Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization
Abstract
:1. Introduction
2. Artificial Neural Network
3. Quantum-Behaved Particle Swarm Optimization
3.1. Particle Swarm Optimization
3.2. Quantum-Behaved Particle Swarm Optimization
4. Parameters Selection for Artificial Neural Network Based on QPSO Algorithm
- Step 0: Set basic parameters for the proposed method.
- Step 0.1: Set maximize iterations and population size M in QPSO.
- Step 0.2: Divide data into training and testing sets.
- Step 0.3: Define transfer function of neurons, which is a sigmoid function in this paper, i.e.:
5. Simulations
5.1. Study Area and Data Used
5.2. Performance Assessment Measures
5.3. ANN Model Development
Model | Inputs | Relation between Output Variable and Input Variables |
---|---|---|
1 | Runoff(t-1),Rainfall(t-1) | Runoff(t)=H[Runoff(t-1),Rainfall(t-1)] |
2 | Runoff(t-1),Rainfall(t-1),Rainfall(t-2) | Runoff(t)=H[Runoff(t-1),Rainfall(t-1),Rainfall(t-2)] |
3 | Runoff(t-1),Runoff(t-2),Rainfall(t-1) | Runoff(t)=H[Runoff(t-1),Runoff(t-2),Rainfall(t-1)] |
4 | Runoff(t-1),Runoff(t-2),Rainfall(t-1),Rainfall(t-2) | Runoff(t)=H[Runoff(t-1),Runoff(t-2),Rainfall(t-1),Rainfall(t-2)] |
Model | Model Architecture | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
R | NSE | RMSE (m3·s−1) | MAPE (%) | R | NSE | RMSE (m3·s−1) | MAPE (%) | ||
1 | 2-4-1 | 0.892 | 0.740 | 82.490 | 38.150 | 0.883 | 0.747 | 63.562 | 35.912 |
2 | 3-6-1 | 0.891 | 0.737 | 82.989 | 37.903 | 0.903 | 0.757 | 62.321 | 38.417 |
3 | 3-5-1 | 0.893 | 0.742 | 82.090 | 36.493 | 0.903 | 0.761 | 61.792 | 37.190 |
4 | 4-7-1 | 0.907 | 0.783 | 75.286 | 34.866 | 0.904 | 0.773 | 60.252 | 35.680 |
5.4. Comparison of Different Methods
Method | Time(s) | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|---|
R | NSE | RMSE (m3·s−1) | MAPE (%) | R | NSE | RMSE (m3·s−1) | MAPE (%) | ||
ANN-QPSO | 10.1 | 0.943 | 0.888 | 54.074 | 18.102 | 0.953 | 0.908 | 38.354 | 25.401 |
ANN | 30.2 | 0.907 | 0.783 | 75.286 | 34.866 | 0.904 | 0.773 | 60.252 | 35.680 |
Period | Date | Observed Peak (m3·s−1) | Forecasted Peak (m3·s−1) | Relative Error (%) | ||
---|---|---|---|---|---|---|
ANNP-QPSO | QPSO | ANNP-QPSO | QPSO | |||
Training | 2006-06-30 | 854.3 | 792.7 | 747.6 | −7.2 | −12.5 |
Training | 2007-07-30 | 1435.8 | 1234.2 | 1108.2 | −14.0 | −22.8 |
Training | 2008-06-22 | 1663.8 | 1514.5 | 861.5 | −9.0 | −48.2 |
Training | 2009-08-04 | 628.5 | 456.4 | 407.4 | −27.4 | −35.2 |
Training | 2010-07-11 | 1076.0 | 1053.8 | 806.7 | −2.1 | −25.0 |
Training | 2011-06-23 | 561.9 | 471.6 | 426.6 | −16.1 | −24.1 |
Training | 2012-07-26 | 1696.4 | 1641.8 | 1258.3 | −3.2 | −25.8 |
Testing | 2013-06-09 | 1343.0 | 1151.9 | 622.5 | −14.2 | −53.6 |
Average (absolute) | 11.6 | 30.9 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhang, J.; Cheng, C.T.; Liao, S.L.; Wu, X.Y.; Shen, J.J. Daily reservoir inflow forecasting combining QPF into ANNs model. Hydro. Earth Syst. Sci. 2009, 6, 121–150. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.Y.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476, 433–441. [Google Scholar] [CrossRef]
- Kneis, D.; Bürger, G.; Bronstert, A. Evaluation of medium-range runoff forecasts for a 500 km2 watershed. J. Hydrol. 2012, 414, 341–353. [Google Scholar] [CrossRef]
- Zhao, R.J. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [Google Scholar]
- Cheng, C.T.; Ou, C.P.; Chau, K.W. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall-runoff model calibration. J. Hydrol. 2002, 268, 72–86. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [Google Scholar] [CrossRef]
- Lin, G.F.; Chen, G.R.; Huang, P.Y. Effective typhoon characteristics and their effects on hourly reservoir inflow forecasting. Adv. Water Resour. 2010, 33, 887–898. [Google Scholar] [CrossRef]
- Hsu, K.; Gupta, H.V.; Sorroshian, S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31, 2517–2530. [Google Scholar] [CrossRef]
- Machado, F.; Mine, M.; Kaviski, E.; Fill, H. Monthly rainfall-runoff modelling using artificial neural networks. Hydrol. Sci. J. 2011, 56, 349–361. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599–612. [Google Scholar] [CrossRef]
- Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Nonlinear regression in environmental sciences by support vector machines combined with evolutionary strategy. Comput. Geosci. 2013, 50, 136–144. [Google Scholar] [CrossRef]
- Guo, W.J.; Wang, C.H.; Zeng, X.M.; Ma, T.F.; Yang, H. Subgrid parameterization of the soil moisture storage capacity for a distributed rainfall-runoff model. Water 2015, 7, 2691–2706. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Shahriar, M.S.; Beecham, S. Assessment of short term rainfall and stream flows in South Australia. Water 2014, 6, 3528–3544. [Google Scholar] [CrossRef]
- Chau, K.W.; Wu, C.L.; Li, Y.S. Comparison of several flood forecasting models in Yangtz River. J. Hydrol. Eng. 2005, 10, 485–491. [Google Scholar] [CrossRef]
- Piotrowski, A.P.; Napiorkowski, J.J. Optimizing neural networks for river flow forecasting evolutionary computation methods versus the Levenberg-Marquardt approach. J. Hydrol. 2011, 407, 12–27. [Google Scholar] [CrossRef]
- Chau, K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol. 2006, 329, 363–367. [Google Scholar] [CrossRef]
- Asadnia, M.; Chua, L.H.C.; Qin, X.S.; Talei, A. Improved particle swarm optimization based artificial neural network for rainfall-runoff modeling. J. Hydrol. Eng. 2014, 19, 1320–1329. [Google Scholar] [CrossRef]
- Liu, W.C.; Chung, C.E. Enhancing the predicting accuracy of the water stage using a physical-based model and an artificial neural network-genetic algorithm in a river system. Water 2014, 6, 1642–1661. [Google Scholar] [CrossRef]
- Wu, C.L.; Chau, K.W. Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 2011, 399, 394–409. [Google Scholar] [CrossRef]
- Jeong, D.I.; Kim, Y.O. Combining single-value streamflow forecasts—A review and guidelines for selecting techniques. J. Hydrol. 2009, 377, 284–299. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Congress on Evolutionary Computation, 2004 (CEC2004), Proceedings of the 2004 Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; pp. 325–331.
- Fang, W.; Sun, J.; Ding, Y.; Wu, X.; Xu, W. A review of quantum-behaved particle swarm optimization. IETE Tech. Rev. 2010, 27, 336–348. [Google Scholar] [CrossRef]
- Xi, M.; Sun, J.; Xu, W. An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl. Math. Comput. 2008, 205, 751–759. [Google Scholar] [CrossRef]
- Feng, Z.K.; Liao, S.L.; Niu, W.J.; Shen, J.J.; Cheng, C.T.; Li, Z.H. Improved quantum-behaved particle swarm optimization and its application in optimal operation of hydropower stations. Adv. Water Sci. 2015, 26, 413–422. (in Chinese). [Google Scholar]
- Sun, C.; Lu, S. Short-term combined economic emission hydrothermal scheduling using improved quantum-behaved particle swarm optimization. Expert Syst. Appl. 2010, 37, 4232–4241. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, New York, NY, USA, 4–6 October 1995; pp. 39–43.
- Gaing, Z.L. Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Trans. Pow. Syst. 2003, 18, 1187–1195. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Ren, C.; An, N.; Wang, J.; Li, L.; Hu, B.; Shang, D. Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting. Knowl. Based Syst. 2014, 56, 226–239. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.-t.; Niu, W.-j.; Feng, Z.-k.; Shen, J.-j.; Chau, K.-w. Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization. Water 2015, 7, 4232-4246. https://doi.org/10.3390/w7084232
Cheng C-t, Niu W-j, Feng Z-k, Shen J-j, Chau K-w. Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization. Water. 2015; 7(8):4232-4246. https://doi.org/10.3390/w7084232
Chicago/Turabian StyleCheng, Chun-tian, Wen-jing Niu, Zhong-kai Feng, Jian-jian Shen, and Kwok-wing Chau. 2015. "Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization" Water 7, no. 8: 4232-4246. https://doi.org/10.3390/w7084232
APA StyleCheng, C. -t., Niu, W. -j., Feng, Z. -k., Shen, J. -j., & Chau, K. -w. (2015). Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization. Water, 7(8), 4232-4246. https://doi.org/10.3390/w7084232