Next Issue
Volume 14, December
Previous Issue
Volume 14, October
 
 

J. Funct. Biomater., Volume 14, Issue 11 (November 2023) – 22 articles

Cover Story (view full-size image): AMPs are a promising bioactive class of molecules. The review highlights how the incorporation of AMPs into medical implants and biomaterials has exhibited remarkable potential in mitigating biofilm formation and preventing infections. Cutting-edge advancements in biomedical sciences take center stage, revealing the successful immobilization of AMPs to enhance their efficacy and stability within the implant environment. The narrative unfolds with a spotlight on the latest research, where AMP coatings have proven effective in treating surgical site infections (SSIs), dental applications, enhancing contact lenses, fortifying bone grafts, and combating urinary tract infections (UTIs). Each instance underscores the versatility and adaptability of AMPs in diverse clinical settings. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5283 KiB  
Article
Expanding the Scope of an Amphoteric Condensed Tannin, Tanfloc, for Antibacterial Coatings
by Somayeh Baghersad, Liszt Y. C. Madruga, Alessandro F. Martins, Ketul C. Popat and Matt J. Kipper
J. Funct. Biomater. 2023, 14(11), 554; https://doi.org/10.3390/jfb14110554 - 18 Nov 2023
Viewed by 1949
Abstract
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it [...] Read more.
Bacterial infections are a common mode of failure for medical implants. This study aims to develop antibacterial polyelectrolyte multilayer (PEM) coatings that contain a plant-derived condensed tannin polymer (Tanfloc, TAN) with inherent antimicrobial activity. Tanfloc is amphoteric, and herein we show that it can be used as either a polyanion or a polycation in PEMs, thereby expanding the possibility of its use in PEM coatings. PEMs are ordinarily formed using a polycation and a polyanion, in which the functional (ionic) groups of the two polymers are complexed to each other. However, using the amphoteric polymer Tanfloc with weakly basic amine and weakly acidic catechol and pyrogallol groups enables PEM formation using only one or the other of its functional groups, leaving the other functional group available to impart antibacterial activity. This work demonstrates Tanfloc-containing PEMs using multiple counter-polyelectrolytes including three polyanionic glycosaminoglycans of varying charge density, and the polycations N,N,N-trimethyl chitosan and polyethyleneimine. The layer-by-layer (LbL) assembly of PEMs was monitored using in situ Fourier-transform surface plasmon resonance (FT-SPR), confirming a stable LbL assembly. X-ray photoelectron spectroscopy (XPS) was used to evaluate surface chemistry, and atomic force microscopy (AFM) was used to determine the surface roughness. The LDH release levels from cells cultured on the Tanfloc-containing PEMs were not statistically different from those on the negative control (p > 0.05), confirming their non-cytotoxicity, while exhibiting remarkable antiadhesive and bactericidal properties against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), respectively. The antibacterial effects were attributed to electrostatic interactions and Tanfloc’s polyphenolic nature. This work underscores the potential of Tanfloc as a versatile biomaterial for combating infections on surfaces. Full article
(This article belongs to the Special Issue Tannins and Other Polyphenols as Functional Biomaterials)
Show Figures

Graphical abstract

22 pages, 5371 KiB  
Review
Rational Design of Multifunctional Hydrogels for Wound Repair
by Juan Cao, Bo Wu, Ping Yuan, Yeqi Liu and Cheng Hu
J. Funct. Biomater. 2023, 14(11), 553; https://doi.org/10.3390/jfb14110553 - 18 Nov 2023
Viewed by 1772
Abstract
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has [...] Read more.
The intricate microenvironment at the wound site, coupled with the multi-phase nature of the healing process, pose significant challenges to the development of wound repair treatments. In recent years, applying the distinctive benefits of hydrogels to the development of wound repair strategies has yielded some promising results. Multifunctional hydrogels, by meeting the different requirements of wound healing stages, have greatly improved the healing effectiveness of chronic wounds, offering immense potential in wound repair applications. This review summarized the recent research and applications of multifunctional hydrogels in wound repair. The focus was placed on the research progress of diverse multifunctional hydrogels, and their mechanisms of action at different stages of wound repair were discussed in detail. Through a comprehensive analysis, we found that multifunctional hydrogels play an indispensable role in the process of wound repair by providing a moist environment, controlling inflammation, promoting angiogenesis, and effectively preventing infection. However, further implementation of multifunctional hydrogel-based therapeutic strategies also faces various challenges, such as the contradiction between the complexity of multifunctionality and the simplicity required for clinical translation and application. In the future, we should work to address these challenges, further optimize the design and preparation of multifunctional hydrogels, enhance their effectiveness in wound repair, and promote their widespread application in clinical practice. Full article
(This article belongs to the Special Issue Advances in Multifunctional Hydrogels for Biomedical Application)
Show Figures

Figure 1

16 pages, 3963 KiB  
Article
Silicon Nitride Bioceramics Sintered by Microwave Exhibit Excellent Mechanical Properties, Cytocompatibility In Vitro, and Anti-Bacterial Properties
by Jiayu He, Yuandong Liu, Xiaofeng Zeng, Yan Tong, Run Liu, Kan Wang, Xiangdong Shangguan, Guanzhou Qiu and Coswald Stephen Sipaut
J. Funct. Biomater. 2023, 14(11), 552; https://doi.org/10.3390/jfb14110552 - 17 Nov 2023
Viewed by 1548
Abstract
Silicon nitride is a bioceramic with great potential, and multiple studies have demonstrated its biocompatibility and antibacterial properties. In this study, silicon nitride was prepared by a microwave sintering technique that was different from common production methods. SEM and pore distribution analysis revealed [...] Read more.
Silicon nitride is a bioceramic with great potential, and multiple studies have demonstrated its biocompatibility and antibacterial properties. In this study, silicon nitride was prepared by a microwave sintering technique that was different from common production methods. SEM and pore distribution analysis revealed the microstructure of microwave-sintered silicon nitride with obvious pores. Mechanical performance analysis shows that microwave sintering can improve the mechanical properties of silicon nitride. The CCK-8 method was used to demonstrate that microwave-sintered silicon nitride has no cytotoxicity and good cytocompatibility. From SEM and CLSM observations, it was observed that there was good adhesion and cross-linking of cells during microwave-sintered silicon nitride, and the morphology of the cytoskeleton was good. Microwave-sintered silicon nitride has been proven to be non-cytotoxic. In addition, the antibacterial ability of microwave-sintered silicon nitride against Staphylococcus aureus and Escherichia coli was tested, proving that it has a good antibacterial ability similar to the silicon nitride prepared by commonly used processes. Compared with silicon nitride prepared by gas pressure sintering technology, microwave-sintered silicon nitride has excellent performance in mechanical properties, cell compatibility, and antibacterial properties. This indicates its enormous potential as a substitute material for manufacturing bone implants. Full article
Show Figures

Figure 1

12 pages, 2480 KiB  
Article
In Vitro Investigation into the Effect of Cryopreservation on the Mechanical Characteristics of Dental Hard Tissues
by Noëmi M. C. De Roo, Kaat Toulouse, Laurent A. M. Thierens, Silke Henry, Stefanie De Buyser, Liesbeth Temmerman, Ronald M. H. Verbeeck and Guy A. M. De Pauw
J. Funct. Biomater. 2023, 14(11), 551; https://doi.org/10.3390/jfb14110551 - 17 Nov 2023
Viewed by 1403
Abstract
Previous research has reported on hidden damage within the dentin introduced by cryopreservation, but the effect on the mechanical properties of the hard tissues at tooth level remains unclear. The main objective of this study is to investigate the effect of cryopreservation on [...] Read more.
Previous research has reported on hidden damage within the dentin introduced by cryopreservation, but the effect on the mechanical properties of the hard tissues at tooth level remains unclear. The main objective of this study is to investigate the effect of cryopreservation on the mechanical properties of teeth. A matched sample of 234 premolars of 117 children (9 ≤ age ≤ 16 years), bilaterally extracted for orthodontic reasons, were included. For each child, one tooth was randomly allocated to the cryopreservation group and the contralateral tooth was assigned to the control group. Static compression tests were performed to determine load to failure, stiffness, and toughness. In a subgroup of 20 teeth, a cyclic preloading or chewing simulation was performed. Additionally, the fracture mode was determined, and the microstructure of the fractured surfaces was examined using a scanning electron microscope (SEM). Linear mixed model analyses could not detect a statistical difference in the mean load to failure (p = 0.549), mean toughness (p = 0.968), or mean stiffness (p = 0.150) between cryopreserved and non-cryopreserved teeth. No significant difference in load to failure after cyclic preloading was detected between groups (p = 0.734). SEM analysis revealed comparable fracture characteristics between groups. It is concluded that cryopreservation does not affect the mean load to failure, stiffness, or toughness of teeth, indicating that hidden damage in the dentin is not critical at tooth level. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

13 pages, 6510 KiB  
Article
Using Functionalized Micron-Sized Glass Fibres for the Synergistic Effect of Glass Ionomer on Luting Material
by Hanan Alsunbul, Aftab Ahmed Khan, Yasser M. Alqahtani, Saeed Awod bin Hassan, Waleed Asiri, Selma Saadaldin, Rasha Alharthi and Alhanoof Aldegheishem
J. Funct. Biomater. 2023, 14(11), 550; https://doi.org/10.3390/jfb14110550 - 16 Nov 2023
Viewed by 1237
Abstract
This laboratory experiment was conducted with the objective of augmenting the mechanical properties of glass ionomer cement (GIC) via altering the composition of GIC luting powder through the introduction of micron-sized silanized glass fibres (GFs). Experimental GICs were prepared through the addition of [...] Read more.
This laboratory experiment was conducted with the objective of augmenting the mechanical properties of glass ionomer cement (GIC) via altering the composition of GIC luting powder through the introduction of micron-sized silanized glass fibres (GFs). Experimental GICs were prepared through the addition of two concentrations of GFs (0.5% and 1.0% by weight) to the powder of commercially available GIC luting materials. The effect of GF in set GIC was internally evaluated using micro-CT while the mechanical attributes such as nano hardness (nH), elastic modulus (EM), compressive strength (CS), and diametral tensile strength (DTS) were gauged. Additionally, the physical properties such as water solubility and sorption, contact angle (CA), and film thickness were evaluated. Reinforced Ketac Cem Radiopaque (KCR) GIC with 0.5 wt.% GF achieved improved nH, EM, CS, and DTS without affecting the film thickness, CA or internal porosity of the set GIC cement. In contrast, both GF-GIC formulations of Medicem (MC) GIC showed the detrimental effect of the GF incorporation. Reinforcing KCR GIC with 0.5 wt.% silanized GFs could improve the physical and mechanical attributes of luting material. Silanized GF, with optimal concentration within the GIC powder, can be used as a functional additive in KCR GIC with promising results. Full article
Show Figures

Figure 1

29 pages, 8887 KiB  
Article
New Functional Bionanocomposites by Combining Hybrid Host-Guest Systems with a Fully Biobased Poly(lactic acid)/Poly(butylene succinate-co-adipate) (PLA/PBSA) Binary Blend
by Francesca Cicogna, Elisa Passaglia, Alice Telleschi, Werner Oberhauser, Maria-Beatrice Coltelli, Luca Panariello, Vito Gigante and Serena Coiai
J. Funct. Biomater. 2023, 14(11), 549; https://doi.org/10.3390/jfb14110549 - 15 Nov 2023
Cited by 1 | Viewed by 1609
Abstract
In this study, we have developed innovative polymer nanocomposites by integrating magnesium-aluminum layered double hydroxide (LDH)-based nanocarriers modified with functional molecules into a fully biobased poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) matrix. These LDH-based hybrid host-guest systems contain bioactive compounds like rosmarinic acid, ferulic acid, [...] Read more.
In this study, we have developed innovative polymer nanocomposites by integrating magnesium-aluminum layered double hydroxide (LDH)-based nanocarriers modified with functional molecules into a fully biobased poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) matrix. These LDH-based hybrid host-guest systems contain bioactive compounds like rosmarinic acid, ferulic acid, and glycyrrhetinic acid, known for their antioxidant, antimicrobial, and anti-inflammatory properties. The bioactive molecules can be gradually released from the nanocarriers over time, allowing for sustained and controlled delivery in various applications, such as active packaging or cosmetics. The morphological analysis of the polymer composites, prepared using a discontinuous mechanical mixer, revealed the presence of macroaggregates and nano-lamellae at the polymer interface. This resulted in an enhanced water vapor permeability compared to the original blend. Furthermore, the migration kinetics of active molecules from the thin films confirmed a controlled release mechanism based on their immobilization within the lamellar system. Scaling-up experiments evaluated the materials’ morphology and mechanical and thermal properties. Remarkably, stretching deformation and a higher shear rate during the mixing process enhanced the dispersion and distribution of the nanocarriers, as confirmed by the favorable mechanical properties of the materials. Full article
(This article belongs to the Special Issue Nanomaterials and Their Biomedical Applications)
Show Figures

Graphical abstract

15 pages, 4057 KiB  
Article
Oral Administration of Platinum Nanoparticles with SOD/CAT Cascade Catalytic Activity to Alleviate Ulcerative Colitis
by Hao Liu, Yujie Zhang, Mingzhen Zhang, Zhaoxiang Yu and Mingxin Zhang
J. Funct. Biomater. 2023, 14(11), 548; https://doi.org/10.3390/jfb14110548 - 15 Nov 2023
Viewed by 1694
Abstract
Ulcerative colitis (UC) is a refractory chronic inflammatory disease involving the colon and rectum, falling under the category of inflammatory bowel disease (IBD). The accumulation of reactive oxygen species (ROS) in local tissues has been identified as a crucial contributor to the escalation [...] Read more.
Ulcerative colitis (UC) is a refractory chronic inflammatory disease involving the colon and rectum, falling under the category of inflammatory bowel disease (IBD). The accumulation of reactive oxygen species (ROS) in local tissues has been identified as a crucial contributor to the escalation of inflammatory responses. Therefore, eliminating ROS in the inflamed colon is a promising approach to treating UC. Nanomaterials with intrinsic enzyme-like activities (nanozymes) have shown significant therapeutic potential in UC. In this study, we found that platinum nanoparticles (Pt NPs) exhibited remarkable superoxide dismutase (SOD) and catalase (CAT) cascade catalytic activities, as well as effective hydroxyl radical (•OH) scavenging ability. The in vitro experiments showed that Pt NPs could eliminate excessive ROS to protect cells against oxidative stress. In the colitis model, oral administration of Pt NPs (loaded in chitosan/alginate hydrogel) could significantly alleviate UC, including reducing the colon length, the damaged epithelium, and the infiltration of inflammatory cells. Without appreciable systemic toxicity, Pt NPs represent a novel therapeutic approach to UC and are expected to achieve long-term inflammatory remission. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery)
Show Figures

Figure 1

15 pages, 9855 KiB  
Article
Numerical Simulation of Dynamic Degradation and Fatigue Damage of Degradable Zinc Alloy Stents
by Jing Qi, Hanbing Zhang, Shiliang Chen, Tianming Du, Yanping Zhang and Aike Qiao
J. Funct. Biomater. 2023, 14(11), 547; https://doi.org/10.3390/jfb14110547 - 15 Nov 2023
Viewed by 1300
Abstract
Current research on the fatigue properties of degradable zinc alloy stents has not yet considered the issue of the fatigue life changing with material properties during the dynamic degradation process. Therefore, in this paper, we established a fatigue damage algorithm to study the [...] Read more.
Current research on the fatigue properties of degradable zinc alloy stents has not yet considered the issue of the fatigue life changing with material properties during the dynamic degradation process. Therefore, in this paper, we established a fatigue damage algorithm to study the fatigue problem affected by the changing of material properties during the dynamic degradation process of the stent under the action of pulsating cyclic loading. Three models: the dynamic degradation model, the dynamic degradation model under pulsating cyclic loading, and the coupled model of fatigue damage and dynamic degradation, were developed to verify the effect of fatigue damage on stent life. The results show that fatigue damage leads to a deeper degree of inhomogeneous degradation of the stent, which affects the service life of the stent. Fatigue damage is a factor that cannot be ignored. Therefore, when studying the mechanical properties and lifetime of degradable stents, incorporating fatigue damage into the study can help more accurately assess the lifetime of the stents. Full article
Show Figures

Figure 1

13 pages, 7837 KiB  
Article
Hollow MIL-125 Nanoparticles Loading Doxorubicin Prodrug and 3-Methyladenine for Reversal of Tumor Multidrug Resistance
by Qingfeng Guo, Jie Li, Jing Mao, Weijun Chen, Meiyang Yang, Yang Yang, Yuming Hua and Lipeng Qiu
J. Funct. Biomater. 2023, 14(11), 546; https://doi.org/10.3390/jfb14110546 - 13 Nov 2023
Viewed by 1691
Abstract
Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles [...] Read more.
Multidrug resistance (MDR) is a key factor in chemotherapy failure and tumor recurrence. The inhibition of drug efflux and autophagy play important roles in MDR therapy. Herein, a multifunctional delivery system (HA-MIL-125@DVMA) was prepared for synergistically reverse tumor MDR. Tumor-targeted hollow MIL-125-Ti nanoparticles were used to load the doxorubicin–vitamin E succinate (DV) prodrug and 3-methyladenine (3-MA) to enhance reverse MDR effects. The pH-sensitive DV can kill tumor cells and inhibit P-gp-mediated drug efflux, and 3-MA can inhibit autophagy. HA-MIL-125@DVMA had uniformly distributed particle size and high drug-load content. The nanoparticles could effectively release the drugs into tumor microenvironment due to the rapid hydrazone bond-breaking under low pH conditions, resulting in a high cumulative release rate. In in vitro cellular experiments, the accumulation of HA-MIL-125@DVMA and HA-MIL-125@DV in MCF-7/ADR cells was significantly higher than that in the control groups. Moreover, the nanoparticles significantly inhibited drug efflux in the cells, ensuring the accumulation of the drugs in cell cytoplasm and causing drug-resistant cells’ death. Importantly, HA-MIL-125@DVMA effectively inhibited tumor growth without changes in body weight in tumor-bearing mice. In summary, the combination of the acid-sensitive prodrug DV and autophagy inhibitor 3-MA in a HA-MIL-125 nanocarrier can enhance the antitumor effect and reverse tumor MDR. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Targeting and Drug Delivery)
Show Figures

Figure 1

24 pages, 1690 KiB  
Review
New Insights in Hydrogels for Periodontal Regeneration
by Mafalda S. Santos, Alexandra B. dos Santos and Marta S. Carvalho
J. Funct. Biomater. 2023, 14(11), 545; https://doi.org/10.3390/jfb14110545 - 11 Nov 2023
Cited by 1 | Viewed by 2226
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of [...] Read more.
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed. Full article
Show Figures

Figure 1

24 pages, 3942 KiB  
Review
Advances in Fabrication Technologies for the Development of Next-Generation Cardiovascular Stents
by Ankita Das, Shreya Mehrotra and Ashok Kumar
J. Funct. Biomater. 2023, 14(11), 544; https://doi.org/10.3390/jfb14110544 - 10 Nov 2023
Viewed by 2146
Abstract
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the [...] Read more.
Coronary artery disease is the most prevalent cardiovascular disease, claiming millions of lives annually around the world. The current treatment includes surgically inserting a tubular construct, called a stent, inside arteries to restore blood flow. However, due to lack of patient-specific design, the commercial products cannot be used with different vessel anatomies. In this review, we have summarized the drawbacks in existing commercial metal stents which face problems of restenosis and inflammatory responses, owing to the development of neointimal hyperplasia. Further, we have highlighted the fabrication of stents using biodegradable polymers, which can circumvent most of the existing limitations. In this regard, we elaborated on the utilization of new fabrication methodologies based on additive manufacturing such as three-dimensional printing to design patient-specific stents. Finally, we have discussed the functionalization of these stent surfaces with suitable bioactive molecules which can prove to enhance their properties in preventing thrombosis and better healing of injured blood vessel lining. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
Show Figures

Figure 1

21 pages, 2662 KiB  
Review
Recent Progress of In Vitro 3D Culture of Male Germ Stem Cells
by Jiang Wu, Kai Kang, Siqi Liu, Yaodan Ma, Meng Yu and Xin Zhao
J. Funct. Biomater. 2023, 14(11), 543; https://doi.org/10.3390/jfb14110543 - 8 Nov 2023
Viewed by 1608
Abstract
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements [...] Read more.
Male germline stem cells (mGSCs), also known as spermatogonial stem cells (SSCs), are the fundamental seed cells of male animal reproductive physiology. However, environmental influences, drugs, and harmful substances often pose challenges to SSCs, such as population reduction and quality decline. With advancements in bioengineering technology and biomaterial technology, an increasing number of novel cell culture methods and techniques have been employed for studying the proliferation and differentiation of SSCs in vitro. This paper provides a review on recent progress in 3D culture techniques for SSCs in vitro; we summarize the microenvironment of SSCs and spermatocyte development, with a focus on scaffold-based culture methods and 3D printing cell culture techniques for SSCs. Additionally, decellularized testicular matrix (DTM) and other biological substrates are utilized through various combinations and approaches to construct an in vitro culture microenvironment suitable for SSC growth. Finally, we present some perspectives on current research trends and potential opportunities within three areas: the 3D printing niche environment, alternative options to DTM utilization, and advancement of the in vitro SSC culture technology system. Full article
(This article belongs to the Special Issue Advances in Multifunctional Hydrogels for Biomedical Application)
Show Figures

Figure 1

18 pages, 2774 KiB  
Article
Assessment of the Penetration of an Endodontic Sealer into Dentinal Tubules with Three Different Compaction Techniques Using Confocal Laser Scanning Microscopy
by Ignacio Barbero-Navarro, Diego Velázquez-González, María Esther Irigoyen-Camacho, Marco Antonio Zepeda-Zepeda, Paulo Mauricio, David Ribas-Perez and Antonio Castano-Seiquer
J. Funct. Biomater. 2023, 14(11), 542; https://doi.org/10.3390/jfb14110542 - 7 Nov 2023
Viewed by 1783
Abstract
Adequate root canal sealing is essential for the success of endodontic treatment. There are numerous techniques available; identifying simple and efficient techniques is important to provide good patient care. The purpose of the study was to compare the maximum penetration depth and the [...] Read more.
Adequate root canal sealing is essential for the success of endodontic treatment. There are numerous techniques available; identifying simple and efficient techniques is important to provide good patient care. The purpose of the study was to compare the maximum penetration depth and the percentage of sealant penetration of an endodontic sealer into dentine tubules using cold lateral condensation, continuous wave, and hybrid techniques, and to contrast the effectiveness of two different tapered gutta-percha master cones (0.02 and 0.04). A sample of sixty single root teeth was used. Six experimental groups were formed from the three filling techniques and the two tapered master cones. Images were acquired using a confocal laser scanning microscope. In the apical root third, the penetration percentage was higher in the hybrid compared with the continuous wave technique. The results indicated a higher penetration depth of hybrid compared with cold lateral condensation in the middle and coronal thirds, and in the apical third, a higher penetration was identified in the hybrid group compared with the continuous wave group. No significant differences in penetration were found comparing 0.02 with 0.04 taper gutta-percha groups. The coronal cross-sections presented a higher penetration than the apical third sections. In conclusion, the hybrid technique a had higher maximum sealer penetration than the continuous wave in the apical third, and the coronal third hybrid and continuous wave had a higher penetration than cold lateral condensation. Full article
Show Figures

Figure 1

16 pages, 7124 KiB  
Article
A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment
by Yi Jin, Xingyu Ge, Yinjin Xu, Siyi Wang, Qian Lu, Aidong Deng, Jingjing Li and Zhifeng Gu
J. Funct. Biomater. 2023, 14(11), 541; https://doi.org/10.3390/jfb14110541 - 3 Nov 2023
Viewed by 1695
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to progressive and aggressive joint inflammation. The disease process is characterized by the activation of macrophages, which then release tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accelerating tissue damage. Tackling tissue damage is [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to progressive and aggressive joint inflammation. The disease process is characterized by the activation of macrophages, which then release tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accelerating tissue damage. Tackling tissue damage is a crucial target in the treatment of RA. In this study, a macrophage-targeted and pH-response DNA tetrahedron/methotrexate drug delivery system was constructed by loading methotrexate (MTX) onto a DNA duplex. MTX was used as a drug model, and a pH-response DNA tetrahedron (TET) was used as the drug carrier, which was modified with hyaluronic acid (HA) to target macrophages. The aim of this study was to evaluate the potential of TET as an effective drug carrier for the treatment of RA. On this basis, we successfully prepared TETs loaded with MTX, and in vitro assays showed that the MTX-TET treatment could successfully target macrophages and induce macrophages to polarize to M1 phenotype. At the same time, we also injected MTX-TET intravenously into collagen-induced arthritis (CIA) model mice, and the redness and swelling of the paws of mice were significantly alleviated, proving that the MTX-TET could successfully target inflamed joints and release MTX to treat joint swelling. In addition, the histochemical results showed that the MTX-TET could reduce synovitis and joint swelling in CIA mice, reduce the level of inflammatory factors in vivo, and improve the disease status while maintaining a good biosafety profile. This study showed that the MTX-TET treatment has beneficial therapeutic effects on RA, providing a new strategy for the clinical treatment of RA. Full article
(This article belongs to the Special Issue Nanoparticles and Biomaterials for Drug Delivery)
Show Figures

Figure 1

17 pages, 3898 KiB  
Article
Establishing the Callus-Based Isolation of Extracellular Vesicles from Cissus quadrangularis and Elucidating Their Role in Osteogenic Differentiation
by Ritu Gupta, Sneha Gupta, Purva Gupta, Andreas K. Nüssler and Ashok Kumar
J. Funct. Biomater. 2023, 14(11), 540; https://doi.org/10.3390/jfb14110540 - 2 Nov 2023
Cited by 3 | Viewed by 1923
Abstract
Extracellular vesicles (EVs) are nano-sized vehicles secreted by all live cells to establish communication with adjacent cells. In recent years, mammalian EVs (MEVs) have been widely investigated for their therapeutic implications in human disease conditions. As the understanding of MEV composition and nature [...] Read more.
Extracellular vesicles (EVs) are nano-sized vehicles secreted by all live cells to establish communication with adjacent cells. In recent years, mammalian EVs (MEVs) have been widely investigated for their therapeutic implications in human disease conditions. As the understanding of MEV composition and nature is advancing, scientists are constantly exploring alternatives for EV production with similar therapeutic potential. Plant-derived exosome-like nanovesicles (PDEVs) may be a better substitute for MEVs because of their widespread sources, cost-effectiveness, and ease of access. Cissus quadrangularis (CQ), known as “bone setter or Hadjod”, is a perennial plant utilized for its osteogenic potential. Its crude powder extract formulations are widely used as tablets and syrups. The present work elucidates the isolation of exosome-like nanovesicles (henceforth exosomes) from the culture supernatants of an in vitro cultured callus tissue derived from CQ. The physical and biological properties of the exosomes were successfully investigated using different characterization techniques. The therapeutic potential of the CQ exosomes was found to ameliorate the wound scratch injury and oxidative stress conditions in human-derived mesenchymal stem cells (hMSCs) and the pre-osteoblast (MC3T3) cell line. These exosomes also induced the proliferation and differentiation of hMSCs, as observed by alkaline phosphatase activity. These findings may serve as a proof of concept for further investigating the CQ exosomes as a nanocarrier for drug molecules in various therapeutic bone applications. Full article
(This article belongs to the Special Issue Advanced Functional Biomaterials in Regenerative Medicine)
Show Figures

Figure 1

22 pages, 3925 KiB  
Review
Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications
by Amit Kumar Tripathi, Jyotsana Singh, Rucha Trivedi and Payal Ranade
J. Funct. Biomater. 2023, 14(11), 539; https://doi.org/10.3390/jfb14110539 - 2 Nov 2023
Cited by 2 | Viewed by 2576
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and [...] Read more.
Antimicrobial peptides (AMPs) have emerged as a promising class of bioactive molecules with the potential to combat infections associated with medical implants and biomaterials. This review article aims to provide a comprehensive analysis of the role of antimicrobial peptides in medical implants and biomaterials, along with their diverse clinical applications. The incorporation of AMPs into various medical implants and biomaterials has shown immense potential in mitigating biofilm formation and preventing implant-related infections. We review the latest advancements in biomedical sciences and discuss the AMPs that were immobilized successfully to enhance their efficacy and stability within the implant environment. We also highlight successful examples of AMP coatings for the treatment of surgical site infections (SSIs), contact lenses, dental applications, AMP-incorporated bone grafts, urinary tract infections (UTIs), medical implants, etc. Additionally, we discuss the potential challenges and prospects of AMPs in medical implants, such as effectiveness, instability and implant-related complications. We also discuss strategies that can be employed to overcome the limitations of AMP-coated biomaterials for prolonged longevity in clinical settings. Full article
Show Figures

Figure 1

13 pages, 1862 KiB  
Article
Development and Functionalization of a Novel Chitosan-Based Nanosystem for Enhanced Drug Delivery
by Carmen Grierosu, Gabriela Calin, Daniela Damir, Constantin Marcu, Radu Cernei, Georgeta Zegan, Daniela Anistoroaei, Mihaela Moscu, Elena Mihaela Carausu, Letitia Doina Duceac, Marius Gabriel Dabija, Geta Mitrea, Cristian Gutu, Elena Roxana Bogdan Goroftei and Lucian Eva
J. Funct. Biomater. 2023, 14(11), 538; https://doi.org/10.3390/jfb14110538 - 1 Nov 2023
Viewed by 1609
Abstract
Nowadays, infection diseases are one of the most significant threats to humans all around the world. An encouraging strategy for solving this issue and fighting resistant microorganisms is to develop drug carriers for a prolonged release of the antibiotic to the target site. [...] Read more.
Nowadays, infection diseases are one of the most significant threats to humans all around the world. An encouraging strategy for solving this issue and fighting resistant microorganisms is to develop drug carriers for a prolonged release of the antibiotic to the target site. The purpose of this work was to obtain metronidazole-encapsulated chitosan nanoparticles using an ion gelation route and to evaluate their properties. Due to the advantages of the ionic gelation method, the synthesized polymeric nanoparticles can be applied in various fields, especially pharmaceutical and medical. Loading capacity and encapsulation efficiency varFied depending on the amount of antibiotic in each formulation. Physicochemical characterization using scanning electron microscopy revealed a narrow particle size distribution where 90% of chitosan particles were 163.7 nm in size and chitosan-loaded metronidazole nanoparticles were 201.3 nm in size, with a zeta potential value of 36.5 mV. IR spectra revealed characteristic peaks of the drug and polymer nanoparticles. Cell viability assessment revealed that samples have no significant impact on tested cells. Release analysis showed that metronidazole was released from the chitosan matrix for 24 h in a prolonged course, implying that antibiotic-encapsulated polymer nanostructures are a promising drug delivery system to prevent or to treat various diseases. It is desirable to obtain new formulations based on drugs encapsulated in nanoparticles through different preparation methods, with reduced cytotoxic potential, in order to improve the therapeutic effect through sustained and prolonged release mechanisms of the drug correlated with the reduction of adverse effects. Full article
Show Figures

Figure 1

11 pages, 1524 KiB  
Article
Poly(Aspartic Acid) Promotes Odontoblast-like Cell Differentiation in Rat Molars with Exposed Pulp
by Fernanda Furuse Ventura dos Santos, Stefan Habelitz, Fábio Dupart Nascimento, Victor Elias Arana-Chavez and Roberto Ruggiero Braga
J. Funct. Biomater. 2023, 14(11), 537; https://doi.org/10.3390/jfb14110537 - 1 Nov 2023
Viewed by 1537
Abstract
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed [...] Read more.
In recent years, alternative pulpal therapies targeting dentinogenesis signaling pathways using different peptides have been investigated. The aim of this study was to verify the effectiveness of poly(aspartic acid), pAsp, in dentin regeneration using an animal model. Methods: Mechanical pulp exposure was performed in the upper molars of 56 Wistar rats, randomly divided as follows (n = 14): control (no treatment); MTA group—pulp capping with mineral trioxide aggregate (MTA Angelus); pAsp group—application of 20 μL of pAsp solution (25 mg·mL−1); MTA+pAsp group—application of MTA mixed with pAsp (5:1 by mass). Animals were euthanized after 7 or 21 days. Histological sections were submitted to hematoxylin-eosin and Brown and Brenn staining and immunohistochemical analysis for osteopontin (OPN) and dentin matrix protein 1 (DMP 1). Results: At 7 days, an acute inflammatory infiltrate and the presence of disorganized mineralized tissue were observed in all groups. At 21 days, the quality and thickness of the reparative dentin in treated groups were superior to the control, and bacterial contamination was observed in two MTA-pAsp specimens. While all treated groups showed intense immunostaining for OPN at 21 days, only the pAsp group expressed DMP 1, indicating the presence of fully differentiated odontoblast-like cells. Conclusion: Poly(aspartic) acid promoted dentin regeneration in rat molars in the absence of an additional calcium source and may be an alternative to MTA as a pulp-capping agent. Full article
(This article belongs to the Special Issue Biomaterials in Restorative Dentistry and Endodontics)
Show Figures

Figure 1

16 pages, 3920 KiB  
Article
PCLLA-nanoHA Bone Substitute Promotes M2 Macrophage Polarization and Improves Alveolar Bone Repair in Diabetic Environments
by Dandan Wang, Ling Wei, Jialin Hao, Weifeng Tang, Yuan Zhou, Chenguang Zhang and Jinming Wang
J. Funct. Biomater. 2023, 14(11), 536; https://doi.org/10.3390/jfb14110536 - 30 Oct 2023
Cited by 1 | Viewed by 1562
Abstract
The utilization of bioresorbable synthetic bone substitutes with immunomodulatory properties has gained significant attention in dental clinical applications for the absorption of alveolar bone induced by orthodontic treatment. In this study, we developed two distinct materials: a conventional hydroxyapatite (HA) bone powder comprised [...] Read more.
The utilization of bioresorbable synthetic bone substitutes with immunomodulatory properties has gained significant attention in dental clinical applications for the absorption of alveolar bone induced by orthodontic treatment. In this study, we developed two distinct materials: a conventional hydroxyapatite (HA) bone powder comprised of hydroxyapatite particles and nanoHA embedded within a poly(caprolactone-co-lactide) (PCLLA) elastomeric matrix. We assessed the physicochemical characteristics of the bone substitute, specifically focusing on its composition and the controlled release of ions. Our findings show that PCLLA-nanoHA has deformable properties under 40 N, and a significant release of Ca and P elements was noted after 7 days in aqueous settings. Moreover, at the protein and gene expression levels, PCLLA-nanoHA enhances the capacity of macrophages to polarize towards an M2 phenotype in vitro. In vivo, PCLLA-nanoHA exhibits comparable effects to standard HA bone powder in terms of promoting alveolar bone regeneration. Extensive investigations reveal that PCLLA-nanoHA surpasses the commonly employed HA bone powder in stimulating bone tissue repair in diabetic mice. We have identified that PCLLA-nanoHA regulates macrophage M2 polarization by activating the PI3K/AKT and peroxisome proliferator-activated receptor gamma (PPAR) signaling pathways, thereby facilitating a favorable local immune microenvironment conducive to bone repair and regeneration. Our findings suggest that PCLLA-nanoHA presents itself as a promising bioresorbable bone substitute with properties that promote macrophage M2 polarization, particularly in the context of regulating the local microenvironment of alveolar bone in diabetic mice, potentially facilitating bone tissue regeneration. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies in Orthodontics)
Show Figures

Figure 1

17 pages, 4057 KiB  
Article
Susceptibility of 316L Stainless Steel Structures to Corrosion Degradation in Salivary Solutions in the Presence of Lactic Acid
by Lidia Benea, Iulian Bounegru, Elena Roxana Axente and Daniela Buruiană
J. Funct. Biomater. 2023, 14(11), 535; https://doi.org/10.3390/jfb14110535 - 30 Oct 2023
Viewed by 2864
Abstract
In the field of healthcare and dentistry, 316L stainless steel is widely used for its corrosion resistance. However, the presence of lactic acid in salivary solutions can affect its surface reactivity. This study employed electrochemical methods to investigate the influence of lactic acid [...] Read more.
In the field of healthcare and dentistry, 316L stainless steel is widely used for its corrosion resistance. However, the presence of lactic acid in salivary solutions can affect its surface reactivity. This study employed electrochemical methods to investigate the influence of lactic acid on 316L stainless steel’s corrosion resistance in Fusayama Meyer saliva and saliva doped with varying lactic acid concentrations. The results revealed a significant decrease in polarization resistance as the lactic acid concentration increased, despite a shift toward more positive corrosion potentials. Consequently, the study suggests that the lactic acid presence in salivary solutions should be considered when evaluating the corrosion susceptibility of 316L stainless steel devices. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

11 pages, 1572 KiB  
Article
Concept of a Novel Glass Ionomer Restorative Material with Improved Mechanical Properties
by Philipp Messer-Hannemann, Henrik Böttcher, Sven Henning, Falk Schwendicke and Susanne Effenberger
J. Funct. Biomater. 2023, 14(11), 534; https://doi.org/10.3390/jfb14110534 - 24 Oct 2023
Viewed by 1658
Abstract
The objective of this study was to transfer the concept of ductile particle reinforcement to restorative dentistry and to introduce an innovative glass ionomer material that is based on the dispersion of PEG-PU micelles. It was hypothesized that reinforcing a conventional glass ionomer [...] Read more.
The objective of this study was to transfer the concept of ductile particle reinforcement to restorative dentistry and to introduce an innovative glass ionomer material that is based on the dispersion of PEG-PU micelles. It was hypothesized that reinforcing a conventional glass ionomer in this way increases the flexural strength and fracture toughness of the material. Flexural strength and fracture toughness tests were performed with the novel reinforced and a control glass ionomer material (DMG, Hamburg, Germany) to investigate the influence of the dispersed micelles on the mechanical performance. Transmission electron microscopy was used to identify the dispersed micelles. Fracture toughness and flexural strength were measured in a 3-point-bending setup using a universal testing machine. Before performing both tests, the specimens were stored in water at 37 °C for 23 h. The fracture toughness (MPa∙m0.5) of the novel glass ionomer material (median: 0.92, IQR: 0.89–0.94) was significantly higher than that of the control material (0.77, 0.75–0.86, p = 0.0078). Significant differences were also found in the flexural strength (MPa) between the reinforced (49.7, 45.2–57.8) and control material (41.8, 40.6–43.5, p = 0.0011). Reinforcing a conventional glass ionomer with PEG-PU micelles improved the mechanical properties and may expand clinical applicability of this material class in restorative dentistry. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

18 pages, 4228 KiB  
Article
Aligned Collagen Sponges with Tunable Pore Size for Skeletal Muscle Tissue Regeneration
by Natalie G. Kozan, Sean Caswell, Milan Patel and Jonathan M. Grasman
J. Funct. Biomater. 2023, 14(11), 533; https://doi.org/10.3390/jfb14110533 - 24 Oct 2023
Cited by 2 | Viewed by 2115
Abstract
Volumetric muscle loss (VML) is a traumatic injury where at least 20% of the mass of a skeletal muscle has been destroyed and functionality is lost. The standard treatment for VML, autologous tissue transfer, is limited as approximately 1 in 10 grafts fail [...] Read more.
Volumetric muscle loss (VML) is a traumatic injury where at least 20% of the mass of a skeletal muscle has been destroyed and functionality is lost. The standard treatment for VML, autologous tissue transfer, is limited as approximately 1 in 10 grafts fail because of necrosis or infection. Tissue engineering strategies seek to develop scaffolds that can regenerate injured muscles and restore functionality. Many of these scaffolds, however, are limited in their ability to restore muscle functionality because of an inability to promote the alignment of regenerating myofibers. For aligned myofibers to form on a scaffold, myoblasts infiltrate the scaffold and receive topographical cues to direct targeted myofiber growth. We seek to determine the optimal pore size for myoblast infiltration and differentiation. We developed a method of tuning the pore size within collagen scaffolds while inducing longitudinal alignment of these pores. Significantly different pore sizes were generated by adjusting the freezing rate of the scaffolds. Scaffolds frozen at −20 °C contained the largest pores. These scaffolds promoted the greatest level of cell infiltration and orientation in the direction of pore alignment. Further research will be conducted to induce higher levels of myofiber formation, to ultimately create an off-the-shelf treatment for VML injuries. Full article
(This article belongs to the Special Issue Design, Synthesis and Medical Application of Porous Biomaterials)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop