Research on the Mechanical and Durability Properties of Concrete

A special issue of Buildings (ISSN 2075-5309). This special issue belongs to the section "Building Structures".

Deadline for manuscript submissions: closed (20 January 2025) | Viewed by 14553

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanics and Building Structures, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
Interests: basic and application tests of building and innovative materials in terms of strength and applicability; diagnostics of structures and buildings in terms of basic requirements and radon diagnostics in these structures; optimization of reinforced concrete and thin-walled cross-sections in terms of ultimate limit and serviceability limit states
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
SGGW Water Centre, Warsaw University of Life Sciences—SGGW, 02-787 Warsaw, Poland
Interests: sustainable construction; the design of passive, zero-energy and plus-energy buildings; the problem of circular construction; erecting buildings in the construction of which anthropopressure is significantly reduced and recycled materials are used as much as possible
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Concrete as a construction product is evaluated in terms of various parameters, especially compressive strength. In the era of concrete and construction technology development, more and more technological requirements are being placed on the concrete produced. Due to the increase in these requirements, manufactured concretes are already special, and quality control at each stage of their production has become very important. Special attention should be paid to the design stage, the initial evaluation of the test batch of concrete, and the re-evaluation of the concrete mixture. It is important to use plasticizers and super plasticizers because of the water required and the increase in the strength of the concrete not only in compression but also in tension. The carbon footprint emitted by the production of concrete and its reduction by changing the cement and additives is also important.

Dr. Marek Dohojda
Dr. Olga Szlachetka
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Buildings is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cement
  • concrete
  • carbon footprint
  • concrete mixture
  • construction product
  • quality control
  • special concretes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 28974 KiB  
Article
Study on Dynamic Response and Anti-Collision Measures of Aqueduct Structure Under Vehicle Impact
by Jiaze Shi, Rui Wen, Li Chen, Yao Zhou, Lei Duan and Weiqiang Wang
Buildings 2025, 15(6), 851; https://doi.org/10.3390/buildings15060851 - 8 Mar 2025
Viewed by 366
Abstract
In recent years, the number of incidents involving aqueduct damage due to vehicle impact has steadily increased, significantly affecting the safe operation of water transfer projects. To investigate the dynamic response characteristics of aqueduct structures under vehicle impact, a numerical model of vehicle [...] Read more.
In recent years, the number of incidents involving aqueduct damage due to vehicle impact has steadily increased, significantly affecting the safe operation of water transfer projects. To investigate the dynamic response characteristics of aqueduct structures under vehicle impact, a numerical model of vehicle impact on an aqueduct was developed using ANSYS/LS-DYNA software. The influence of impact eccentricity and concrete strength on the dynamic response of the aqueduct structure was then analyzed. The results indicate that the aqueduct bent frame exhibits a pronounced torsional response under eccentric impact, exacerbating the damage and deformation of the aqueduct structure. The peak impact force is positively correlated with concrete strength, whereas the maximum lateral displacement and residual displacement at the top of the impacted bent frame show a negative correlation with concrete strength. Finally, three anti-collision measures are proposed: a rubber concrete outer box with a rubber filling layer, an ultra-high-performance concrete (UHPC) outer box with a foam aluminum filling layer, and a rubber concrete outer box with a foam aluminum filling layer. The energy dissipation, internal force response, displacement response, and aqueduct damage characteristics of these measures are compared and analyzed, and compared to the aqueduct structure without anti-collision measures, the peak impact force is reduced by at least 17%. The lateral residual displacements at the bottom, the impact area, and the top of the aqueduct bent frame are reduced by at least 88.3%, 97.8%, and 88.5%. The damage and severity of damage to the aqueduct are significantly reduced, providing valuable insights for the anti-collision design of aqueducts. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

18 pages, 4733 KiB  
Article
A Neural Network-Based Structural Parameter Assessment Method for Prefabricated Concrete Pavement
by Yongsheng Tang, Yunzhen Lin and Tao Yu
Buildings 2025, 15(6), 843; https://doi.org/10.3390/buildings15060843 - 7 Mar 2025
Viewed by 172
Abstract
Due to their construction efficiency, prefabricated concrete pavements are becoming a good choice for airport construction or refreshing. However, as a new type of pavement structure, their structural analysis theory and actual structural performance have not been determined. Therefore, a new method based [...] Read more.
Due to their construction efficiency, prefabricated concrete pavements are becoming a good choice for airport construction or refreshing. However, as a new type of pavement structure, their structural analysis theory and actual structural performance have not been determined. Therefore, a new method based on a neural network is applied to implement a long-term structural assessment, with the input being monitored strain data; it is named the jellyfish search algorithm-optimized BP neural network (JS-BP) model. Considering the structural characteristics, three key parameters are selected as the key parameters to implement the assessment, namely, the bending and tensile modulus, reaction modulus at top of the subgrade, and seam equivalent modulus. To implement the method, the databases are established first with the simulation results from some finite element models of prefabricated concrete pavement. Then, the proposed JS-BP neural network model is trained and checked with the established database. The simulation results verify an excellent accuracy of the proposed method as the difference between the predicted value and the true value is smaller than 1%. Moreover, the aircraft loads show some influence on the prediction results, in which the prediction error is about 5% for most cases, while it is up to 15% for assessing the top surface reaction modulus of the subgrade. Compared with the proposed JS-BP model, the accuracy of the traditional BP model is not so high, as the largest error can be up to 25%. Lastly, the proposed method is verified with some experiments using laboratory models. From the test results it is indicated that the prediction accuracy of the proposed method for the three parameters is still good enough, as the prediction error is within 5%. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

18 pages, 5276 KiB  
Article
The Pore Structure Characteristics of Mortar and Its Application in the Study of Chloride Ion Transport Performance
by Zhidan Rong, Hanliang Ouyang, Yun Gao and Hao Chen
Buildings 2025, 15(3), 383; https://doi.org/10.3390/buildings15030383 - 26 Jan 2025
Viewed by 492
Abstract
The cement-based materials widely used in infrastructure construction, such as bridges and ports, are subjected to seawater erosion and medium erosion during their service life, and their durability has always been a concern. The diffusion coefficient of chloride ions is an important indicator [...] Read more.
The cement-based materials widely used in infrastructure construction, such as bridges and ports, are subjected to seawater erosion and medium erosion during their service life, and their durability has always been a concern. The diffusion coefficient of chloride ions is an important indicator in the research of cement-based materials’ durability, and the pore structure is one of the most fundamental reasons affecting the diffusion behavior of chloride ions. In this paper, Mercury intrusion porosimetry (MIP), Nuclear magnetic resonance (NMR), and Nitrogen adsorption method (NAD) were used to analyze the pore structures of mortars with different volume fractions of sands. The relationship between mortar pore structure and chloride ion diffusion coefficient was established to predict its chloride ion diffusion coefficient. It may provide a new idea for studying the durability of cement-based materials. Results indicated that similar to cement paste, the pore structure of mortar satisfied the fractal characteristics of solid phase within a certain range of pores. The most probable gel pore diameter of mortars with different sand volume fractions was about 4 nm, while the most probable capillary pore diameter was approximately 46 nm, and the critical pore diameter was ranging from 50 to 60 nm. MIP results indicated that with the increase in sand volume fraction (ϕagg), the total porosity (fmip) of the mortar decreased, satisfying the relationship of fmip = 0.1859 − 0.0789ϕagg. However, the porosity of the matrix (fbase) increased with the increase in sand volume fraction, which was due to the introduction of more interfaces by the addition of aggregates. The effective chloride ion diffusion coefficient (Dcp,base) of the matrix can be obtained by fitting. Based on this, the interface transition zone (ITZ) and the cement matrix were comprehensively considered as a whole fractal phase. The predicted value of the chloride ion diffusion coefficient obtained by the Mori–Tanaka homogenization method was in good agreement with the results obtained from rapid chloride migration (RCM) experiments, and the maximum error between the simulated and experimental values did not exceed 11%. This finding can provide new ideas for accurately predicting the chloride ion diffusion coefficient of mortar and even concrete. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

31 pages, 31248 KiB  
Article
Study on Mechanical Properties and Constitutive Relationship of Steel Fiber-Reinforced Coal Gangue Concrete after High Temperature
by Zhenzhuo Ge and Bin Cai
Buildings 2024, 14(6), 1791; https://doi.org/10.3390/buildings14061791 - 13 Jun 2024
Viewed by 893
Abstract
In this paper, steel fiber coal gangue concrete is examined for its fire resistance, high strength, and stability, aiming to achieve both green sustainability and resistance to elevated temperatures. We conducted tests on concrete specimens with varying coal gangue aggregate volume replacement rates [...] Read more.
In this paper, steel fiber coal gangue concrete is examined for its fire resistance, high strength, and stability, aiming to achieve both green sustainability and resistance to elevated temperatures. We conducted tests on concrete specimens with varying coal gangue aggregate volume replacement rates (0%, 20%, 40%, 60%) and steel fiber volume contents (0%, 0.5%, 1.0%, 1.5%) to assess their post-high-temperature mechanical properties. These tests were performed at five temperature levels: 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C. The focus was on analyzing the residual mechanical properties and constitutive relationship of the steel fiber coal gangue concrete after exposure to high temperatures. The findings indicate that as the temperature rises, the compressive strength, split tensile strength, and modulus of elasticity of the steel fiber coal gangue concrete specimens undergo varying degrees of reduction. However, the peak strain and ultimate strain increase gradually. The incorporation of steel fibers enhances the mechanical properties of the coal gangue concrete, resulting in improvements in the elastic modulus and peak strain, both before and after exposure to high temperatures. Furthermore, the established constitutive relationship for steel fiber coal gangue concrete after high temperatures, derived from calculations and validated with experimental data, provides a more accurate representation of the entire damage process under uniaxial compressive loading at elevated temperatures. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

20 pages, 7897 KiB  
Article
Strength and Microstructural Changes in Cementitious Composites Containing Waste Oyster Shell Powder
by Min Ook Kim and Myung Kue Lee
Buildings 2023, 13(12), 3078; https://doi.org/10.3390/buildings13123078 - 11 Dec 2023
Cited by 4 | Viewed by 1820
Abstract
In this study, the effect of adding waste oyster shell powder (WOSP) on the strength and microstructure of cementitious composites was experimentally investigated. The test variables included the WOSP replacement ratios (0, 25, 50, and 75%) by weight of cement, the type of [...] Read more.
In this study, the effect of adding waste oyster shell powder (WOSP) on the strength and microstructure of cementitious composites was experimentally investigated. The test variables included the WOSP replacement ratios (0, 25, 50, and 75%) by weight of cement, the type of curing water (tap water and seawater), and the curing period (7, 28, 90, 180, and 365 d). The compressive strength, flexural strength, and initial and secondary sorptivity were measured at specific ages. Moreover, scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurements were conducted, and their results were analyzed. Samples with WOSP replacement ratios greater than 25% exhibited a rapid reduction in measured strength values. The correlation between compressive strength and initial sorptivity tends to be slightly higher than that between flexural strength and initial sorptivity. The one-year investigation revealed that there was no significant effect of using different curing waters on strength development. The effect of the curing period was evident in enhancing the strength only in the early stages, with no significant increase in strength observed after 28 d. The XRD analysis revealed that most samples prepared with WOSP contained CaCO3, and the peak of CaCO3 tended to increase with an increasing WOSP replacement ratio. The SEM results revealed that a high replacement ratio of WOSP can have a negative influence on cement hydration and the pozzolanic effect. The limitations of this study and future work were also discussed. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

20 pages, 11963 KiB  
Article
Analysis of the Water/Cement/Bentonite Ratio Used for Construction of Cut-Off Walls
by Cristian-Ștefan Barbu, Andrei-Dan Sabău, Daniel-Marcel Manoli, Manole-Stelian Șerbulea, Ruxandra Erbașu, Daniela Țăpuși, Olga Szlachetka, Justyna Dzięcioł, Anna Baryła, Marek Dohojda and Wojciech Sas
Buildings 2023, 13(12), 2922; https://doi.org/10.3390/buildings13122922 - 23 Nov 2023
Cited by 4 | Viewed by 2234
Abstract
In recent years, because of the continuous expansion of urban areas, an increased necessity to isolate historically polluted sites by means of artificial, flexible, low-permeability barriers has emerged. Moreover, due to cost and efficiency considerations, various combinations of materials that fulfill the previously [...] Read more.
In recent years, because of the continuous expansion of urban areas, an increased necessity to isolate historically polluted sites by means of artificial, flexible, low-permeability barriers has emerged. Moreover, due to cost and efficiency considerations, various combinations of materials that fulfill the previously stated requirements have been proposed. On the basis of a literature review, this paper analyses the relationships between water, cement, and bentonite, and the physical and mechanical properties of the resulting material created in combination with standard sand introduced in the mixture using a ratio of 2:1 with respect to the solid part of the mixture (cement and bentonite). The quantity of standard sand was established following previous research conducted by the authors. The relation between water, cement, and bentonite is analyzed through properties such as viscosity, permeability, and undrained cohesion, and the representation of mixtures and their corresponding parameters was carried out using a ternary diagram. This paper provides a graphical approach to finding the optimum water/bentonite/cement mixture required for barrier design, taking into account permeability, undrained cohesion, and mixture viscosity. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

19 pages, 15958 KiB  
Article
Investigation on the Through-Thickness Temperature Gradient and Thermal Stress of Concrete Box Girders
by Qiangru Shen, Jingcheng Chen, Changqi Yue, Hui Cao, Chong Chen and Wangping Qian
Buildings 2023, 13(11), 2882; https://doi.org/10.3390/buildings13112882 - 18 Nov 2023
Cited by 1 | Viewed by 1443
Abstract
Bridges are generally affected by thermal loads which include the daily cycle, seasonal cycle and annual cycle. Thermal loads mode and thermal effects on bridges, especially for concrete girders, are quite essential but complicated. To investigate the temperature field and thermal stress in [...] Read more.
Bridges are generally affected by thermal loads which include the daily cycle, seasonal cycle and annual cycle. Thermal loads mode and thermal effects on bridges, especially for concrete girders, are quite essential but complicated. To investigate the temperature field and thermal stress in the thickness direction of a concrete box girder, the temperature field of a prestressed concrete continuous box girder bridge is monitored, and the temperature distribution in the thickness direction of the concrete box girder is analyzed. Finite element simulation, utilizing air elements specifically designed for concrete box girders, is employed to analyze the temperature field and thermal stress profiles along the thickness of the slab. The findings indicate a variation in temperature along the thickness of the concrete box girder slab. The most significant temperature differential, reaching up to 10.7 °C, is observed along the thickness of the top slab, followed by the bottom plate, with the web exhibiting relatively smaller differentials. Temperature in the full thickness range has a significant impact on the top plate, while the web plate and bottom plate are greatly influenced by temperature ranging from the outer surface to the center of the plate thickness. The temperature difference between the center of the plate thickness and the inner surface is approximately 0. The variation in temperature due to the variation in thickness direction is a temporal factor, wherein the outer layer of the roof is primarily compressed, while the inner layer is subjected to tension. The external surface of the web is mainly compressed. The stress exerted by the internal surface temperature is minimal. The internal and external surface effects of the floor are similar, and as time passes, tensile and compressive stresses appear. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

17 pages, 7841 KiB  
Article
A Study of the Mechanical Properties of Polyester Fiber Concrete Continuous Rigid Frame Bridge during Construction
by Shouju Miao, Xiaojian Zhan, Yangbing Yuan and Lijun Jia
Buildings 2023, 13(11), 2849; https://doi.org/10.3390/buildings13112849 - 14 Nov 2023
Viewed by 1656
Abstract
This study investigates the mechanical performance of a polyester fiber concrete continuous rigid frame bridge during construction and the spatial stress distribution of the 0# block box girder, with a focus on the backdrop of the bridge in Pipa Zhou, Jiangxi Province. Stress [...] Read more.
This study investigates the mechanical performance of a polyester fiber concrete continuous rigid frame bridge during construction and the spatial stress distribution of the 0# block box girder, with a focus on the backdrop of the bridge in Pipa Zhou, Jiangxi Province. Stress monitoring at critical cross-sections during bridge construction was combined with FE simulations to analyze the stress and alignment deviation variations along the cantilevered construction process of the bridges. Subsequently, after validating the accuracy of the whole bridge model, the actual internal force of the box girder cross-section was extracted to act on the 0# block box girder solid model, and the spatial force of the 0# block box girder under the state of maximal cantilever and the completed bridge was further investigated. The results indicate that during cantilever construction, the top, and bottom plates of the box girder were subjected to compression, with the bottom plates having relatively low compression stress close to the critical values for compression and tension. Attention should be paid to controlling tensile stress application. After reaching a quarter of the bridge’s span in construction, the alignment deviation of the main beam increases, necessitating enhanced monitoring and adjustments of the main beam elevation. Furthermore, FE analysis shows that under maximum cantilever and the completed bridge states, the stress variations of the top and bottom plates of the 0# block box girder remain consistent, with the top plate stress varying by no more than 2.5 MPa and the bottom plate stress varying by approximately 1 MPa. Moreover, the 0# block box girder shrinkage cracks were mainly located in the bottom and web plate, and the number of cracks in the 0# block box girder with polyester fibers was reduced compared to the cracks in the ordinary concrete box girder. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

22 pages, 11287 KiB  
Article
Effects of Marine Shellfish on Mechanical Properties and Microstructure of Coral Concrete
by Xiangran Zhao, Qing Wu, Muhammad Akbar, Rongrong Yin, Shiliang Ma and Yong Zhi
Buildings 2023, 13(9), 2193; https://doi.org/10.3390/buildings13092193 - 29 Aug 2023
Cited by 3 | Viewed by 1521
Abstract
Using coral debris as coarse and fine aggregates and seawater as mixing water has been proposed to address transportation and material shortage issues in island and reef construction projects. However, the utilization of coral may result in impurities, such as shellfish and other [...] Read more.
Using coral debris as coarse and fine aggregates and seawater as mixing water has been proposed to address transportation and material shortage issues in island and reef construction projects. However, the utilization of coral may result in impurities, such as shellfish and other marine organisms, which could impact the mechanical properties of the resulting concrete. The goal of this study is to find out how different amounts of shellfish and marine organism impurities affect the mechanical properties and microstructure of coral concrete. This study builds on the process of making full coral concrete. Substitution optimization is carried out using the response surface method (RSM), with the polynomial work expectation serving as a validation measure. The experimental findings indicate that impurities have an insignificant impact on the mechanical properties of coral concrete when their dosage is below 2%, causing a decrease of only around 6%. The mechanical properties of coral concrete containing shellfish and marine organism impurities exhibit a strong correlation at 28 days. SEM and XRD analysis revealed that the primary factor contributing to the decline of mechanical properties in coral concrete with shellfish and marine organism impurities is the weak strength of the impurity shell structure, in addition to the rehydration of internal biomass during the cement hydration process, leading to the formation of numerous small pores within the coral concrete. The results of an ANOVA test indicate that the model is statistically significant, with a p-value of less than 0.05. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Graphical abstract

13 pages, 5275 KiB  
Article
Utilisation of Ceramic Stoneware Tile Waste as Recycled Aggregate in Concrete
by Marta Roig-Flores, Lucía Reig, Vicente Albero, David Hernández-Figueirido, Antonio Melchor-Eixea, Ángel M. Pitarch and Ana Piquer
Buildings 2023, 13(8), 1968; https://doi.org/10.3390/buildings13081968 - 1 Aug 2023
Cited by 8 | Viewed by 2083
Abstract
The construction industry has a significant environmental impact and concrete production is responsible for a large part of CO2 emissions and energy consumption. This study focused on the reutilisation of a specific type of tiles ceramic waste (TCW), composed only of stoneware [...] Read more.
The construction industry has a significant environmental impact and concrete production is responsible for a large part of CO2 emissions and energy consumption. This study focused on the reutilisation of a specific type of tiles ceramic waste (TCW), composed only of stoneware and porcelain stoneware tiles, hereafter referred to as ceramic stoneware (CS), as recycled aggregate in concrete. Natural limestone and CS aggregates (sand and gravel) were characterised (particle size distribution, water absorption, resistance to wear, density and X-ray diffraction analyses) and recycled aggregate concrete (RAC) was prepared by replacing 20, 50 and 100 vol.% of sand and gravel, separately. Concrete workability generally improved with CW addition, especially when replacing natural gravel. Although the compressive strengths of the concrete specimens prepared with recycled sand were slightly lower than those of the reference specimens, similar or better results were recorded with the recycled CS gravel. In consonance, the RAC developed with recycled gravel obtained lower water penetration depths than the reference concrete. No significant variation in tensile strength was observed when varying CS content (values within the 2.33–2.65 MPa range). The study contributes to sustainable construction practices and circular economy by promoting the valorisation and reutilisation of industrial waste and reducing the consumption of natural resources. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 3438 KiB  
Review
Advancements in Surface Coatings and Inspection Technologies for Extending the Service Life of Concrete Structures in Marine Environments: A Critical Review
by Taehwi Lee, Dongchan Kim, Sanghwan Cho and Min Ook Kim
Buildings 2025, 15(3), 304; https://doi.org/10.3390/buildings15030304 - 21 Jan 2025
Cited by 1 | Viewed by 945
Abstract
Concrete structures in marine environments are subjected to severe conditions that significantly compromise their durability and service life. Exposure to chloride penetration, sulfate attack, and physical erosion accelerates deterioration, leading to extensive maintenance requirements and high associated costs. To address these challenges, significant [...] Read more.
Concrete structures in marine environments are subjected to severe conditions that significantly compromise their durability and service life. Exposure to chloride penetration, sulfate attack, and physical erosion accelerates deterioration, leading to extensive maintenance requirements and high associated costs. To address these challenges, significant advancements in surface coatings and inspection technologies have been developed to enhance the longevity of concrete structures. This review examines recent progress in protective surface coatings that mitigate environmental damage and explores state-of-the-art inspection techniques for assessing structural integrity. By providing a comprehensive analysis of innovative materials, coating applications, and non-destructive evaluation methods, this paper aims to equip researchers and industry professionals with effective strategies for preserving concrete infrastructure in marine environments. Full article
(This article belongs to the Special Issue Research on the Mechanical and Durability Properties of Concrete)
Show Figures

Figure 1

Back to TopTop