toxic habitats of a neotropical fish (Poecilia mexicana). Mol. Ecol. 2015, 24, 5446–5459. [Google Scholar] [CrossRef] [PubMed]
- Barts, N.; Greenway, R.; Passow, C.N.; Arias-Rodriguez, L.; Kelley, J.L.; Tobler, M. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs. Genome 2018, 61, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Passow, C.N.; Henpita, C.; Shaw, J.H.; Quackenbush, C.R.; Warren, W.C.; Schartl, M.; Arias-Rodriguez, L.; Kelley, J.L.; Tobler, M. The roles of plasticity and evolutionary change in shaping gene expression variation in natural populations of extremophile fish. Mol. Ecol. 2017, 26, 6384–6399. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A. Natural selection on color patterns in Poecilia reticulata. Evolution 1980, 34, 76–91. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A.; Houde, A.E. Geographic variation in female preferences for male traits in Poecilia reticulata. Evolution 1995, 49, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Godin, J.-G.J.; Dugatkin, L.A. Female mating preference for bold males in the guppy, Poecilia reticulata. Proc. Natl. Acad. Sci. USA 1996, 93, 10262–10267. [Google Scholar] [CrossRef] [PubMed]
- Kodric-Brown, A. Sexual dichromatism and temporary color changes in the reproduction of fishes. Am. Zool. 1998, 38, 70–81. [Google Scholar] [CrossRef]
- Magurran, A.E. Evolutionary Ecology. The Trinidadian Guppy; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Price, A.C.; Weadick, C.J.; Shim, J.; Rodd, F.H. Pigments, patterns, and fish behavior. Zebrafish 2008, 5, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.A.; Riesch, R.; Heinen-Kay, J.L.; Langerhans, R.B. Evolution of male coloration during a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi). Evolution 2014, 68, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Elmer, K.R.; Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 2011, 26, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Langerhans, R.B.; Dewitt, T.J. Shared and unique features of evolutionary diversification. Am. Nat. 2004, 164, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Rosales Lagarde, L. Investigation of Karst Brackish-Sulfidic Springs and Their Role in the Hydrogeology, Subsurface Water-Rock Interactions, and Speleogenesis at Northern Sierra de Chiapas, Mexico. Ph.D. Dissertation, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2012. [Google Scholar]
- Rosales Lagarde, L.; Boston, P.J.; Campbell, A.; Stafford, K.W. Possible structural connection between Chichón Volcano and the sulfur-rich springs of Villa Luz Cave (a. k. a. Cueva de las Sardinas), Southern Mexico. Assoc. Mex. Cave Stud. Bull. 2006, 19, 177–184. [Google Scholar]
- Long, K.D.; Houde, A.E. Orange spots as a visual cue for female mate choice in the guppy (Poecilia reticulata). Ethology 1989, 82, 316–324. [Google Scholar] [CrossRef]
- Parzefall, J. Zur vergleichenden Ethologie verschiedener Mollienesia-Arten einschliesslich einer Höhlenform von M. sphenops. Behaviour 1969, 33, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Bierbach, D.; Penshorn, M.; Hamfler, S.; Herbert, D.B.; Appel, J.; Meyer, P.; Slattery, P.A.; Charaf, S.; Wolf, R.; Völker, J.; et al. Gradient evolution of body colouration in surface- and cave-dwelling Poecilia mexicana and the role of phenotype-assortative female mate choice. Biomed. Res. Int. 2013, 2013, 148348. [Google Scholar] [CrossRef] [PubMed]
- Culumber, Z.W.; Bautista-Hernández, C.E.; Monks, S.; Arias-Rodriguez, L.; Tobler, M.; Koenig, W. Variation in melanism and female preference in proximate but ecologically distinct environments. Ethology 2014, 120, 1090–1100. [Google Scholar] [CrossRef]
- Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: An environmental component to female choice. Behav. Ecol. Sociobiol. 1989, 25, 393–401. [Google Scholar] [CrossRef]
- Grether, G.F.; Hudon, J.; Millie, D.F. Carotenoid limitation of sexual coloration along an environmental gradient in guppies. Proc. R. Soc. B 1999, 266, 1317–1322. [Google Scholar] [CrossRef]
- Nicoletto, P.F.; Kodric-Brown, A. The relationship among swimming performance, courtship behavior, and carotenoid pigmentation of guppies in four rivers of Trinidad. Environ. Biol. Fishes 1999, 55, 227–235. [Google Scholar] [CrossRef]
- Bartko, J.J. The intraclass correlation coefficient as a measure of reliability. Psychol. Rep. 1966, 19, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Martin, R.A.; Langerhans, R.B. Predation’s role in life-history evolution of a livebearing fish and a test of the Trexler-DeAngelis model of maternal provisioning. Am. Nat. 2013, 181, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Eifert, C.; Farnworth, M.; Schulz-Mirbach, T.; Riesch, R.; Bierbach, D.; Klaus, S.; Wurster, A.; Tobler, M.; Streit, B.; Indy, J.R.; et al. Brain size variation in extremophile fish: Local adaptation versus phenotypic plasticity. J. Zool. 2015, 295, 143–153. [Google Scholar] [CrossRef]
- Lessells, C.M.; Boag, P.T. Unrepeatable repeatabilities: A common mistake. Auk 1987, 104, 116–121. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Tobler, M. Subterranean fishes of Mexico (Poecilia mexicana, Poeciliidae). In Biology of Subterranean Fishes, 1st ed.; Trajano, E., Bichuette, M.E., Kapoor, B.G., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 283–332. [Google Scholar]
- Plath, M.; Tobler, M.; Riesch, R. Extremophile fishes: An introduction. In Extremophile Fishes: Ecology, Evolution, and Physiology of Teleosts in Extreme Environments; Riesch, R., Tobler, M., Plath, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 1–7. [Google Scholar]
- Sommer-Trembo, C.; Bierbach, D.; Arias-Rodriguez, L.; Verel, Y.; Jourdan, J.; Zimmer, C.; Riesch, R.; Streit, B.; Plath, M. Does personality affect premating isolation between locally-adapted populations? BMC Evol. Biol. 2016, 16, 138. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Parzefall, J.; Körner, K.E.; Schlupp, I. Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav. Ecol. Sociobiol. 2004, 55, 596–601. [Google Scholar] [CrossRef]
- Jourdan, J.; Jordan, M.; Zimmer, C.; Eifert, C.; Arias-Rodriguez, L.; Plath, M. Response to conspecific chemical cues in surface- and cave-dwelling populations of Atlantic mollies, Poecilia mexicana. Environ. Biol. Fishes 2016, 99, 697–703. [Google Scholar] [CrossRef]
- Ziege, M.; Hennige-Schulz, C.; Mücksch, F.; Bierbach, D.; Tiedemann, R.; Streit, B.; Plath, M. A comparison of two methods to assess audience-induced changes in male mate choice. Curr. Zool. 2012, 58, 84–94. [Google Scholar] [CrossRef]
- Magurran, A.E.; Seghers, B.H. A cost of sexual harassment in the guppy, Poecilia reticulata. Proc. R. Soc. B 1994, 258, 89–92. [Google Scholar] [CrossRef]
- Bisazza, A.; Pilastro, A.; Palazzi, R.; Marin, G. Sexual behaviour of immature male eastern mosquitofish: A way to measure intensity of intra-sexual selection? J. Fish Biol. 1996, 48, 726–737. [Google Scholar] [CrossRef]
- Köhler, A.; Hildenbrand, P.; Schleucher, E.; Riesch, R.; Arias-Rodriguez, L.; Streit, B.; Plath, M. Effects of male sexual harassment on female time budgets, feeding behavior, and metabolic rates in a tropical livebearing fish (Poecilia mexicana). Behav. Ecol. Sociobiol. 2011, 65, 1513–1523. [Google Scholar] [CrossRef]
- Constanz, G.D. Sperm competition in poeciliid fishes. In Sperm Competition and the Evolution of Animal Mating Systems; Smith, R.L., Ed.; Academic Press: London, UK, 1984; pp. 465–485. [Google Scholar]
- Plath, M.; Parzefall, J.; Schlupp, I. The role of sexual harassment in cave and surface dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav. Ecol. Sociobiol. 2003, 54, 303–309. [Google Scholar] [CrossRef]
- Plath, M. Male mating behavior and costs of sexual harassment for females in cavernicolous and extremophile populations of Atlantic mollies (Poecilia mexicana). Behaviour 2008, 145, 73–98. [Google Scholar] [CrossRef]
- Endler, J.A. Natural and sexual selection on color patterns in poeciliid fishes. Environ. Biol. Fishes 1983, 9, 173–190. [Google Scholar] [CrossRef]
- Kodric-Brown, A. Female choice of multiple male criteria in guppies: Interacting effects of dominance, coloration and courtship. Behav. Ecol. Sociobiol. 1993, 32, 415–420. [Google Scholar] [CrossRef]
- Kodric-Brown, A.; Nicoletto, P.F. Female choice in the guppy (Poecilia reticulata): The interaction between male color and display. Behav. Ecol. Sociobiol. 2001, 50, 346–351. [Google Scholar] [CrossRef]
- Tobler, M.; Dewitt, T.J.; Schlupp, I.; García de León, F.J.; Herrmann, R.; Feulner, P.G.D.; Tiedemann, R.; Plath, M. Toxic hydrogen sulfide and dark caves: Phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution 2008, 62, 2643–2659. [Google Scholar] [CrossRef] [PubMed]
- Kaeuffer, R.; Peichel, C.L.; Bolnick, D.I.; Hendry, A.P. Parallel and nonparallel aspects of ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback. Evolution 2012, 66, 402–418. [Google Scholar] [CrossRef] [PubMed]
- Oke, K.B.; Rolshausen, G.; LeBlond, C.; Hendry, A.P. How parallel is parallel evolution? A comparative analysis in fishes. Am. Nat. 2017, 190, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, G.G.; Ryan, M.J. Assortative preferences for stripes in danios. Anim. Behav. 2005, 70, 1063–1066. [Google Scholar] [CrossRef]
- Chouinard-Thuly, L.; Gierszewski, S.; Rosenthal, G.G.; Reader, S.M.; Rieucau, G.; Woo, K.L.; Gerlai, R.; Tedore, C.; Ingley, S.J.; Stowers, J.R.; et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 2017, 63, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Polverino, G.; Liao, J.C.; Porfiri, M. Mosquitofish (Gambusia affinis) preference and behavioral response to animated images of conspecifics altered in their color, aspect ratio, and swimming depth. PLoS ONE 2013, 8, e54315. [Google Scholar] [CrossRef] [PubMed]
- Gierszewski, S.; Müller, K.; Smielik, I.; Hütwohl, J.-M.; Kuhnert, K.-D.; Witte, K. The virtual lover: Variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation. Curr. Zool. 2017, 63, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.F.; Rosenthal, G.G.; Schlupp, I.; McGregor, P.K.; Cuthill, I.C.; Endler, J.A.; Fleishman, L.J.; Zeil, J.; Barata, E.; Burford, F.; et al. Considerations on the use of video playbacks as visual stimuli: The Lisbon workshop consensus. Acta Ethol. 2000, 3, 61–65. [Google Scholar] [CrossRef]
- Rosenthal, G.G. Design considerations and techniques for constructing video stimuli. Acta Ethol. 2000, 3, 49–54. [Google Scholar] [CrossRef]
- Powell, D.L.; Rosenthal, G.G. What artifice can and cannot tell us about animal behavior. Curr. Zool. 2017, 63, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Plath, M.; Schlupp, I.; Tobler, M.; Langerhans, R.B. Colonisation of toxic environments drives predictable life-history evolution in livebearing fishes (Poeciliidae). Ecol. Lett. 2014, 17, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Farr, J.A. Sexual selection and secondary sexual differentiation in poeciliids: Determinants of male mating success and the evolution of female choice. In Ecology and Evolution of Livebearing Fishes (Poeciliidae); Meffe, G.K., Snelson, F.F., Eds.; Prentice Hall: Englewood Cliffs, NJ, USA, 1989; pp. 91–123. [Google Scholar]
- Rios-Cardenas, O.; Morris, M.R. Precopulatory sexual selection. In Ecology and Evolution of Poeciliid Fishes; Evans, J.P., Pilastro, A., Schlupp, I., Eds.; University of Chicago Press: Chicago, IL, USA, 2011; pp. 187–196. [Google Scholar]
- McKinnon, J.S. Video mate preferences of female three-spined sticklebacks from populations with divergent male coloration. Anim. Behav. 1995, 50, 1645–1655. [Google Scholar] [CrossRef]
- Bierbach, D.; Jung, C.T.; Hornung, S.; Streit, B.; Plath, M. Homosexual behaviour increases male attractiveness to females. Biol. Lett. 2013, 9, 20121038. [Google Scholar] [CrossRef] [PubMed]
- Rodd, F.H.; Hughes, K.A.; Grether, G.F.; Baril, C.T. A possible non-sexual origin of mate preference: Are male guppies mimicking fruit? Proc. R. Soc. B 2002, 269, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Gonzales, J.L.; Loew, E.R.; Uy, J.A.C. Variation in the visual habitat may mediate the maintenance of color polymorphism in a poeciliid fish. PLoS ONE 2014, 9, e101497. [Google Scholar] [CrossRef] [PubMed]
- Körner, K.E.; Schlupp, I.; Plath, M.; Loew, E.R. Spectral sensitivity of mollies: Comparing surface- and cave-dwelling Atlantic mollies, Poecilia mexicana. J. Fish Biol. 2006, 69, 54–65. [Google Scholar] [CrossRef]
- Watson, C.T.; Lubieniecki, K.P.; Loew, E.R.; Davidson, W.S.; Breden, F. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri. BMC Evol. Biol. 2010, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.T.; Gray, S.M.; Hoffmann, M.; Lubieniecki, K.P.; Joy, J.B.; Sandkam, B.A.; Weigel, D.; Loew, E.R.; Dreyer, C.; Davidson, W.S.; et al. Gene duplication and divergence of long wavelength-sensitive opsin genes in the Guppy, Poecilia reticulata. J. Mol. Evol. 2011, 72, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Sandkam, B.A.; Joy, J.B.; Watson, C.T.; Gonzalez-Bendiksen, P.; Gabor, C.R.; Breden, F. Hybridization leads to sensory repertoire expansion in a gynogenetic fish, the Amazon molly (Poecilia formosa): A test of the hybrid-sensory expansion hypothesis. Evolution 2013, 67, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, S.; Kasagi, S.; Kasai, D.; Tezuka, A.; Shoji, A.; Takahashi, A.; Imai, H.; Kawata, M. Spectral sensitivity of guppy visual pigments reconstituted in vitro to resolve association of opsins with cone cell types. Vis. Res. 2016, 127, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Olson, V.A.; Owens, I.P.F. Costly sexual signals: Are carotenoids rare, risky or required? Trends Ecol. Evol. 1998, 13, 510–514. [Google Scholar] [CrossRef]
- Grether, G.F. Carotenoid limitation and mate preference evolution: A test of the indicator hypothesis in guppies (Poecilia reticulata). Evolution 2000, 54, 1712–1724. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M. Divergence in trophic ecology characterizes colonization of extreme habitats. Biol. J. Linn. Soc. 2008, 95, 517–528. [Google Scholar] [CrossRef]
- Tobler, M.; Scharnweber, K.; Greenway, R.; Passow, C.N.; Arias-Rodriguez, L.; García de León, F.J. Convergent changes in the trophic ecology of extremophile fish along replicated environmental gradients. Freshw. Biol. 2015, 60, 768–780. [Google Scholar] [CrossRef]
- Milinski, M.; Bakker, T.C.M. Female sticklebacks use male coloration in mate choice and hence avoid paraditized males. Nature 1990, 344, 330–333. [Google Scholar] [CrossRef]
- Boughman, J.W. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 2001, 411, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.H.; Mendelson, T.C. Female preference for male coloration may explain behavioural isolation in sympatric darters. Anim. Behav. 2011, 82, 683–689. [Google Scholar] [CrossRef]
- Rosenthal, G.G.; Martinez, T.Y.F.; León, F.J.G.D.; Ryan, M.J. Shared preferences by predators and females for male ornaments in swordtails. Am. Nat. 2001, 158, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M.; Schlupp, I.; Heubel, K.U.; Riesch, R.; García de León, F.J.; Giere, O.; Plath, M. Life on the edge: Hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 2006, 10, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Riesch, R.; Oranth, A.; Dzienko, J.; Karau, N.; Schießl, A.; Stadler, S.; Wigh, A.; Zimmer, C.; Arias-Rodriguez, L.; Schlupp, I.; et al. Extreme habitats are not refuges: Poeciliids suffer from increased aerial predation risk in sulphidic southern Mexican habitats. Biol. J. Linn. Soc. 2010, 101, 417–426. [Google Scholar] [CrossRef]
- Magnhagen, C. Predation risk as a cost of reproduction. Trends Ecol. Evol. 1991, 6, 183–186. [Google Scholar] [CrossRef]
- Sih, A. Predation risk and the evolutionary ecology of reproductive behaviour. J. Fish Biol. 1994, 45, 111–130. [Google Scholar] [CrossRef]
- Bierbach, D.; Schulte, M.; Herrmann, N.; Tobler, M.; Stadler, S.; Jung, C.T.; Kunkel, B.; Riesch, R.; Klaus, S.; Ziege, M.; et al. Predator-induced changes of female mating preferences: Innate and experiential effects. BMC Evol. Biol. 2011, 11, 190. [Google Scholar] [CrossRef] [PubMed]
- Endler, J.A. Signals, signal conditions, and the direction of evolution. Am. Nat. 1992, 139, S125–S153. [Google Scholar] [CrossRef]
- Plath, M.; Seggel, U.; Burmeister, H.; Heubel, K.U.; Schlupp, I. Choosy males from the underground: Male mating preferences in surface- and cave-dwelling Atlantic mollies (Poecilia mexicana). Naturwissenschaften 2006, 93, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Bierbach, D.; Klein, M.; Saßmannshausen, V.; Schlupp, I.; Riesch, R.; Parzefall, J.; Plath, M. Divergent evolution of male aggressive behaviour: Another reproductive isolation barrier in extremophile poeciliid fishes? Int. J. Evol. Biol. 2012, 2012, 148745. [Google Scholar] [CrossRef] [PubMed]
- Bierbach, D.; Oster, S.; Jourdan, J.; Arias-Rodriguez, L.; Krause, J.; Wilson, A.D.M.; Plath, M. Social network analysis resolves temporal dynamics of male dominance relationships. Behav. Ecol. Sociobiol. 2014, 68, 935–945. [Google Scholar] [CrossRef]
- Tobler, M.; Franssen, C.M.; Plath, M. Male-biased predation of a cave fish by a giant water bug. Naturwissenschaften 2008, 95, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Tobler, M. Does a predatory insect contribute to the divergence between cave- and surface-adapted fish populations? Biol. Lett. 2009, 5, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Plath, M.; Riesch, R.; Culumber, Z.; Streit, B.; Tobler, M. Giant water bug (Belostoma sp.) predation on a cave fish (Poecilia mexicana): Effects of female body size and gestational state. Evol. Ecol. Res. 2011, 13, 133–144. [Google Scholar]
- Hendry, A.P. Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol. Ecol. Res. 2004, 6, 1219–1236. [Google Scholar]
- Berner, D.; Grandchamp, A.-C.; Hendry, A.P. Variable progress toward ecological speciation in parapatry: Stickleback across eight lake-stream transitions. Evolution 2009, 63, 1740–1753. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.P.; Bolnick, D.I.; Berner, D.; Peichel, C.L. Along the speciation continuum in sticklebacks. J. Fish Biol. 2009, 75, 2000–2036. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.R.; Hankison, S. Sexual selection and species recognition in the pygmy swordtail, Xiphophorus pygmaeus: Conflicting preferences. Behav. Ecol. Sociobiol. 2002, 51, 140–145. [Google Scholar] [CrossRef]
- Wymann, M.N.; Whiting, M.J. Male mate preference for large size overrides species recognition in allopatric flat lizards (Platysaurus broadleyi). Acta Ethol. 2003, 6, 19–22. [Google Scholar] [CrossRef]
- Comeault, A.A.; Flaxman, S.M.; Riesch, R.; Curran, E.; Soria-Carrasco, V.; Gompert, Z.; Farkas, T.E.; Muschick, M.; Parchman, T.L.; Schwander, T.; et al. Selection on a genetic polymorphism counteracts ecological speciation in a stick insect. Curr. Biol. 2015, 25, 1975–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lackey, A.C.R.; Boughman, J.W. Evolution of reproductive isolation in stickleback fish. Evolution 2017, 71, 357–372. [Google Scholar] [CrossRef] [PubMed]
Drainage | Site (Abbreviation) | Male Body Coloration (N) | Mean SL ± SD | Mate Choice Tests (N, Females/Males) | Mean SL ± SD (Females/Males) |
---|---|---|---|---|---|
Pichucalco | Baños del Azufre (Pich-S) | 12 | 28.3 ± 3.7 | -/30 | -/27.3 ± 3.2 |
Río Pichucalco (Pich) | 19 | 35.8 ± 9.6 | 73/30 | 41.4 ± 12.5/28.6 ± 3.8 | |
Puyacatengo | La Lluvia (Puy-S) | 13 | 24.9 ± 1.8 | -/59 | -/29.8 ± 3.9 |
Río Puyacatengo (Puy) | 24 | 40.6 ± 9.8 | 52/59 | 38.3 ± 10.7/33.1 ± 3.7 | |
Tacotalpa | El Azufre (Tac-S) | 9 | 27.6 ± 2.2 | -/56 | -/34.3 ± 5.4 |
Arroyo Bonita (Tac) | 12 | 42.8 ± 6.1 | 51/56 | 38 ± 8.4/33.1 ± 5.4 |
Effect | F | Hypothesis df, Error df | p | Wilks’ Partial η2 |
---|---|---|---|---|
SL | 6.876 | 7, 74 | <0.001 | 0.394 |
drainage | 2.384 | 14, 148 | 0.005 | 0.184 |
presence of H2S | 7.663 | 7, 74 | <0.001 | 0.420 |
drainage × SL | 2.359 | 14, 148 | 0.006 | 0.182 |
drainage × presence of H2S | 8.632 | 14, 148 | <0.001 | 0.450 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmer, C.; Riesch, R.; Jourdan, J.; Bierbach, D.; Arias-Rodriguez, L.; Plath, M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana). Genes 2018, 9, 232. https://doi.org/10.3390/genes9050232
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana). Genes. 2018; 9(5):232. https://doi.org/10.3390/genes9050232
Chicago/Turabian StyleZimmer, Claudia, Rüdiger Riesch, Jonas Jourdan, David Bierbach, Lenin Arias-Rodriguez, and Martin Plath. 2018. "Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana)" Genes 9, no. 5: 232. https://doi.org/10.3390/genes9050232
APA StyleZimmer, C., Riesch, R., Jourdan, J., Bierbach, D., Arias-Rodriguez, L., & Plath, M. (2018). Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies (Poecilia mexicana). Genes, 9(5), 232. https://doi.org/10.3390/genes9050232