Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5291 KiB  
Article
Progressive Fatigue Modelling of Open-Hole Glass-Fibre Epoxy Laminates
by Victor Maneval, Nils-Petter Vedvik and Andreas T. Echtermeyer
J. Compos. Sci. 2023, 7(12), 516; https://doi.org/10.3390/jcs7120516 - 12 Dec 2023
Cited by 5 | Viewed by 1763
Abstract
The failure of composite laminates under cyclic fatigue loads is complex, as multiple failure mechanisms are in play at different scales and interact with each other. Predicting the remaining fatigue life as well as the residual capacities of a composite laminate or component [...] Read more.
The failure of composite laminates under cyclic fatigue loads is complex, as multiple failure mechanisms are in play at different scales and interact with each other. Predicting the remaining fatigue life as well as the residual capacities of a composite laminate or component is crucial, particularly for safety-critical applications. A progressive fatigue model is proposed to describe the catastrophic failure of open-hole laminates under tensile cyclic fatigue. To represent both intra-laminar and inter-laminar damage, a combination of a continuum damage mechanics model (CDM) and a discrete cohesive zone model (CZM) is implemented in the finite element (FE) software Abaqus. The CDM combines fibre- and matrix-dominated S-N curves with the Palmgren–Miner accumulation rule and Hashin’s residual strength to form a fatigue failure criterion differentiating between fibre failure (FF) and matrix failure (MF). The CZM implemented in this work is the CF20 model proposed by NASA. Fatigue cycling is simulated using an external cycle-jump scheme, where the stiffness degradation is conducted between the FE simulations outside of the implicit solver [90/0] s. Glass fibre reinforced polymer (GFRP) open-hole specimens were tested in tensile cyclic fatigue at a load ratio of 0.1. The experiments were reproduced numerically and the results compared. After calibration of a set of parameters based on one load level, the model was able to reproduce the experimental S-N curve very well, predicting a slope of −0.10, while the experimental value was −0.11. The failure sequence of the laminate was also successfully reproduced. The growth of the split from the hole, and its interaction with inter-laminar delamination, was successfully captured. The proposed approach was able to describe the fatigue failure of an open-hole laminate with a minimal set of material inputs using a simplified fatigue damage model while avoiding convergence issues. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

14 pages, 13185 KiB  
Article
Additive Manufacturing and Characterization of Sustainable Wood Fiber-Reinforced Green Composites
by Christopher Billings, Ridwan Siddique, Benjamin Sherwood, Joshua Hall and Yingtao Liu
J. Compos. Sci. 2023, 7(12), 489; https://doi.org/10.3390/jcs7120489 - 26 Nov 2023
Cited by 11 | Viewed by 2610
Abstract
Enhancing mechanical properties of environmentally friendly and renewable polymers by the introduction of natural fibers not only paves the way for developing sustainable composites but also enables new opportunities in advanced additive manufacturing (AM). In this paper, wood fibers, as a versatile renewable [...] Read more.
Enhancing mechanical properties of environmentally friendly and renewable polymers by the introduction of natural fibers not only paves the way for developing sustainable composites but also enables new opportunities in advanced additive manufacturing (AM). In this paper, wood fibers, as a versatile renewable resource of cellulose, are integrated within bio-based polylactic acid (PLA) polymer for the development and 3D printing of sustainable and recycle green composites using fused deposition modeling (FDM) technology. The 3D-printed composites are comprehensively characterized to understand critical materials properties, including density, porosity, microstructures, tensile modulus, and ultimate strength. Non-contact digital image correlation (DIC) technology is employed to understand local stress and strain concentration during mechanical testing. The validated FDB-based AM process is employed to print honeycombs, woven bowls, and frame bins to demonstrate the manufacturing capability. The performance of 3D-printed honeycombs is tested under compressive loads with DIC to fully evaluate the mechanical performance and failure mechanism of ultra-light honeycomb structures. The research outcomes can be used to guide the design and optimization of AM-processed composite structures in a broad range of engineering applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites)
Show Figures

Graphical abstract

23 pages, 9432 KiB  
Article
Optimization of Isotactic Polypropylene Nanocomposite Content of Tungsten Carbide for Material Extrusion 3D Printing
by Amalia Moutsopoulou, Markos Petousis, Nikolaos Michailidis, Nikolaos Mountakis, Apostolos Argyros, Vassilis Papadakis, Mariza Spiridaki, Chrysa Charou, Ioannis Ntintakis and Nectarios Vidakis
J. Compos. Sci. 2023, 7(9), 393; https://doi.org/10.3390/jcs7090393 - 15 Sep 2023
Cited by 5 | Viewed by 1992
Abstract
In this study, innovative nanocomposite materials for material extrusion (MEX) 3D printing were developed using a polypropylene (PP) polymer with tungsten carbide (WC) nanopowder. The raw materials were converted into filaments using thermomechanical extrusion. The samples were then fabricated for testing according to [...] Read more.
In this study, innovative nanocomposite materials for material extrusion (MEX) 3D printing were developed using a polypropylene (PP) polymer with tungsten carbide (WC) nanopowder. The raw materials were converted into filaments using thermomechanical extrusion. The samples were then fabricated for testing according to the international standards. Extensive mechanical testing was performed on the 3D-printed specimens, including tensile, impact, flexural, and microhardness assessments. In addition, the impact of ceramic additive loading was examined. The thermal and stoichiometric characteristics of the nanocomposites were examined using thermogravimetric analysis, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, and Raman spectroscopy. The 3D-printed shape, quality, and fracture process of the specimens were examined using scanning electron microscopy. The results showed that the filler significantly enhanced the mechanical characteristics of the matrix polymer without reducing its thermal stability or processability. Notably, the highest level of nanocomposite mechanical responsiveness was achieved through the inclusion of 6.0 and 8.0 wt. % fillers. The 10.0 wt. % loading nanocomposite showed significantly increased microhardness, indicating a possible high resistance to wear. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2023)
Show Figures

Figure 1

14 pages, 1589 KiB  
Review
Bio-Oil-Based Epoxy Resins from Thermochemical Processing of Sustainable Resources: A Short Review
by Philip Agbo, Abhijeet Mali, Dongyang Deng and Lifeng Zhang
J. Compos. Sci. 2023, 7(9), 374; https://doi.org/10.3390/jcs7090374 - 6 Sep 2023
Cited by 9 | Viewed by 4259
Abstract
Epoxy is the most prevalent thermosetting resin in the field of polymer composite materials. There has been a growing interest in the development of bio-based epoxy resins as a sustainable alternative to conventional petrochemical epoxy resins. Advances in this field in recent years [...] Read more.
Epoxy is the most prevalent thermosetting resin in the field of polymer composite materials. There has been a growing interest in the development of bio-based epoxy resins as a sustainable alternative to conventional petrochemical epoxy resins. Advances in this field in recent years have included the use of various renewable resources, such as vegetable oils, lignin, and sugars, as direct precursors to produce bio-based epoxy resins. In the meantime, bio-oils have been produced via the decomposition of biomass through thermochemical conversion and mainly being used as renewable liquid fuels. It is noteworthy that bio-oils can be used as a sustainable resource to produce epoxy resins. This review addresses research progress in producing bio-oil-based epoxy resins from thermochemical processing techniques including organic solvent liquefaction, fast pyrolysis, and hydrothermal liquefaction. The production of bio-oil from thermochemical processing and its use to inject sustainability into epoxy resins are discussed. Herein, we intend to provide an overall picture of current attempts in the research area of bio-oil-based epoxy resins, reveal their potential for sustainable epoxy resins, and stimulate research interests in green/renewable materials. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, Volume II)
Show Figures

Graphical abstract

14 pages, 34532 KiB  
Article
Effect of Fabric Areal Weight on the Mechanical Properties of Composite Laminates in Carbon-Fiber-Reinforced Polymers
by Marina Andreozzi, Iacopo Bianchi, Serena Gentili, Tommaso Mancia and Michela Simoncini
J. Compos. Sci. 2023, 7(9), 351; https://doi.org/10.3390/jcs7090351 - 24 Aug 2023
Cited by 6 | Viewed by 1805
Abstract
The present work aims at studying the effect of the reinforcing fabric areal weight on the mechanical properties of composite laminates in carbon-fiber-reinforced polymers. Three different pre-impregnated 2 × 2 twill weaves, characterized by the different areal weight values of 380, 630, and [...] Read more.
The present work aims at studying the effect of the reinforcing fabric areal weight on the mechanical properties of composite laminates in carbon-fiber-reinforced polymers. Three different pre-impregnated 2 × 2 twill weaves, characterized by the different areal weight values of 380, 630, and 800 g/m2 were used to produce laminates. These areal weights were selected to represent typical values used in structural application. A hand lay-up technique followed by an autoclave cycle curing was employed to produce the laminates. The desired final thickness of the laminates was obtained by laying-up a different ply number, as a function of the areal weight and thickness of each fabric. Uniaxial tensile and in-plane shear response tests were performed on samples obtained from laminates after curing. Furthermore, the presence of voids in composite materials were detected by performing resin digestion tests. Finally, light optical microscopy and stereomicroscopy analyses allowed observing the different arrangement of the plies in the cross-sections of laminates after curing and evaluating the degree of compaction as a function of the reinforcing fabric used. It was demonstrated that the fabric areal weight significantly affects the mechanical performances of the composite laminates; specifically, the decrease in the areal weight of the twill weave leads to an increase in tensile strength, elastic modulus, and in-plane shear stress, i.e., of about 56.9%, 26.6%, and 55.4%, respectively, if 380 g/m2 and 800 g/m2 fabrics are compared. These results are crucial for an optimal material selection during the design process for industrial applications and help to better understand composite material behavior. Full article
(This article belongs to the Topic Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Figure 1

23 pages, 36917 KiB  
Article
Biomimetics Design of Sandwich-Structured Composites
by Carsten Kunzmann, Hamaseh Aliakbarpour and Maziar Ramezani
J. Compos. Sci. 2023, 7(8), 315; https://doi.org/10.3390/jcs7080315 - 31 Jul 2023
Cited by 7 | Viewed by 2186
Abstract
In the context of energy efficiency and resource scarcity, lightweight construction has gained significant importance. Composite materials, particularly sandwich structures, have emerged as a key area within this field, finding numerous applications in various industries. The exceptional strength-to-weight ratio and the stiffness-to-weight ratio [...] Read more.
In the context of energy efficiency and resource scarcity, lightweight construction has gained significant importance. Composite materials, particularly sandwich structures, have emerged as a key area within this field, finding numerous applications in various industries. The exceptional strength-to-weight ratio and the stiffness-to-weight ratio of sandwich structures allow the reduction in mass in components and structures without compromising strength. Among the widely used core designs, the honeycomb pattern, inspired by bee nests, has been extensively employed in the aviation and aerospace industry due to its lightweight and high resistance. The hexagonal cells of the honeycomb structure provide a dense arrangement, enhancing stiffness while reducing weight. However, nature offers a multitude of other structures that have evolved over time and hold great potential for lightweight construction. This paper focuses on the development, modeling, simulation, and testing of lightweight sandwich composites inspired by biological models, following the principles of biomimetics. Initially, natural and resilient design templates are researched and abstracted to create finished core structures. Numerical analysis is then employed to evaluate the structural and mechanical performance of these structures. The most promising designs are subsequently fabricated using 3D printing technology and subjected to three-point bending tests. Carbon-fiber-reinforced nylon filament was used for printing the face sheets, while polylactic acid (PLA+) was used as the core material. A honeycomb-core composite is also simulated and tested for comparative purposes, as it represents an established design in the market. Key properties such as stiffness, load-bearing capacity, and flexibility are assessed to determine the potential of the new core geometries. Several designs demonstrated improved characteristics compared to the honeycomb design, with the developed structures exhibiting a 38% increase in stiffness and an 18% enhancement in maximum load-bearing capacity. Full article
(This article belongs to the Special Issue Lightweight Composites Materials: Sustainability and Applications)
Show Figures

Figure 1

15 pages, 6483 KiB  
Article
Effects of Carbon Nanotubes on Thermal Behavior of Epoxy Resin Composites
by Lida Najmi and Zhong Hu
J. Compos. Sci. 2023, 7(8), 313; https://doi.org/10.3390/jcs7080313 - 31 Jul 2023
Cited by 17 | Viewed by 2719
Abstract
Human society’s need to build low-weight, high-strength and durable structures has increased the demand for composite materials. In this case, composites are used where high mechanical strength, low weight, sound and thermal insulation properties are required. One of the most important issues now [...] Read more.
Human society’s need to build low-weight, high-strength and durable structures has increased the demand for composite materials. In this case, composites are used where high mechanical strength, low weight, sound and thermal insulation properties are required. One of the most important issues now is designing materials and coatings aimed at reducing heat loss and resisting high temperatures. One way to address this problem is to develop a technique for preparing and applying composite materials that slow down their heating applied to a surface. In this study, carbon nanotubes (CNTs) reinforced composites were fabricated using silicone molding to be applied to honeycomb sandwich structures. To determine the effect of CNTs on the thermal behavior of the sandwich panels, different weight percentages of this material (0.025, 0.05. 0.075 wt.%) were added to the epoxy resin. The results showed that the thermal stability of the epoxy composites was directly related to the increase in the percentage of CNTs as the CNT content increased to 0.075 wt.%, and the thermal degradation temperature of the epoxy composites increased by 14 °C. In addition, the energy absorption increased by 4.6% with an increase in CNTs up to 0.075 wt.%. Density measurements showed that the density of the nanocomposite samples increased by adding CNTs to pure epoxy resin. The actual densities of the samples reinforced with 0.025, 0.05, and 0.075 wt.% CNTs are 0.925, 0.926, and 0.927 of the theoretical density, respectively. Since the CNT dispersion uniformity in the epoxy matrix can significantly affect the properties of the composites, in this study, a new method of dispersing CNTs in the epoxy resin matrix resulted in higher thermal conductivity while using lower amounts of CNTs compared to other studies. The storage modulus of the epoxy matrix composites reinforced with 0.05 wt.% in this study was 25.9% and 6.9% higher than that from the previous study reinforced with 0.1 wt.% and 0.25 wt.% CNTs, respectively. Furthermore, the tanδ and loss modulus of the composite reinforced with 0.05 wt.% CNTs in this study were 52% and 54.5% higher than that from the previous study with 0.1 wt.% CNTs, respectively. This study provided an optimal approach for designers and engineers who want to effectively design their composite honeycomb sandwich structure with better thermal properties. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Graphical abstract

12 pages, 1287 KiB  
Article
Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste
by Perla Y. Sauceda-Oloño, Ana C. Borbon-Almada, Martin Gaxiola, Ashlyn D. Smith, Andrew G. Tennyson and Rhett C. Smith
J. Compos. Sci. 2023, 7(6), 248; https://doi.org/10.3390/jcs7060248 - 15 Jun 2023
Cited by 10 | Viewed by 2149
Abstract
Ordinary Portland Cement (OPC) production consumes tremendous amounts of fresh water and energy and releases vast quantities of CO2 into the atmosphere. Not only would an alternative to OPC whose production requires no water, releases little CO2, and consumes less [...] Read more.
Ordinary Portland Cement (OPC) production consumes tremendous amounts of fresh water and energy and releases vast quantities of CO2 into the atmosphere. Not only would an alternative to OPC whose production requires no water, releases little CO2, and consumes less energy represent a transformative advance in the pursuit of industrial decarbonization, but the greater availability of safe drinking water would lead to significantly improved public health, particularly among vulnerable populations most at risk from contaminated water supply. For any OPC alternative to be adopted on any meaningful scale, however, its structural capabilities must meet or exceed those of OPC. An inverse vulcanization of brown grease, sunflower oil, and elemental sulfur (5:5:90 weight ratio) was successfully modified to afford the high-sulfur-content material SunBG90 in quantities > 1 kg, as was necessary for standardized ASTM and ISO testing. Water absorption (ASTM C140) and thermal conductivity (ISO 8302) values for SunBG90 (<1 wt% and 0.126 W·m−1·K−1, respectively) were 84% and 94% lower than those for OPC, respectively, suggesting that SunBG90 would be more resistant against freeze-thaw and thermal stress damage than OPC. Consequently, not only does SunBG90 represent a more environmentally friendly material than OPC, but its superior thermomechanical properties suggest that it could be a more environmentally robust material on its own merits, particularly for outdoor structural applications involving significant exposure to water and seasonal or day/night temperature swings. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

18 pages, 5656 KiB  
Article
Research on Improving Energy Storage Density and Efficiency of Dielectric Ceramic Ferroelectric Materials Based on BaTiO3 Doping with Multiple Elements
by Jiaxuan Sun and Yuanzhe Li
J. Compos. Sci. 2023, 7(6), 233; https://doi.org/10.3390/jcs7060233 - 5 Jun 2023
Cited by 8 | Viewed by 2154
Abstract
In order to promote the research of green energy in the situation of increasingly serious environmental pollution, dielectric ceramic energy storage materials, which have the advantages of an extremely fast charge and discharge cycle, high durability, and have a broad use in new [...] Read more.
In order to promote the research of green energy in the situation of increasingly serious environmental pollution, dielectric ceramic energy storage materials, which have the advantages of an extremely fast charge and discharge cycle, high durability, and have a broad use in new energy vehicles and pulse power, are being studied. However, the energy storage density of ordinary dielectric ceramic ferroelectric materials is low, so, in this paper, we have divided eight components based on BaTiO3 (BT). Through the traditional solid phase sintering method, AB positions were replaced with various elements of different proportions to improve their energy storage density and the energy storage efficiency of BT-based ferroelectric materials. In this paper, we studied the results of XRD, Raman, ferroelectric, dielectric, and impedance tests of doped samples, and the best components were determined. The (1−x)BT−xBi(Mg1/3Zn1/3Ta1/6Nb1/6)O3 series of ceramics are made by the incorporation of five elements, Bi3+, Mg2+, Zn2+, Ta5+, and Nb5+. With the rising electric hysteresis loop of the doping amount x thin, the saturation polarization strength and residual polarization strength decrease, and the energy storage density rises first and then decreases. The dielectric characteristic after x = 0.08 showed a flat dielectric peak, indicating that the ferroelectric relaxation had been formed. The energy storage density and efficiency of the best component x = 0.12 reached 1.75 J/cm3 and 75%, respectively, and the Curie temperature was about −20 °C, so it has the potential to be used at room temperature. Full article
(This article belongs to the Special Issue Composites for Energy Storage Applications, Volume II)
Show Figures

Figure 1

15 pages, 4160 KiB  
Article
Simple Mixed-Acid-Treated Carbon Fiber Electrodes with Oxygen-Containing Functional Groups for Flexible Supercapacitors
by Yongbo Wang, Hui Li, Bowen Cui, Xiaodan Xu and Yanxiang Wang
J. Compos. Sci. 2023, 7(6), 231; https://doi.org/10.3390/jcs7060231 - 5 Jun 2023
Cited by 6 | Viewed by 1890
Abstract
Flexible supercapacitors are demanded for energy storage of wearable electronics. In this paper, a simple strategy for preparing flexible carbon fibers (CFs) with good energy storage capacity using a mixed acid treatment process is reported. When the volume ratio of concentrated sulfuric acid [...] Read more.
Flexible supercapacitors are demanded for energy storage of wearable electronics. In this paper, a simple strategy for preparing flexible carbon fibers (CFs) with good energy storage capacity using a mixed acid treatment process is reported. When the volume ratio of concentrated sulfuric acid to concentrated nitric acid is 3:1, the carbon fiber electrodes have the best electrochemical performance with a high capacitance of 27.83 F g−1 at 15 mA g−1 and extremely high capacitance retention of 79.9% after 500 cycles at 100 mA g−1. Furthermore, their energy density can reach 3.86 Wh kg−1 with a power density of 7.5 W kg−1. Such an excellent electrochemical performance of carbon fiber electrodes is attributed to their surface rich oxygen-containing functional groups, rough surface, and a certain number of graphene quantum dots (GQDs). Importantly, the all-solid-state flexible supercapacitor performs excellent bending stability performance with a capacitance retention of almost 100% after 500 times of bending at 180°, showing good prospects and applications in the field of flexible energy storage devices. Full article
(This article belongs to the Special Issue Composites for Energy Storage Applications, Volume II)
Show Figures

Figure 1

20 pages, 8462 KiB  
Article
Effect of Nanostructured Silica Additives on the Extrusion-Based 3D Concrete Printing Application
by Zhenbang Liu, Mingyang Li, Guo Sheng James Moo, Hitoshi Kobayashi, Teck Neng Wong and Ming Jen Tan
J. Compos. Sci. 2023, 7(5), 191; https://doi.org/10.3390/jcs7050191 - 8 May 2023
Cited by 10 | Viewed by 2339
Abstract
Recently, 3D printing technology has become more popular in the field of construction. For the extrusion-based 3D concrete printing (3DCP) process, the cementitious material needs to be strong and flowable enough to ensure buildability and pumpability. Nanostructured silica, a kind of additive, has [...] Read more.
Recently, 3D printing technology has become more popular in the field of construction. For the extrusion-based 3D concrete printing (3DCP) process, the cementitious material needs to be strong and flowable enough to ensure buildability and pumpability. Nanostructured silica, a kind of additive, has been used to modify the 3DCP concrete to meet these requests. However, most previous studies focused on the effect of nanostructured silica on rheological properties and failed to link the obtained rheological properties of nanostructured-silica-modified cementitious materials to the performance in 3D printing. In this paper, the 3DCP mixture based on premix cement, river sand, silica fume, and water was modified by different dosages of nanostructured silica (from 0.25% to 1.00% by the total weight of the 3DCP mixture). The effects of nanostructured silica on the rheological, hydration, printing, and microstructural properties were determined by rheological tests, stress growth tests, setting time tests, printing tests, and scanning electron microscopy (SEM) tests, respectively. This paper revealed that the nanostructured silica has a positive effect on 3DCP buildability but negatively affects the printing quality, which fits the effect of nanostructured silica on the rheological properties. Hence, the determined rheological properties can qualitatively evaluate the printing performance of nanostructured-silica-modified cementitious materials. Full article
Show Figures

Graphical abstract

18 pages, 3232 KiB  
Review
Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites
by Lida Najmi and Zhong Hu
J. Compos. Sci. 2023, 7(4), 165; https://doi.org/10.3390/jcs7040165 - 15 Apr 2023
Cited by 24 | Viewed by 2713
Abstract
Due to the unique properties of carbon nanotubes (CNTs), the electrical and thermal conductivity of CNT-modified polymeric composites (CNTMPCs) can be manipulated and depend on several factors. There are many factors that affect the thermal and electrical conductivity of CNTs and CNTMPCs, such [...] Read more.
Due to the unique properties of carbon nanotubes (CNTs), the electrical and thermal conductivity of CNT-modified polymeric composites (CNTMPCs) can be manipulated and depend on several factors. There are many factors that affect the thermal and electrical conductivity of CNTs and CNTMPCs, such as chirality, length, type of CNTs, fabrication, surface treatment, matrix and interfacial interaction between the matrix and reinforcement (CNTs). This paper reviews the research on molecular dynamics (MD) simulations of the effects of some factors affecting the thermal and electrical conductivity of CNTs and CNTMPCs. First, the chirality dependence of the thermal and electrical conductivity of single-walled carbon nanotubes (SWNTs) was analyzed. The effect of chirality on the conductivity of short-length CNTs is greater than that of long-length CNTs, and the larger the chiral angle, the greater the conductivity of the CNTs. Furthermore, the thermal and electrical conductivity of the zigzag CNTs is smaller than that of the armchair one. Therefore, as the tube aspect ratio becomes longer and conductivity increases, while the effect of chirality on the conductivity decreases. In addition, hydrogen bonding affects the electrical and thermal conductivity of the CNTMPCs. The modeling of SWNTs shows that the thermal and electrical conductivity increases significantly with increasing overlap length. MD simulations can be effectively used to design highly conductive CNTMPCs with appropriated thermal and electrical properties. Since there are too many factors affecting the thermal and electrical conductivity of CNTMPCs, this paper only reviews the effects of limited factors on the thermal and electrical conductivity of CNTs and CNTMPCs based on MD simulations, and further detailed studies are required. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

17 pages, 4696 KiB  
Article
Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites
by James Finnerty, Steven Rowe, Trevor Howard, Shane Connolly, Christopher Doran, Declan M. Devine, Noel M. Gately, Vlasta Chyzna, Alex Portela, Gilberto Silva Nunes Bezerra, Paul McDonald and Declan Mary Colbert
J. Compos. Sci. 2023, 7(4), 141; https://doi.org/10.3390/jcs7040141 - 6 Apr 2023
Cited by 10 | Viewed by 3717
Abstract
The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 [...] Read more.
The present study investigates the feasibility of utilizing polylactic acid (PLA) and PLA-based natural fiber-reinforced composites (NFRCs) in mechanical recycling. A conical twin screw extrusion (CTSE) process was utilized to recycle PLA and PLA-based NFRCs consisting of 90 wt.% PLA and a 10 wt.% proportion of either basalt fibers (BFs) or halloysite nanotubes (HNTs) for up to six recycling steps. The recycled material was then injection molded to produce standard test specimens for impact strength and tensile property analysis. The mechanical recycling of virgin PLA led to significant discoloration of the polymer, indicating degradation during the thermal processing of the polymer due to the formation of chromatophores in the structure. Differential scanning calorimetry (DSC) analysis revealed an increase in glass transition temperature (Tg) with respect to increased recycling steps, indicating an increased content of crystallinity in the PLA. Impact strength testing showed no significant detrimental effects on the NFRCs’ impact strength up to six recycling steps. Tensile testing of PLA/HNT NFRCs likewise did not show major decreases in values when tested. However, PLA/BF NFRCs exhibited a significant decrease in tensile properties after three recycling steps, likely due to a reduction in fiber length beyond the critical fiber length. Scanning electron microscopy (SEM) of the fracture surface of impact specimens revealed a decrease in fiber length with respect to increased recycling steps, as well as poor interfacial adhesion between BF and PLA. This study presents a promising initial view into the mechanical recyclability of PLA-based composites. Full article
(This article belongs to the Section Polymer Composites)
Show Figures

Figure 1

21 pages, 9381 KiB  
Article
Evaluation of Eco-Friendly Hemp-Fiber-Reinforced Recycled HDPE Composites
by Eleftheria Xanthopoulou, Iouliana Chrysafi, Prodromos Polychronidis, Alexandra Zamboulis and Dimitrios N. Bikiaris
J. Compos. Sci. 2023, 7(4), 138; https://doi.org/10.3390/jcs7040138 - 4 Apr 2023
Cited by 21 | Viewed by 3801
Abstract
The exploitation of natural fibers to reinforce polymers is a promising practice. Thus, biocomposites have gained increased attention in automotive, construction, and agricultural sectors, among others. The present work reports the reinforcement of recycled high-density polyethylene (r-HDPE) with hemp fibers to afford composite [...] Read more.
The exploitation of natural fibers to reinforce polymers is a promising practice. Thus, biocomposites have gained increased attention in automotive, construction, and agricultural sectors, among others. The present work reports the reinforcement of recycled high-density polyethylene (r-HDPE) with hemp fibers to afford composite materials as sustainable analogues to conventional wood/plastic composite (WPC) products. HDPE bottles (postconsumer waste) were used as r-HDPE and further reinforced by the addition of hemp fibers. For the synthetic part, thirteen composite materials with different filler concentrations (10–75% wt. in hemp fibers) using either Joncryl or polyethylene-grafted maleic anhydride (PE-g-MA) as compatibilizers were prepared via melt mixing. Materials with good integrity were obtained with a fiber load as high as 75% wt. The structural, thermal, mechanical, and antioxidant properties of the r-HDPE/hemp composites were evaluated using multiple complementary characterization techniques. Stereoscopic microscope images demonstrated the satisfactory dispersion of the hemp fibers into the polymeric matrix, while scanning electron microscopy microphotographs revealed an improved adhesion between the filler and the polymeric matrix in the presence of compatibilizers. The incorporation of hemp fibers contributed to the improvement of the elastic modulus of the composites (almost up to threefold increase). The results showed that as the hemp fiber content increased, the antioxidant properties as well as the degradability of the composites increased. It is noteworthy that composites containing 75% wt. hemp fibers neutralized 80% of 2,2-diphenyil-1-picrylhydrazyl radicals within 45 min (DPPH assay). In conclusion, the present research work demonstrates that thermally recycled HDPE reinforced with biomass fibers received from agricultural waste is a valid alternative for the preparation of commodity products with an eco-friendly character compared to conventional wood/plastic composites. Full article
(This article belongs to the Special Issue Advanced Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

11 pages, 2998 KiB  
Article
Composite of Cellulose-Nanofiber-Reinforced Cellulose Acetate Butyrate: Improvement of Mechanical Strength by Cross-Linking of Hydroxyl Groups
by Romain Milotskyi, Ryo Serizawa, Kaoru Yanagisawa, Gyanendra Sharma, Elisabeth Rada Desideria Ito, Tetsuo Fujie, Naoki Wada and Kenji Takahashi
J. Compos. Sci. 2023, 7(3), 130; https://doi.org/10.3390/jcs7030130 - 22 Mar 2023
Cited by 5 | Viewed by 2442
Abstract
A great challenge hindering the use of cellulose nanofibers (CNF) as a reinforcing filler in bio-based polymeric matrices are their poor chemical compatibility. This is because of the inherent hydrophilic nature of CNF and the hydrophobic nature of the polymeric matrix. In this [...] Read more.
A great challenge hindering the use of cellulose nanofibers (CNF) as a reinforcing filler in bio-based polymeric matrices are their poor chemical compatibility. This is because of the inherent hydrophilic nature of CNF and the hydrophobic nature of the polymeric matrix. In this study, cellulose laminates were prepared by using CNF as a filler and cellulose acetate butyrate (CAB) as the polymer matrix. To improve the compatibility between CAB and CNF, the residual hydroxyl groups of CAB and the hydroxyl groups on the surface of CNF were cross-linked with bio-derived polyisocyanurate D376N (STABiO™). The composite material was obtained in one step by sandwiching a CNF sheet (10 wt%) coated with a cross-linking agent between CAB films (90 wt%) using hot pressing. When 14.3 wt% of the cross-linking agent to the total weight of CNF and CAB was added, the tensile strength and flexural strength were improved by 72.4% and 16.3%, respectively, compared with neat CAB. It was concluded that this increase in strength is a result of both: cross-linking between the CNF sheets as well as the cross-linking occurring at the CNF/CAB interface. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

16 pages, 8548 KiB  
Article
Investigation of the Mechanical Properties of Sandwich Composite Panels Made with Recyclates and Flax Fiber/Bio-Based Epoxy Processed by Liquid Composite Molding
by Bharath Ravindran, Michael Feuchter and Ralf Schledjewski
J. Compos. Sci. 2023, 7(3), 122; https://doi.org/10.3390/jcs7030122 - 15 Mar 2023
Cited by 8 | Viewed by 3082
Abstract
Despite significant advancements in bio-based natural-fiber-reinforced composites, the recyclability/reprocessing of thermoset composites remains a persistent challenge that needs to be addressed. In the present study, an effort is made to provide a justification for the recyclability/reprocessing assessment of sandwich composite panels made with [...] Read more.
Despite significant advancements in bio-based natural-fiber-reinforced composites, the recyclability/reprocessing of thermoset composites remains a persistent challenge that needs to be addressed. In the present study, an effort is made to provide a justification for the recyclability/reprocessing assessment of sandwich composite panels made with ‘recyclate’ (i.e., recycled flax/bio-based epoxy composite) cores and (flax/bio-based epoxy) skins produced by liquid composite molding. Resin transfer molding and vacuum-assisted resin infusion processes were used to investigate the influence of production processes on mechanical properties. Two different recyclate sizes—4 mm and 10 mm—were used to fabricate sandwich composite panels to study the effect of size on the mechanical properties of the panels. This study aims to compare the qualities of sandwich panels to those of virgin composite panels in terms of their physical (density) and mechanical properties (tensile and flexural). Additionally, the recyclate packing was verified by employing digital microscopy. The results illustrated that the sandwich panels made with the 4 mm recyclates exhibited better mechanical properties compared to those made with the 10 mm recyclates. In comparison with virgin composite panels, the sandwich composite panels made of flax fiber and (flax/epoxy) recyclate exhibited significantly higher flexural moduli, which was attributed to their moments of inertia. This article emphasizes recycling/reprocessing and demonstrates an effective closed-loop approach. Thus, by preserving the structural integrity of recyclates, sandwich panels could be advantageous for semi-structural applications. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

33 pages, 5043 KiB  
Review
Recent Trends in Treatment and Fabrication of Plant-Based Fiber-Reinforced Epoxy Composite: A Review
by Abdullahi Haruna Birniwa, Shehu Sa’ad Abdullahi, Mujahid Ali, Rania Edrees Adam Mohammad, Ahmad Hussaini Jagaba, Mugahed Amran, Siva Avudaiappan, Nelson Maureira-Carsalade and Erick I. Saavedra Flores
J. Compos. Sci. 2023, 7(3), 120; https://doi.org/10.3390/jcs7030120 - 15 Mar 2023
Cited by 61 | Viewed by 6368
Abstract
Natural fiber (NF) is one of the many resources that nature has provided. NFs decompose quickly and are biodegradable, renewable, and cost-effective. It may be scavenged from a variety of plant and animal sources. They are employed as reinforcing materials in polymers for [...] Read more.
Natural fiber (NF) is one of the many resources that nature has provided. NFs decompose quickly and are biodegradable, renewable, and cost-effective. It may be scavenged from a variety of plant and animal sources. They are employed as reinforcing materials in polymers for NF composite development. Because of its environmental friendliness and long-term survivability, NF is growing in appeal among academics and researchers for usage in polymer composites. This study aims to offer a thorough evaluation of the most suitable and widely utilized natural fiber-reinforced polymer composites (NFPCs), along with their manufacture, processing, and applications. It also defines several external treatments of NF and their influence on the characteristics of NFPCs. The characteristics of NFPCs are affected by fiber supply, fiber type, and fiber structure. Numerous physical and chemical treatments were tested to see how they affected the thermal and strength properties of natural fiber-reinforced thermoplastic and thermosetting composites. Several polymer composite fabrication techniques were also studied. NFPCs have several disadvantages, notably low fire protection, poor strength properties, and greater moisture absorption, which have prevented their application. It is shown how NFPCs are employed in a variety of industries, particularly automotive and research industries. The review discovered that intentionally changing the regular fiber enhanced the thermochemical and physico-mechanical properties of the NFPCs by means of improving the grip between the fiber surface and the polymer framework. This study aims to provide important and fundamental facts on NF and their composites, which will aid in new investigations, the creation of a creative framework for polymer composite types, and the achievement of Sustainable Development Goals. Full article
(This article belongs to the Special Issue Composites for Construction Industry)
Show Figures

Figure 1

40 pages, 14077 KiB  
Review
An Overview of the Recent Advances in Composite Materials and Artificial Intelligence for Hydrogen Storage Vessels Design
by Mourad Nachtane, Mostapha Tarfaoui, Mohamed amine Abichou, Alexandre Vetcher, Marwane Rouway, Abdeouhaed Aâmir, Habib Mouadili, Houda Laaouidi and Hassan Naanani
J. Compos. Sci. 2023, 7(3), 119; https://doi.org/10.3390/jcs7030119 - 14 Mar 2023
Cited by 35 | Viewed by 12569
Abstract
The environmental impact of CO2 emissions is widely acknowledged, making the development of alternative propulsion systems a priority. Hydrogen is a potential candidate to replace fossil fuels for transport applications, with three technologies considered for the onboard storage of hydrogen: storage in [...] Read more.
The environmental impact of CO2 emissions is widely acknowledged, making the development of alternative propulsion systems a priority. Hydrogen is a potential candidate to replace fossil fuels for transport applications, with three technologies considered for the onboard storage of hydrogen: storage in the form of a compressed gas, storage as a cryogenic liquid, and storage as a solid. These technologies are now competing to meet the requirements of vehicle manufacturers; each has its own unique challenges that must be understood to direct future research and development efforts. This paper reviews technological developments for Hydrogen Storage Vessel (HSV) designs, including their technical performance, manufacturing costs, safety, and environmental impact. More specifically, an up-to-date review of fiber-reinforced polymer composite HSVs was explored, including the end-of-life recycling options. A review of current numerical models for HSVs was conducted, including the use of artificial intelligence techniques to assess the performance of composite HSVs, leading to more sophisticated designs for achieving a more sustainable future. Full article
(This article belongs to the Special Issue Lightweight Composites Materials: Sustainability and Applications)
Show Figures

Figure 1

15 pages, 611 KiB  
Review
Heavy Metal Removal from Aqueous Solutions Using Biomaterials and/or Functional Composites: Recent Advances and the Way Forward in Wastewater Treatment Using Digitalization
by Tonni Agustiono Kurniawan, Wai-Hung Lo, Xue Liang, Hui Hwang Goh, Mohd Hafiz Dzarfan Othman, Kok-Keong Chong, Ayesha Mohyuddin, Axel Olaf Kern and Kit Wayne Chew
J. Compos. Sci. 2023, 7(2), 84; https://doi.org/10.3390/jcs7020084 - 16 Feb 2023
Cited by 45 | Viewed by 6236
Abstract
Due to its low cost, over the past decades, biosorption technology has been extensively carried out to treat heavy metal-laden wastewater using biosorbents. Recent studies on heavy metal biosorption mechanisms and the simulation of mathematical modeling on the biosorption process have enhanced scientific [...] Read more.
Due to its low cost, over the past decades, biosorption technology has been extensively carried out to treat heavy metal-laden wastewater using biosorbents. Recent studies on heavy metal biosorption mechanisms and the simulation of mathematical modeling on the biosorption process have enhanced scientific understanding about the binding between target metal cations and the functional group on different surfaces of biomasses as a biosorbent. However, so far, none have provided an overview of mechanistic studies on heavy metal removal from aqueous solutions using inexpensive biosorbents. To close this knowledge gap, this article discusses the applicability of the surface complexation (SC) model for biosorption of a target pollutant. Insightful ideas and directions of future research in wastewater treatment using digital technologies are also presented. It was conclusive from a literature survey of 115 articles (1987–2023) that Aspergillus niger, Penicillium chrysogenum, and Rhizopus nigricans represent biomaterials that have substantial adsorption capacities, up to 200 mg of Au(I)/g, 142 mg of Th/g, and 166 mg of Pb(II)/g, respectively. The metal-binding mechanisms involved include ion exchange, surface complexation, and micro-precipitation. Ion exchange is the only mechanisms that play key roles in sequestering heavy metal using fungal cells with chitin and chitosan. X-ray energy dispersion (XED) and scanning electron microscopy (SEM) analysis were used to evaluate biosorption mechanisms of the inorganic pollutants using physico-chemical characterization on the cell surfaces of the biomass. As metal removal by the biosorbent is affected by its surface properties, surface complexation also occurs. The affinity of the surface complexation depends on the type of functional groups such as phosphate, carboxyl, and amine. Full article
(This article belongs to the Special Issue Composite Materials for Environmental Applications)
Show Figures

Graphical abstract

12 pages, 4138 KiB  
Article
Inductive Thermal Effect on Thermoplastic Nanocomposites with Magnetic Nanoparticles for Induced-Healing, Bonding and Debonding On-Demand Applications
by Maria Kanidi, Niki Loura, Anna Frengkou, Tatjana Kosanovic Milickovic, Aikaterini-Flora Trompeta and Costas Charitidis
J. Compos. Sci. 2023, 7(2), 74; https://doi.org/10.3390/jcs7020074 - 9 Feb 2023
Cited by 7 | Viewed by 2597
Abstract
In this study, the heating capacity of nanocomposite materials enhanced with magnetic nanoparticles was investigated through induction heating. Thermoplastic (TP) matrices of polypropylene (PP), thermoplastic polyurethane (TPU), polyamide (PA12), and polyetherketoneketone (PEKK) were compounded with 2.5–10 wt.% iron oxide-based magnetic nanoparticles (MNPs) using [...] Read more.
In this study, the heating capacity of nanocomposite materials enhanced with magnetic nanoparticles was investigated through induction heating. Thermoplastic (TP) matrices of polypropylene (PP), thermoplastic polyurethane (TPU), polyamide (PA12), and polyetherketoneketone (PEKK) were compounded with 2.5–10 wt.% iron oxide-based magnetic nanoparticles (MNPs) using a twin-screw extrusion system. Disk-shape specimens were prepared by 3D printing and injection molding. The heating capacity was examined as a function of exposure time, frequency, and power using a radio frequency (RF) generator with a solenoid inductor coil. All nanocomposite materials presented a temperature increase proportional to the MNPs’ concentration as a function of the exposure time in the magnetic field. The nanocomposites with a higher concentration of MNPs presented a rapid increase in temperature, resulting in polymer matrix melting in most of the trials. The operational parameters of the RF generator, such as the input power and the frequency, significantly affect the heating capacity of the specimens, higher input power, and higher frequencies and promote the rapid increase in temperature for all assessed nanocomposites, enabling induced-healing and bonding/debonding on-demand applications. Full article
(This article belongs to the Special Issue Multifunctional Composite Structures)
Show Figures

Graphical abstract

15 pages, 3111 KiB  
Review
Influence of Natural Fiber Content on the Frictional Material of Brake Pads—A Review
by Zeina Ammar, Hamdy Ibrahim, Mahmoud Adly, Ioannis Sarris and Sherif Mehanny
J. Compos. Sci. 2023, 7(2), 72; https://doi.org/10.3390/jcs7020072 - 9 Feb 2023
Cited by 25 | Viewed by 3700
Abstract
Research into the use of eco-friendly materials, such as natural fibers, in brake pads has gained momentum in the last few decades. This can be attributed to the potential of natural fibers to replace traditional materials in tribological applications such as braking pads. [...] Read more.
Research into the use of eco-friendly materials, such as natural fibers, in brake pads has gained momentum in the last few decades. This can be attributed to the potential of natural fibers to replace traditional materials in tribological applications such as braking pads. The harmful impact of the commonly-used brake pad materials, such as metal and mineral fibers, on human health and the environment necessitates the development of eco-friendly alternatives. Natural fibers, such as banana peels, palm kernels, and palm slag, have been shown to be a viable replacement for traditional brake pad materials. This article reviews the literature on the use of different natural fibers in brake pads and their impact on the physical, mechanical, and tribological properties. Trends for density, porosity, hardness, coefficient of friction (COF), and wear rate are observed. The recommended formulations to yield the optimum properties, according to the perspective of several studies, are showcased. In addition, the effect of asbestos material and natural fibers on life-cycle assessment and CO2 emission is highlighted. This article is an attempt to provide a foundation for future researchers in the field of natural fiber-reinforced composites for brake pad applications. Full article
Show Figures

Figure 1

22 pages, 3408 KiB  
Review
A Review on Concrete Composites Modified with Nanoparticles
by Ghasan Fahim Huseien
J. Compos. Sci. 2023, 7(2), 67; https://doi.org/10.3390/jcs7020067 - 7 Feb 2023
Cited by 27 | Viewed by 6372
Abstract
Recently, various nanomaterials have extensively been used to achieve sustainability goals in the construction sector. Thus, this paper presents a state-of-the-art review involving the uses of different nanomaterials for production of high-performance cementitious, geopolymer, and alkali-activated concrete composites. The effects of nanomaterials on [...] Read more.
Recently, various nanomaterials have extensively been used to achieve sustainability goals in the construction sector. Thus, this paper presents a state-of-the-art review involving the uses of different nanomaterials for production of high-performance cementitious, geopolymer, and alkali-activated concrete composites. The effects of nanomaterials on the fresh properties, mechanical properties, and durability of diverse nanoparticle-modified concrete composites are analyzed. The past developments, recent trends, environmental impact, sustainability, notable benefits, and demerits of various nanomaterial-based concrete production are emphasized. It is demonstrated that nanomaterials including SiO2, Al2O3, TiO2, and Fe2O3, etc., can be used effectively to enhance the microstructures and mechanical characteristics (such as compressive strength, flexural, and splitting tensile strengths) of the modified concrete composites, thus improving their anti-erosion, anti-chloride penetration, and other durability traits. In short, this communication may provide deep insight into the role of diverse nanoparticle inclusion in concrete composites to improve their overall attributes. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

13 pages, 3853 KiB  
Article
Self-Sensing Eco-Earth Composite with Carbon Microfibers for Sustainable Smart Buildings
by Hasan Borke Birgin, Antonella D’Alessandro, Andrea Meoni and Filippo Ubertini
J. Compos. Sci. 2023, 7(2), 63; https://doi.org/10.3390/jcs7020063 - 6 Feb 2023
Cited by 11 | Viewed by 2501
Abstract
This paper proposes a new sustainable earth–cement building composite with multifunctional sensing features and investigates its properties through an experimental campaign. Earth and cement are proportioned as 2/7 in volume, while carbon microfibers are added in various amounts to achieve piezoresistivity, ranging from [...] Read more.
This paper proposes a new sustainable earth–cement building composite with multifunctional sensing features and investigates its properties through an experimental campaign. Earth and cement are proportioned as 2/7 in volume, while carbon microfibers are added in various amounts to achieve piezoresistivity, ranging from 0 to 1% with respect to the weight of the binder (i.e., earth + cement). The proposed material couples the construction performance with self-sensing properties in order to monitor the structural performance during the servile life of the building. The use of earth in the partial replacement of cement reduces the environmental footprint of the material while keeping sufficient mechanical properties, at least for applications that do not require a large load-bearing capacity (e.g., for plasters or for low-rise constructions). This paper analyzes the electrical and sensing behavior of cubic and beam samples through electrical and electromechanical tests. The results show that the samples with a filler percentage near the percolation zone, ranged between 0.025 and 0.25%, exhibit the best performance. From the cyclical compressive tests and linear developed models, it could be deduced that the filler content of 0.05% of carbon fibers, with respect to the binder weight, represents the best-performing smart composite for further investigation at higher scales. As demonstrated, the selected mix generated clear strain-sensing electrical signals, reaching gauge factors over 100. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume II)
Show Figures

Figure 1

13 pages, 2396 KiB  
Article
Sustainable Composites from Waste Sulfur, Terpenoids, and Pozzolan Cements
by Katelyn A. Tisdale, Charini P. Maladeniya, Claudia V. Lopez, Andrew G. Tennyson and Rhett C. Smith
J. Compos. Sci. 2023, 7(1), 35; https://doi.org/10.3390/jcs7010035 - 11 Jan 2023
Cited by 8 | Viewed by 2025
Abstract
Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A [...] Read more.
Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A range of terpenoid–sulfur cements have shown compressional and flexural properties exceeding those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin (MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals the extent to which the addition of the pozzolan fines to the sulfur–terpenoid cements influences their mechanical properties and chemical resistance. The sulfur–terpenoid composites CitS and GerS were prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The density of the composites fell within the range of 1800–1900 kg/m3 and after 24 h submersion in water at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional strength of the as-prepared materials ranged from 9.1–23.2 MPa, and the percentage of compressional strength retained after acid challenge (submersion in 0.1 M H2SO4 for 24 h) ranged from 80–100%. Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively. In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS, with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of several of the composites compare favorably to those required by traditional mineral cements for residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar acid challenge. Full article
(This article belongs to the Special Issue Recycled Polymer Composites: Futuristic Sustainable Material)
Show Figures

Figure 1

39 pages, 2687 KiB  
Review
Biobased Polymer Composites: A Review
by Anamol Pokharel, Kehinde James Falua, Amin Babaei-Ghazvini and Bishnu Acharya
J. Compos. Sci. 2022, 6(9), 255; https://doi.org/10.3390/jcs6090255 - 5 Sep 2022
Cited by 48 | Viewed by 10078
Abstract
Global environmental concerns, as well as the rapid depletion of non-renewable fossil fuel-based resources, have prompted research into the development of sustainable, environmentally friendly, and biodegradable materials for use in a variety of high-end applications. To mitigate the environmental setbacks caused by nonbiodegradable [...] Read more.
Global environmental concerns, as well as the rapid depletion of non-renewable fossil fuel-based resources, have prompted research into the development of sustainable, environmentally friendly, and biodegradable materials for use in a variety of high-end applications. To mitigate the environmental setbacks caused by nonbiodegradable materials, the development of biocomposites with improved mechanical performance is gradually gaining momentum. Natural fibers such as hemp, flax, and sisal have been well incorporated into biocomposite development. Nonetheless, the impact of functional moieties in their life cycle cannot be underestimated. In this review paper, a detailed discussion of the characteristics and components of biocomposites is presented. The treatment of composite materials (alkali and acetylation), as well as several manufacturing processes (hand layup, 3D printing, extrusion, etc.) and the applications of biocomposites, which are not limited to the aerospace industry, packaging, biomedicine, etc., are presented. Biocomposites with excellent durability, performance, serviceability, and reliability must be produced to expand their applications. Full article
(This article belongs to the Special Issue Sustainable Biocomposites)
Show Figures

Figure 1

59 pages, 712 KiB  
Review
A Comprehensive Review on Fly Ash-Based Geopolymer
by Ismail Luhar and Salmabanu Luhar
J. Compos. Sci. 2022, 6(8), 219; https://doi.org/10.3390/jcs6080219 - 27 Jul 2022
Cited by 54 | Viewed by 7744
Abstract
The discovery of an innovative category of inorganic geopolymer composites has generated extensive scientific attention and the kaleidoscopic development of their applications. The escalating concerns over global warming owing to emissions of carbon dioxide (CO2), a primary greenhouse gas, from the [...] Read more.
The discovery of an innovative category of inorganic geopolymer composites has generated extensive scientific attention and the kaleidoscopic development of their applications. The escalating concerns over global warming owing to emissions of carbon dioxide (CO2), a primary greenhouse gas, from the ordinary Portland cement industry, may hopefully be mitigated by the development of geopolymer construction composites with a lower carbon footprint. The current manuscript comprehensively reviews the rheological, strength and durability properties of geopolymer composites, along with shedding light on their recent key advancements viz., micro-structures, state-of-the-art applications such as the immobilization of toxic or radioactive wastes, digital geopolymer concrete, 3D-printed fly ash-based geopolymers, hot-pressed and foam geopolymers, etc. They have a crystal-clear role to play in offering a sustainable prospect to the construction industry, as part of the accessible toolkit of building materials—binders, cements, mortars, concretes, etc. Consequently, the present scientometric review manuscript is grist for the mill and aims to contribute as a single key note document assessing exhaustive research findings for establishing the viability of fly ash-based geopolymer composites as the most promising, durable, sustainable, affordable, user and eco-benevolent building materials for the future. Full article
17 pages, 3182 KiB  
Review
Failures and Flaws in Fused Deposition Modeling (FDM) Additively Manufactured Polymers and Composites
by Maggie Baechle-Clayton, Elizabeth Loos, Mohammad Taheri and Hossein Taheri
J. Compos. Sci. 2022, 6(7), 202; https://doi.org/10.3390/jcs6070202 - 8 Jul 2022
Cited by 47 | Viewed by 5833
Abstract
In this review, the potential failures and flaws associated with fused deposition modeling (FDM) or fused filament fabrication (FFF) 3D printing technology are highlighted. The focus of this article is on presenting the failures and flaws that are caused by the operational standpoints [...] Read more.
In this review, the potential failures and flaws associated with fused deposition modeling (FDM) or fused filament fabrication (FFF) 3D printing technology are highlighted. The focus of this article is on presenting the failures and flaws that are caused by the operational standpoints and which are based on the many years of experience with current and emerging materials and equipment for the 3D printing of polymers and composites using the FDM/FFF method. FDM or FFF 3D printing, which is also known as an additive manufacturing (AM) technique, is a material processing and fabrication method where the raw material, usually in the form of filaments, is added layer-by-layer to create a three-dimensional part from a computer designed model. As expected, there are many advantages in terms of material usage, fabrication time, the complexity of the part, and the ease of use in FDM/FFF, which are extensively discussed in many articles. However, to upgrade the application of this technology from public general usage and prototyping to large-scale production use, as well as to be certain about the integrity of the parts even in a prototype, the quality and structural properties of the products become a big concern. This study provides discussions and insights into the potential factors that can cause the failure of 3D printers when producing a part and presents the type and characteristics of potential flaws that can happen in the produced parts. Common defects posed by FDM printing have been discussed, and common nondestructive detection methods to identify these flaws both in-process and after the process is completed are discussed. The discussions on the failures and flaws in machines provides useful information on troubleshooting the process if they happen, and the review on the failures and flaws in parts helps researchers and operators learn about the causes and effects of the flaws in a practical way. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume II)
Show Figures

Figure 1

13 pages, 305 KiB  
Review
Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review
by Mariya Dimitrova, Massimo Corsalini, Rada Kazakova, Angelina Vlahova, Bozhana Chuchulska, Giuseppe Barile, Saverio Capodiferro and Stoyan Kazakov
J. Compos. Sci. 2022, 6(3), 87; https://doi.org/10.3390/jcs6030087 - 10 Mar 2022
Cited by 45 | Viewed by 10734
Abstract
The aim of the current paper is to review the available literature reporting on comparative studies of heat-cured resins and three-dimensionally printed biomaterials for denture bases in terms of their composition, properties, fabrication techniques and clinical performance. The methodology included applying a search [...] Read more.
The aim of the current paper is to review the available literature reporting on comparative studies of heat-cured resins and three-dimensionally printed biomaterials for denture bases in terms of their composition, properties, fabrication techniques and clinical performance. The methodology included applying a search strategy, defining inclusion and exclusion criteria, selecting studies to summarize the results. Searches of PubMed, Scopus, and Embase databases were performed independently by three reviewers to gather literature published between 2018 and 2021. A total of 135 titles were obtained from the electronic databases, and the application of exclusion criteria resulted in the identification of 42 articles pertaining to conventional and 3D printed technology for removable dentures. The main disadvantages of the heat-cured resins for removable dentures are that they require lots of special equipment, skilled personnel and time. Emerging technologies, such as 3D printed dentures, have the potential to alleviate these problems allowing for faster patient rehabilitation. With the development of digital dentistry, it is becoming increasingly necessary to use 3D printed resin materials for the manufacturing of removable dentures. However, further research is required on the existing and developing materials to allow for advancement and increase its application in removable prosthodontics. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2022)
27 pages, 4310 KiB  
Review
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration
by Marta Tavoni, Massimiliano Dapporto, Anna Tampieri and Simone Sprio
J. Compos. Sci. 2021, 5(9), 227; https://doi.org/10.3390/jcs5090227 - 27 Aug 2021
Cited by 65 | Viewed by 7327
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this [...] Read more.
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration. Full article
(This article belongs to the Special Issue Bioceramic Composites)
Show Figures

Figure 1

52 pages, 17200 KiB  
Review
New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications
by Tomasz Trzepieciński, Sherwan Mohammed Najm, Manel Sbayti, Hedi Belhadjsalah, Marcin Szpunar and Hirpa G. Lemu
J. Compos. Sci. 2021, 5(8), 217; https://doi.org/10.3390/jcs5080217 - 13 Aug 2021
Cited by 62 | Viewed by 11024
Abstract
Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon [...] Read more.
Fibre metal laminates, hybrid composite materials built up from interlaced layers of thin metals and fibre reinforced adhesives, are future-proof materials used in the production of passenger aircraft, yachts, sailplanes, racing cars, and sports equipment. The most commercially available fibre–metal laminates are carbon reinforced aluminium laminates, aramid reinforced aluminium laminates, and glass reinforced aluminium laminates. This review emphasises the developing technologies for forming hybrid metal–polymer composites (HMPC). New advances and future possibilities in the forming technology for this group of materials is discussed. A brief classification of the currently available types of FMLs and details of their methods of fabrication are also presented. Particular emphasis was placed on the methods of shaping FMLs using plastic working techniques, i.e., incremental sheet forming, shot peening forming, press brake bending, electro-magnetic forming, hydroforming, and stamping. Current progress and the future directions of research on HMPCs are summarised and presented. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

33 pages, 2662 KiB  
Review
Conducting Polymeric Composites Based on Intrinsically Conducting Polymers as Electromagnetic Interference Shielding/Microwave Absorbing Materials—A Review
by Bluma Guenther Soares, Guilherme M. O. Barra and Tamara Indrusiak
J. Compos. Sci. 2021, 5(7), 173; https://doi.org/10.3390/jcs5070173 - 4 Jul 2021
Cited by 63 | Viewed by 5381
Abstract
The development of sophisticated telecommunication equipment and other electro-electronic devices resulted in a kind of electromagnetic pollution that affects the performance of other equipment as well as the health of human beings. Intrinsically conducting polymers (ICP), mainly polyaniline and polypyrrole, have been considered [...] Read more.
The development of sophisticated telecommunication equipment and other electro-electronic devices resulted in a kind of electromagnetic pollution that affects the performance of other equipment as well as the health of human beings. Intrinsically conducting polymers (ICP), mainly polyaniline and polypyrrole, have been considered as promising candidates for applications in efficient electromagnetic interference shielding (EMI) due to their ease of preparation, light weight, good conductivity and corrosion resistance. One of the important advantages of these materials is the capability to interact with the EM radiation through both absorption and reflection mechanisms thus enlarging the field of application. In this context, this review article describes a recent overview of the existing methods to produce intrinsically conducting polymers and their blends for electromagnetic shielding application. Additionally, it highlights the relationship between preparation methods reported in the literature with the structure and properties, such as electrical conductivity, electromagnetic shielding effectiveness (EMI SE), complex permittivity and permeability of these materials. Furthermore, a brief theory related to the electromagnetic mechanism and techniques for measuring the microwave absorbing properties are also discussed. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2021)
Show Figures

Figure 1

30 pages, 5261 KiB  
Review
Recent Advances in Geopolymer Technology. A Potential Eco-Friendly Solution in the Construction Materials Industry: A Review
by Matteo Sambucci, Abbas Sibai and Marco Valente
J. Compos. Sci. 2021, 5(4), 109; https://doi.org/10.3390/jcs5040109 - 17 Apr 2021
Cited by 46 | Viewed by 7337
Abstract
In the last ten years, the Portland cement industry has received wide criticism due to its related high embodied energy and carbon dioxide footprint. Recently, numerous “clean” strategies and solutions were developed. Among these, geopolymer technology is gaining growing interest as a functional [...] Read more.
In the last ten years, the Portland cement industry has received wide criticism due to its related high embodied energy and carbon dioxide footprint. Recently, numerous “clean” strategies and solutions were developed. Among these, geopolymer technology is gaining growing interest as a functional way to design more eco-friendly construction materials and for waste management issues suffered by various industries. Previous research has highlighted the attractive engineering properties of geopolymeric materials, especially in terms of mechanical properties and durability, resulting in even higher performance than ordinary concrete. This review provides a comprehensive analysis of current state-of-the-art and implementations on geopolymer concrete materials, investigating how the key process factors (such as raw materials, synthesis regime, alkali concentration, water dosage, and reinforcement fillers) affect the rheological, microstructural, durability, and mechanical properties. Finally, the paper elucidates some noteworthy aspects for future research development: innovative geopolymer-based formulations (including alkali-activated blends for additive manufacturing and thermo-acoustic insulating cellular compounds), concrete applications successfully scaled in the civil-architectural fields, and the perspective directions of geopolymer technology in terms of commercialization and large-scale diffusion. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Figure 1

19 pages, 2163 KiB  
Review
A Brief Overview of Recent Progress in Porous Silica as Catalyst Supports
by Preeti S. Shinde, Pradnya S. Suryawanshi, Kanchan K. Patil, Vedika M. Belekar, Sandeep A. Sankpal, Sagar D. Delekar and Sushilkumar A. Jadhav
J. Compos. Sci. 2021, 5(3), 75; https://doi.org/10.3390/jcs5030075 - 6 Mar 2021
Cited by 81 | Viewed by 9409
Abstract
Porous silica particles have shown applications in various technological fields including their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have ordered porosity, high surface area, and good chemical stability. These interesting structural or textural properties make porous silica an [...] Read more.
Porous silica particles have shown applications in various technological fields including their use as catalyst supports in heterogeneous catalysis. The mesoporous silica particles have ordered porosity, high surface area, and good chemical stability. These interesting structural or textural properties make porous silica an attractive material for use as catalyst supports in various heterogeneous catalysis reactions. The colloidal nature of the porous silica particles is highly useful in catalytic applications as it guarantees better mass transfer properties and uniform distribution of the various metal or metal oxide nanocatalysts in solution. The catalysts show high activity, low degree of metal leaching, and ease in recycling when supported or immobilized on porous silica-based materials. In this overview, we have pointed out the importance of porous silica as catalyst supports. A variety of chemical reactions catalyzed by different catalysts loaded or embedded in porous silica supports are studied. The latest reports from the literature about the use of porous silica-based materials as catalyst supports are listed and analyzed. The new and continued trends are discussed with examples. Full article
(This article belongs to the Special Issue Progress in Si-based Ceramic and Composites)
Show Figures

Figure 1

38 pages, 10149 KiB  
Review
Fused Deposition Modelling of Fibre Reinforced Polymer Composites: A Parametric Review
by Narongkorn Krajangsawasdi, Lourens G. Blok, Ian Hamerton, Marco L. Longana, Benjamin K. S. Woods and Dmitry S. Ivanov
J. Compos. Sci. 2021, 5(1), 29; https://doi.org/10.3390/jcs5010029 - 16 Jan 2021
Cited by 93 | Viewed by 10187
Abstract
Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available [...] Read more.
Fused deposition modelling (FDM) is a widely used additive layer manufacturing process that deposits thermoplastic material layer-by-layer to produce complex geometries within a short time. Increasingly, fibres are being used to reinforce thermoplastic filaments to improve mechanical performance. This paper reviews the available literature on fibre reinforced FDM to investigate how the mechanical, physical, and thermal properties of 3D-printed fibre reinforced thermoplastic composite materials are affected by printing parameters (e.g., printing speed, temperature, building principle, etc.) and constitutive materials properties, i.e., polymeric matrices, reinforcements, and additional materials. In particular, the reinforcement fibres are categorized in this review considering the different available types (e.g., carbon, glass, aramid, and natural), and obtainable architectures divided accordingly to the fibre length (nano, short, and continuous). The review attempts to distil the optimum processing parameters that could be deduced from across different studies by presenting graphically the relationship between process parameters and properties. This publication benefits the material developer who is investigating the process parameters to optimize the printing parameters of novel materials or looking for a good constituent combination to produce composite FDM filaments, thus helping to reduce material wastage and experimental time. Full article
(This article belongs to the Special Issue Advanced Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

33 pages, 3337 KiB  
Review
Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s
by Andrey E. Krauklis, Christian W. Karl, Abedin I. Gagani and Jens K. Jørgensen
J. Compos. Sci. 2021, 5(1), 28; https://doi.org/10.3390/jcs5010028 - 15 Jan 2021
Cited by 208 | Viewed by 27675
Abstract
Recently, significant events took place that added immensely to the sociotechnical pressure for developing sustainable composite recycling solutions, namely (1) a ban on composite landfilling in Germany in 2009, (2) the first major wave of composite wind turbines reaching their End-of-Life (EoL) and [...] Read more.
Recently, significant events took place that added immensely to the sociotechnical pressure for developing sustainable composite recycling solutions, namely (1) a ban on composite landfilling in Germany in 2009, (2) the first major wave of composite wind turbines reaching their End-of-Life (EoL) and being decommissioned in 2019–2020, (3) the acceleration of aircraft decommissioning due to the COVID-19 pandemic, and (4) the increase of composites in mass production cars, thanks to the development of high volume technologies based on thermoplastic composites. Such sociotechnical pressure will only grow in the upcoming decade of 2020s as other countries are to follow Germany by limiting and banning landfill options, and by the ever-growing number of expired composites EoL waste. The recycling of fiber reinforced composite materials will therefore play an important role in the future, in particular for the wind energy, but also for aerospace, automotive, construction and marine sectors to reduce environmental impacts and to meet the demand. The scope of this manuscript is a clear and condensed yet full state-of-the-art overview of the available recycling technologies for fiber reinforced composites of both low and high Technology Readiness Levels (TRL). TRL is a framework that has been used in many variations across industries to provide a measurement of technology maturity from idea generation (basic principles) to commercialization. In other words, this work should be treated as a technology review providing guidelines for the sustainable development of the industry that will benefit the society. The authors propose that one of the key aspects for the development of sustainable recycling technology is to identify the optimal recycling methods for different types of fiber reinforced composites. Why is that the case can be answered with a simple price comparison of E-glass fibers (~2 $/kg) versus a typical carbon fiber on the market (~20 $/kg)—which of the two is more valuable to recover? However, the answer is more complicated than that—the glass fiber constitutes about 90% of the modern reinforcement market, and it is clear that different technologies are needed. Therefore, this work aims to provide clear guidelines for economically and environmentally sustainable End-of-Life (EoL) solutions and development of the fiber reinforced composite material recycling. Full article
(This article belongs to the Special Issue From Waste to Advance Composite Materials)
Show Figures

Figure 1

15 pages, 2187 KiB  
Review
Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review
by M. Z. Naser, Rami Antoun Hawileh and Jamal Abdalla
J. Compos. Sci. 2021, 5(1), 19; https://doi.org/10.3390/jcs5010019 - 8 Jan 2021
Cited by 60 | Viewed by 9387
Abstract
Fiber-reinforced polymer (FRP) composites do not only possess superior mechanical properties, but can also be easy to tailor, install, and maintain. As such, FRPs offer novel and attractive solutions to facilitate strengthening and/or retrofitting of aging, weakened, and upgraded structures. Despite the availability [...] Read more.
Fiber-reinforced polymer (FRP) composites do not only possess superior mechanical properties, but can also be easy to tailor, install, and maintain. As such, FRPs offer novel and attractive solutions to facilitate strengthening and/or retrofitting of aging, weakened, and upgraded structures. Despite the availability of general code provisions, the design and analysis of FRP-strengthened concrete structures is both tedious and complex—especially in scenarios associated with unique loading conditions. As such, designers often leverage advanced finite element (FE) simulation as a mean to understand and predict the performance of FRP-strengthened structures. In order to narrow this knowledge gap, this paper details suitable strategy for developing and carrying out advanced FE simulations on FRP-strengthened concrete structures. The paper also covers techniques related to simulating adhesives (bonding agents), material constitutive properties and plasticity (cracking/crushing of concrete, yielding of steel reinforcement, and delamination of FRP laminates), as well as different material types of FRP (CFRP, GFRP, and their hybrid combinations), and FRP strengthening systems (sheets, plates, NSM, and rods) under various loading conditions including ambient, earthquake, and fire. The principles, thumb rules, and findings of this work can be of interest to researchers, practitioners, and students. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers)
Show Figures

Figure 1

18 pages, 3194 KiB  
Review
Cyanobacterial Extracellular Polymeric Substances for Heavy Metal Removal: A Mini Review
by Ajit Pratap Singh Yadav, Vinay Dwivedi, Satyendra Kumar, Anamika Kushwaha, Lalit Goswami and Bezawada Sridhar Reddy
J. Compos. Sci. 2021, 5(1), 1; https://doi.org/10.3390/jcs5010001 - 23 Dec 2020
Cited by 79 | Viewed by 4516
Abstract
Heavy metals from various natural and anthropogenic sources are becoming a chief threat to the aquatic system owing to their toxic and lethal effect. The treatment of such contaminated wastewater is one of the prime concerns in this field. For decades, a huge [...] Read more.
Heavy metals from various natural and anthropogenic sources are becoming a chief threat to the aquatic system owing to their toxic and lethal effect. The treatment of such contaminated wastewater is one of the prime concerns in this field. For decades, a huge array of innovative biosorbents is used for heavy metal removal. Though extensive microbes and their biomolecules have been experimented and have showed great potential but most of them have failed to have the substantial breakthrough for the practical application. The present review emphasis on the potential utilization of the cyanobacteria for the heavy metal removal along with the toxic effect imposed by the pollutant. Furthermore, the effect of significant parameters, plausible mechanistic insights of the heavy metal toxicity imposed onto the cyanobacteria is also discussed in detail. The role of extrapolymeric substances and metallothionein secreted by the microbes are also elaborated. The review was evident that the cyanobacterial species have a huge potential towards the heavy metal removal from the aqueous system ranging from very low to very high concentrations. Full article
(This article belongs to the Special Issue Composite Nanostructures for Energy and Environment Applications)
Show Figures

Figure 1

46 pages, 23602 KiB  
Review
Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review
by Hao Zhang, Xiaowen Zhang, Zhou Fang, Yao Huang, Hong Xu, Ying Liu, Daming Wu, Jian Zhuang and Jingyao Sun
J. Compos. Sci. 2020, 4(4), 180; https://doi.org/10.3390/jcs4040180 - 29 Nov 2020
Cited by 68 | Viewed by 9717
Abstract
At present, the rapid accumulation of heat and the heat dissipation of electronic equipment and related components are important reasons that restrict the miniaturization, high integration, and high power of electronic equipment. It seriously affects the performance and life of electronic devices. Hence, [...] Read more.
At present, the rapid accumulation of heat and the heat dissipation of electronic equipment and related components are important reasons that restrict the miniaturization, high integration, and high power of electronic equipment. It seriously affects the performance and life of electronic devices. Hence, improving the thermal conductivity of polymer composites (TCPCs) is the key to solving this problem. Compared with manufacturing intrinsic thermally conductive polymer composites, the method of filling the polymer matrix with thermally conductive fillers can better-enhance the thermal conductivity (λ) of the composites. This review starts from the thermal conduction mechanism and describes the factors affecting the λ of polymer composites, including filler type, filler morphology and distribution, and the functional surface treatment of fillers. Next, we introduce the preparation methods of filled thermally conductive polymer composites with different filler types. In addition, some commonly used thermal-conductivity theoretical models have been introduced to better-analyze the thermophysical properties of polymer composites. We discuss the simulation of λ and the thermal conduction process of polymer composites based on molecular dynamics and finite element analysis methods. Meanwhile, we briefly introduce the application of polymer composites in thermal management. Finally, we outline the challenges and prospects of TCPCs. Full article
(This article belongs to the Special Issue Polymer Composites: Fabrication and Applications)
Show Figures

Figure 1

20 pages, 1518 KiB  
Review
Carbon Nanotubes (CNTs): A Potential Nanomaterial for Water Purification
by Bharti Arora and Pankaj Attri
J. Compos. Sci. 2020, 4(3), 135; https://doi.org/10.3390/jcs4030135 - 10 Sep 2020
Cited by 94 | Viewed by 19693
Abstract
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. [...] Read more.
Nanomaterials such as carbon nanotubes (CNTs) have been used as an excellent material for catalysis, separation, adsorption and disinfection processes. CNTs have grabbed the attention of the scientific community and they have the potential to adsorb most of the organic compounds from water. Unlike, reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) membranes aligned CNT membranes can act as high-flow desalination membranes. CNTs provide a relatively safer electrode solution for biosensors. The article is of the utmost importance for the scientists and technologists working in water purification technologies to eliminate the water crisis in the future. This review summarizes about the application of CNTs in water purification. Full article
(This article belongs to the Special Issue Composite Materials for Water Purification)
Show Figures

Figure 1

39 pages, 8378 KiB  
Review
Mechanisms of Origin and Classification of Out-of-Plane Fiber Waviness in Composite Materials—A Review
by Michael Thor, Markus G. R. Sause and Roland M. Hinterhölzl
J. Compos. Sci. 2020, 4(3), 130; https://doi.org/10.3390/jcs4030130 - 4 Sep 2020
Cited by 80 | Viewed by 12784
Abstract
Out-of-plane fiber waviness, also referred to as wrinkling, is considered one of the most significant effects that occur in composite materials. It significantly affects mechanical properties, such as stiffness, strength and fatigue and; therefore, dramatically reduces the load-carrying capacity of the material. Fiber [...] Read more.
Out-of-plane fiber waviness, also referred to as wrinkling, is considered one of the most significant effects that occur in composite materials. It significantly affects mechanical properties, such as stiffness, strength and fatigue and; therefore, dramatically reduces the load-carrying capacity of the material. Fiber waviness is inherent to various manufacturing processes of fiber-reinforced composite parts. They cannot be completely avoided and thus have to be tolerated and considered as an integral part of the structure. Because of this influenceable but in many cases unavoidable nature of fiber waviness, it might be more appropriate to consider fiber waviness as effects or features rather than defects. Hence, it is important to understand the impact of different process parameters on the formation of fiber waviness in order to reduce or, in the best case, completely avoid them as early as possible in the product and process development phases. Mostly depending on the chosen geometry of the part and the specific manufacturing process used, different types of fiber waviness result. In this study, various types of waviness are investigated and a classification scheme is developed for categorization purposes. Numerous mechanisms of wrinkling were analyzed, leading to several recommendations to prevent wrinkle formation, not only during composite processing, but also at an earlier design stage, where generally several influence factors are defined. Full article
Show Figures

Figure 1

22 pages, 619 KiB  
Review
Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites
by Kinga Korniejenko, Wei-Ting Lin and Hana Šimonová
J. Compos. Sci. 2020, 4(3), 128; https://doi.org/10.3390/jcs4030128 - 1 Sep 2020
Cited by 60 | Viewed by 4213
Abstract
The article describes the state of the art in reinforced geopolymers, taking into consideration various types of polymer fiber reinforcements, such as polypropylene, polyethylene, or polylactic acid. The description is focused on the usage of polymer short fibers and the mechanical properties of [...] Read more.
The article describes the state of the art in reinforced geopolymers, taking into consideration various types of polymer fiber reinforcements, such as polypropylene, polyethylene, or polylactic acid. The description is focused on the usage of polymer short fibers and the mechanical properties of the geopolymer composites. However, to show a wider research background, numerous references are discussed concerning the selected studies on reinforcing geopolymer composites with long fibers and fabrics. The research method applied in the article is the critical analysis of literature sources, including a comparison of new material with other materials used in similar applications. The results of the research are discussed in a comparative context and the properties of the composites are juxtaposed with the properties of the standard materials used in the construction industry. Potential applications in the construction industry are presented. Moreover, the contemporary research challenges for geopolymer materials reinforced with fibers are presented. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2020)
Show Figures

Figure 1

43 pages, 10329 KiB  
Review
Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review
by Ali Fazli and Denis Rodrigue
J. Compos. Sci. 2020, 4(3), 103; https://doi.org/10.3390/jcs4030103 - 31 Jul 2020
Cited by 144 | Viewed by 23412
Abstract
Recycling and recovery of waste tires is a serious environmental problem since vulcanized rubbers require several years to degrade naturally and remain for long periods of time in the environment. This is associated to a complex three dimensional (3D) crosslinked structure and the [...] Read more.
Recycling and recovery of waste tires is a serious environmental problem since vulcanized rubbers require several years to degrade naturally and remain for long periods of time in the environment. This is associated to a complex three dimensional (3D) crosslinked structure and the presence of a high number of different additives inside a tire formulation. Most end-of-life tires are discarded as waste in landfills taking space or incinerated for energy recovery, especially for highly degraded rubber wastes. All these options are no longer acceptable for the environment and circular economy. However, a great deal of progress has been made on the sustainability of waste tires via recycling as this material has high potential being a source of valuable raw materials. Extensive researches were performed on using these end-of-life tires as fillers in civil engineering applications (concrete and asphalt), as well as blending with polymeric matrices (thermoplastics, thermosets or virgin rubber). Several grinding technologies, such as ambient, wet or cryogenic processes, are widely used for downsizing waste tires and converting them into ground tire rubber (GTR) with a larger specific surface area. Here, a focus is made on the use of GTR as a partial replacement in virgin rubber compounds. The paper also presents a review of the possible physical and chemical surface treatments to improve the GTR adhesion and interaction with different matrices, including rubber regeneration processes such as thermomechanical, microwave, ultrasonic and thermochemical producing regenerated tire rubber (RTR). This review also includes a detailed discussion on the effect of GTR/RTR particle size, concentration and crosslinking level on the curing, rheological, mechanical, aging, thermal, dynamic mechanical and swelling properties of rubber compounds. Finally, a conclusion on the current situation is provided with openings for future works. Full article
(This article belongs to the Special Issue Progress in Rubber Blends and Composites Technology)
Show Figures

Figure 1

23 pages, 3532 KiB  
Review
3D-Printed Carbon Fiber Reinforced Polymer Composites: A Systematic Review
by Seyed Hamid Reza Sanei and Diana Popescu
J. Compos. Sci. 2020, 4(3), 98; https://doi.org/10.3390/jcs4030098 - 24 Jul 2020
Cited by 133 | Viewed by 14032
Abstract
Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. [...] Read more.
Fiber reinforced composites offer exceptional directional mechanical properties, and combining their advantages with the capability of 3D printing has resulted in many innovative research fronts. This review aims to summarize the methods and findings of research conducted on 3D-printed carbon fiber reinforced composites. The review is focused on commercially available printers and filaments, as their results are reproducible and the findings can be applied to functional parts. As the process parameters can be readily changed in preparation of a 3D-printed part, it has been the focus of many studies. In addition to typical composite driving factors such as fiber orientation, fiber volume fraction and stacking sequence, printing parameters such as infill density, infill pattern, nozzle speed, layer thickness, built orientation, nozzle and bed temperatures have shown to influence mechanical properties. Due to the unique advantages of 3D printing, in addition to conventional unidirectional fiber orientation, concentric fiber rings have been used to optimize the mechanical performance of a part. This review surveys the literature in 3D printing of chopped and continuous carbon fiber composites to provide a reference for the state-of-the-art efforts, existing limitations and new research frontiers. Full article
(This article belongs to the Special Issue Carbon-Based Polymer Nanocomposites)
Show Figures

Figure 1

23 pages, 807 KiB  
Review
Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review
by Stephen Owuamanam and Duncan Cree
J. Compos. Sci. 2020, 4(2), 70; https://doi.org/10.3390/jcs4020070 - 9 Jun 2020
Cited by 122 | Viewed by 19582
Abstract
Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell [...] Read more.
Disposal of massive amounts of eggshells and seashells from processing industries is a challenge. In recent years, there has been a focus to reuse these waste resources in the production of new thermoplastic and thermoset polymer materials. This paper reviews eggshell and seashell production by country and provides a perspective on the quantity of bio-calcium carbonate that could be produced annually from these wastes. The achievements obtained from the addition of recycled bio-calcium carbonate fillers (uncoated/unmodified) in polymer composites with a focus on tensile strength, flexural strength and impact toughness are discussed. To improve compatibility between calcium carbonate (mineral and bio-based) fillers and polymers, studies on surface modifiers are reviewed. Knowledge gaps and future research and development thoughts are outlined. Developing novel and innovative composites for this waste material could bring additional revenue to egg and seafood processors and at the same time reduce any environmental impact. Full article
(This article belongs to the Special Issue Progress in Polymer Composites)
Show Figures

Figure 1

22 pages, 6169 KiB  
Review
The Use of Composite Materials in 3D Printing
by Ignazio Blanco
J. Compos. Sci. 2020, 4(2), 42; https://doi.org/10.3390/jcs4020042 - 22 Apr 2020
Cited by 112 | Viewed by 13491
Abstract
Nowadays, all production, from the smallest ones to large companies, and research activities are affected by the use of 3D printing technology. The major limitation, in order to cover as many fields of application as possible, is represented by the set of 3D [...] Read more.
Nowadays, all production, from the smallest ones to large companies, and research activities are affected by the use of 3D printing technology. The major limitation, in order to cover as many fields of application as possible, is represented by the set of 3D printable materials and their limited spectrum of physico-chemical properties. To expand this spectrum and employ the 3D-printed objects in areas such as biomedical, mechanical, electronical and so on, the introduction of fibers or particles in a polymer matrix has been widely studied and applied. In this review, all those studies that proposed modified polymer presenting advantages associated with rapid prototyping are reported. Full article
Show Figures

Figure 1

16 pages, 6155 KiB  
Article
The Synergic Effects of FDM 3D Printing Parameters on Mechanical Behaviors of Bronze Poly Lactic Acid Composites
by Mahmoud Moradi, Mojtaba Karami Moghadam, Mahmoud Shamsborhan and Mahdi Bodaghi
J. Compos. Sci. 2020, 4(1), 17; https://doi.org/10.3390/jcs4010017 - 3 Feb 2020
Cited by 44 | Viewed by 5652
Abstract
In this paper, the influence of layer thickness (LT), infill percentage (IP), and extruder temperature (ET) on the maximum failure load, thickness, and build time of bronze polylactic acid (Br-PLA) composites 3D printed by the fused deposition modeling (FDM) was investigated via an [...] Read more.
In this paper, the influence of layer thickness (LT), infill percentage (IP), and extruder temperature (ET) on the maximum failure load, thickness, and build time of bronze polylactic acid (Br-PLA) composites 3D printed by the fused deposition modeling (FDM) was investigated via an optimization method. PLA is a thermoplastic aliphatic polyester obtained from renewable sources, such as fermented plant starch, especially made by corn starch. The design of experiment (DOE) approach was used for optimization parameters, and 3D printings were optimized according to the applied statistical analyses to reach the best features. The maximum value of failure load and minimum value of the build time were considered as optimization criteria. Analysis of variance results identified the layer thickness as the main controlled variable for all responses. Optimum solutions were examined by experimental preparation to assess the efficiency of the optimization method. There was a superb compromise among experimental outcomes and predictions of the response surface method, confirming the reliability of predictive models. The optimum setting for fulfilling the first criterion could result in a sample with more than 1021 N maximum failure load. Finally, a comparison of maximum failure from PLA with Br-PLA was studied. Full article
(This article belongs to the Special Issue Multifunctional Composites)
Show Figures

Figure 1

14 pages, 3118 KiB  
Communication
Application of Chitosan-Clay Biocomposite Beads for Removal of Heavy Metal and Dye from Industrial Effluent
by Shanta Biswas, Taslim Ur Rashid, Tonmoy Debnath, Papia Haque and Mohammed Mizanur Rahman
J. Compos. Sci. 2020, 4(1), 16; https://doi.org/10.3390/jcs4010016 - 1 Feb 2020
Cited by 75 | Viewed by 9132
Abstract
In recent years, there has been increasing interest in developing green biocomposite for industrial wastewater treatment. In this study, prawn-shell-derived chitosan (CHT) and kaolinite rich modified clay (MC) were used to fabricate biocomposite beads with different compositions. Prepared composite beads were characterized by [...] Read more.
In recent years, there has been increasing interest in developing green biocomposite for industrial wastewater treatment. In this study, prawn-shell-derived chitosan (CHT) and kaolinite rich modified clay (MC) were used to fabricate biocomposite beads with different compositions. Prepared composite beads were characterized by FTIR, and XRD, and SEM. The possible application of the beads was evaluated primarily by measuring the adsorption efficiency in standard models of lead (II) and methylene blue (MB) dye solution, and the results show a promising removal efficiency. In addition, the composites were used to remove Cr (VI), Pb (II), and MB from real industrial effluents. From tannery effluent, 50.90% of chromium and 39.50% of lead ions were removed by composites rich in chitosan and 31.50% of MB was removed from textile effluent by a composite rich in clay. Moreover, the composite beads were found to be activated in both acidic and basic media depending on their composition, which gives a scope to their universal application in dye and heavy metal removal from wastewater from various industries. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2019)
Show Figures

Graphical abstract

15 pages, 3084 KiB  
Review
Structural Health Monitoring for Advanced Composite Structures: A Review
by Alfredo Güemes, Antonio Fernandez-Lopez, Angel Renato Pozo and Julián Sierra-Pérez
J. Compos. Sci. 2020, 4(1), 13; https://doi.org/10.3390/jcs4010013 - 27 Jan 2020
Cited by 186 | Viewed by 13315
Abstract
Condition-based maintenance refers to the installation of permanent sensors on a structure/system. By means of early fault detection, severe damage can be avoided, allowing efficient timing of maintenance works and avoiding unnecessary inspections at the same time. These are the goals for structural [...] Read more.
Condition-based maintenance refers to the installation of permanent sensors on a structure/system. By means of early fault detection, severe damage can be avoided, allowing efficient timing of maintenance works and avoiding unnecessary inspections at the same time. These are the goals for structural health monitoring (SHM). The changes caused by incipient damage on raw data collected by sensors are quite small, and are usually contaminated by noise and varying environmental factors, so the algorithms used to extract information from sensor data need to focus on sensitive damage features. The developments of SHM techniques over the last 20 years have been more related to algorithm improvements than to sensor progress, which essentially have been maintained without major conceptual changes (with regards to accelerometers, piezoelectric wafers, and fiber optic sensors). The main different SHM systems (vibration methods, strain-based fiber optics methods, guided waves, acoustic emission, and nanoparticle-doped resins) are reviewed, and the main issues to be solved are identified. Reliability is the key question, and can only be demonstrated through a probability of detection (POD) analysis. Attention has only been paid to this issue over the last ten years, but now it is a growing trend. Simulation of the SHM system is needed in order to reduce the number of experiments. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2019)
Show Figures

Figure 1

25 pages, 3210 KiB  
Review
Composite Reinforcement Architectures: A Review of Field-Assisted Additive Manufacturing for Polymers
by Madhuparna Roy, Phong Tran, Tarik Dickens and Amanda Schrand
J. Compos. Sci. 2020, 4(1), 1; https://doi.org/10.3390/jcs4010001 - 18 Dec 2019
Cited by 39 | Viewed by 7650
Abstract
The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a [...] Read more.
The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries. Full article
(This article belongs to the Special Issue Additive Manufacturing of Polymeric and Ceramic Composites)
Show Figures

Figure 1

Back to TopTop