The morphological properties of kaolin flocs were investigated in a Couette-flow experiment at the steady state under seven shear flow conditions (shear rates of 5.36, 9.17, 14, 24, 31, 41 and 53 s
−1). These properties include a one-dimensional (1-D) fractal dimension (
D1), a two-dimensional (2-D) fractal dimension (
D2), a perimeter-based fractal dimension (
Dpf) and an aspect ratio (
AR). They were calculated based on the projected area (
A), equivalent size, perimeter (
P) and length (
L) of the major axis of the floc determined through sample observation and an image analysis system. The parameter
D2, which characterizes the relationship between the projected area and the length of the major axis using a power function, , increased from 1.73 ± 0.03, 1.72 ± 0.03, and 1.75 ± 0.04 in the low shear rate group (
G = 5.36, 9.17, and 14 s
−1) to 1.92 ± 0.03, 1.82 ± 0.02, 1.85 ± 0.02, and 1.81 ± 0.02 in the high shear rate group (24, 31, 41 and 53 s
−1), respectively. The parameter
D1 characterizes the relationship between the perimeter and length of the major axis by the function and decreased from 1.52 ± 0.02, 1.48 ± 0.02, 1.55 ± 0.02, and 1.63 ± 0.02 in the low shear group (5.36, 9.17, 14 and 24 s
−1) to 1.45 ± 0.02, 1.39 ± 0.02, and 1.39 ± 0.02 in the high shear group (31, 41 and 53 s
−1), respectively. The results indicate that with increasing shear rates, the flocs become less elongated and that their boundary lines become tighter and more regular, caused by more breakages and possible restructurings of the flocs. The parameter
Dpf, which is related to the perimeter and the projected area through the function , decreased as the shear rate increased almost linearly. The parameter
AR, which is the ratio of the length of the major axis and equivalent diameter, decreased from 1.56, 1.59, 1.53 and 1.51 in the low shear rate group to 1.43, 1.47 and 1.48 in the high shear rate group. These changes in
Dpf and
AR show that the flocs become less convoluted and more symmetrical and that their boundaries become smoother and more regular in the high shear rate group than in the low shear rate group due to breakage and possible restructuring processes. To assess the effects of electrolyte and sediment concentration, 0.1 mol/L calcium chloride (
CaCl2) and initial sediment concentration from 7.87 × 10
−5 to 1.57 × 10
−5 were used in this preliminary study. The addition of electrolyte and increasing sediment concentration could produce more symmetrical flocs with less convoluted and simpler boundaries. In addition, some new information on the temporal variation of the median size of the flocs during the flocculation process is presented.
Full article