Table of Contents

Mach. Learn. Knowl. Extr., Volume 1, Issue 1 (March 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-2
Export citation of selected articles as:

Editorial

Jump to: Research

Open AccessEditorial Introduction to MAchine Learning & Knowledge Extraction (MAKE)
Mach. Learn. Knowl. Extr. 2018, 1(1), 1; doi:10.3390/make1010001
Received: 8 May 2017 / Revised: 18 June 2017 / Accepted: 23 June 2017 / Published: 3 July 2017
PDF Full-text (2039 KB) | HTML Full-text | XML Full-text
Abstract
The grand goal of Machine Learning is to develop software which can learn from previous experience—similar to how we humans do. Ultimately, to reach a level of usable intelligence, we need (1) to learn from prior data, (2) to extract knowledge, (3) to
[...] Read more.
The grand goal of Machine Learning is to develop software which can learn from previous experience—similar to how we humans do. Ultimately, to reach a level of usable intelligence, we need (1) to learn from prior data, (2) to extract knowledge, (3) to generalize—i.e., guessing where probability function mass/density concentrates, (4) to fight the curse of dimensionality, and (5) to disentangle underlying explanatory factors of the data—i.e., to make sense of the data in the context of an application domain. To address these challenges and to ensure successful machine learning applications in various domains an integrated machine learning approach is important. This requires a concerted international effort without boundaries, supporting collaborative, cross-domain, interdisciplinary and transdisciplinary work of experts from seven sections, ranging from data pre-processing to data visualization, i.e., to map results found in arbitrarily high dimensional spaces into the lower dimensions to make it accessible, usable and useful to the end user. An integrated machine learning approach needs also to consider issues of privacy, data protection, safety, security, user acceptance and social implications. This paper is the inaugural introduction to the new journal of MAchine Learning & Knowledge Extraction (MAKE). The goal is to provide an incomplete, personally biased, but consistent introduction into the concepts of MAKE and a brief overview of some selected topics to stimulate future research in the international research community. Full article
Figures

Research

Jump to: Editorial

Open AccessArticle Learning to Teach Reinforcement Learning Agents
Mach. Learn. Knowl. Extr. 2018, 1(1), 2; doi:10.3390/make1010002
Received: 19 September 2017 / Revised: 17 November 2017 / Accepted: 1 December 2017 / Published: 6 December 2017
PDF Full-text (1087 KB) | HTML Full-text | XML Full-text
Abstract
In this article, we study the transfer learning model of action advice under a budget. We focus on reinforcement learning teachers providing action advice to heterogeneous students playing the game of Pac-Man under a limited advice budget. First, we examine several critical factors
[...] Read more.
In this article, we study the transfer learning model of action advice under a budget. We focus on reinforcement learning teachers providing action advice to heterogeneous students playing the game of Pac-Man under a limited advice budget. First, we examine several critical factors affecting advice quality in this setting, such as the average performance of the teacher, its variance and the importance of reward discounting in advising. The experiments show that the best performers are not always the best teachers and reveal the non-trivial importance of the coefficient of variation (CV) as a statistic for choosing policies that generate advice. The CV statistic relates variance to the corresponding mean. Second, the article studies policy learning for distributing advice under a budget. Whereas most methods in the relevant literature rely on heuristics for advice distribution, we formulate the problem as a learning one and propose a novel reinforcement learning algorithm capable of learning when to advise or not. The proposed algorithm is able to advise even when it does not have knowledge of the student’s intended action and needs significantly less training time compared to previous learning approaches. Finally, in this article, we argue that learning to advise under a budget is an instance of a more generic learning problem: Constrained Exploitation Reinforcement Learning. Full article
Figures

Figure 1

Back to Top