Nanostructured Materials/Biomaterials for Healthcare Applications

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials and Devices for Healthcare Applications".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 9897

Special Issue Editor


E-Mail Website
Guest Editor
Department of Fine Chemistry, Seoul National University of Science and Technology, Gongneung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea
Interests: advanced materials chemistry and physics; biomaterials; ferromagnetics; ceramics; biomagnetic materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanostructured materials provide better properties than bulk materials due to their excellent stability, higher surface area, higher porosity, and smaller size. Due to the above properties, nanostructured materials are used in different applications such as sunscreens, catalysts, electronic devices, paints, and healthcare. Because of the wider range of applications, there are different researchers working regularly on the improvement of nanostructured materials synthesis and fabrication. With the increase in the population, regular road accidents, industrial accidents, wars between countries, and increased infections due to the development of different viruses similar to COVID-19, the demand for new advanced nanostructured materials and biomaterials for controlling and treating such effects is increasing day by day.

Hence, to fulfill the above requirements in this Special Issue, different contributions based on nanostructured materials or biomaterials are required in the fields of diagnosis, dentistry, bioimaging, tissue engineering, and drug delivery to fulfill the demand for human welfare.

Dr. Gopalu Karunakaran
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced nanostructured materials
  • composite nanostructured materials
  • nanostructured materials
  • biomaterials
  • nanostructured materials for drug delivery and cancer treatment
  • magnetic nanostructured materials
  • ceramic nanostructured materials
  • metal and metal oxide nanostructured materials

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 6794 KiB  
Article
Toxicity Assessment of New Ag-ZnO/AgO Nanocomposites: An In Vitro and In Vivo Approach
by José Rodrigues do Carmo Neto, Pablo Igor Ribeiro Franco, Yarlla Loyane Lira Braga, Jordana Fernandes de Oliveira, Hugo Felix Perini, Luís Fernando Duarte Albuquerque, Danieli Brolo Martins, Fernanda Rodrigues Helmo, Anderson Assunção Andrade, Marina Pacheco Miguel, Mara Rúbia Nunes Celes, Thiago Lopes Rocha, Anielle Christine Almeida Silva, Juliana Reis Machado and Marcos Vinícius da Silva
J. Funct. Biomater. 2024, 15(3), 51; https://doi.org/10.3390/jfb15030051 - 20 Feb 2024
Viewed by 1151
Abstract
Zinc oxide nanoparticles (ZnO NPs) are metal oxide nanomaterials, which are important for several applications: antibacterial, anthelmintic, antiprotozoal and antitumoral, among others. These applications are mainly related to the ability to spontaneously produce and induce the production of reactive oxygen species that are [...] Read more.
Zinc oxide nanoparticles (ZnO NPs) are metal oxide nanomaterials, which are important for several applications: antibacterial, anthelmintic, antiprotozoal and antitumoral, among others. These applications are mainly related to the ability to spontaneously produce and induce the production of reactive oxygen species that are important components for the destruction of pathogens and tumor cells. While trying to potentiate ZnO NPs, studies have associated these NPs with silver oxide (AgO) or silver (Ag) NPs. It has already been reported that this combination (Ag-ZnO/AgO NPs) is able to enhance the microbicidal potential. Although possessing much potential for several purposes, it is important to evaluate whether this association also poses the risk of toxicity to cells and experimental models. Therefore, this work aimed to evaluate the toxicity of various Ag-ZnO/AgO NP nanocomposites, in vitro and in vivo. Accordingly, ZnO nanocrystals and nanocomposites with various concentrations of AgO (ZnO:5Ag, ZnO:9Ag or ZnO:11Ag) were used in different cytotoxicity models: Galleria mellonella (G. mellonella), cell lines (VERO and RAW 264.7) and C57BL/6 mice. In the G. mellonella model, four concentrations were used in a single dose, with subsequent evaluation of mortality. In the case of cells, serial concentrations starting at 125 µg/mL were used, with subsequent cytotoxicity assessment. Based on the safe doses obtained in G. mellonella and cell models, the best doses were used in mice, with subsequent evaluations of weight, biochemistry as also renal and liver histopathology. It was observed that the toxicity, although low, of the nanocomposites was dependent upon the concentration of AgO used in association with ZnO NPs, both in vitro and in vivo. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Graphical abstract

19 pages, 7431 KiB  
Article
Multifunctional ZnO@DOX/ICG-LMHP Nanoparticles for Synergistic Multimodal Antitumor Activity
by Zhuoyue Li, Jingru Wang, Junwei Liu, Jianming Yu, Jingwen Wang, Hui Wang, Qingchao Wei, Man Liu, Meiqi Xu, Zhenhan Feng, Ting Zhong and Xuan Zhang
J. Funct. Biomater. 2024, 15(2), 35; https://doi.org/10.3390/jfb15020035 - 30 Jan 2024
Cited by 1 | Viewed by 1599
Abstract
Multifunctional nanoparticles are of significant importance for synergistic multimodal antitumor activity. Herein, zinc oxide (ZnO) was used as pH-sensitive nanoparticles for loading the chemotherapy agent doxorubicin (DOX) and the photosensitizer agent indocyanine green (ICG), and biocompatible low-molecular-weight heparin (LMHP) was used as the [...] Read more.
Multifunctional nanoparticles are of significant importance for synergistic multimodal antitumor activity. Herein, zinc oxide (ZnO) was used as pH-sensitive nanoparticles for loading the chemotherapy agent doxorubicin (DOX) and the photosensitizer agent indocyanine green (ICG), and biocompatible low-molecular-weight heparin (LMHP) was used as the gatekeepers for synergistic photothermal therapy/photodynamic therapy/chemotherapy/immunotherapy. ZnO was decomposed into cytotoxic Zn2+ ions, leading to a tumor-specific release of ICG and DOX. ZnO simultaneously produced oxygen (O2) and reactive oxygen species (ROS) for photodynamic therapy (PDT). The released ICG under laser irradiation produced ROS for PDT and raised the tumor temperature for photothermal therapy (PTT). The released DOX directly caused tumor cell death for chemotherapy. Both DOX and ICG also induced immunogenic cell death (ICD) for immunotherapy. The in vivo and in vitro results presented a superior inhibition of tumor progression, metastasis and recurrence. Therefore, this study could provide an efficient approach for designing multifunctional nanoparticles for synergistic multimodal antitumor therapy. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Graphical abstract

15 pages, 4166 KiB  
Article
Antimicrobial Oleogel Containing Sustainably Prepared Silver-Based Nanomaterials for Topical Application
by Valeria Ambrogi, Morena Nocchetti, Donatella Pietrella, Giulia Quaglia, Alessandro Di Michele and Loredana Latterini
J. Funct. Biomater. 2024, 15(1), 4; https://doi.org/10.3390/jfb15010004 - 20 Dec 2023
Viewed by 1428
Abstract
Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel [...] Read more.
Oleogels containing silica–silver-based nanomaterials were prepared to be used as potential antimicrobial treatment for preventing and curing skin infections. Fumed silica was used as a bifunctional excipient able to offer support to silver-based nanoparticle growth and act as a gelling agent for oleogel formulation. First, silica–silver composites were prepared following a sustainable method by contact of fumed silica and silver nitrate in the presence of ethanol and successive UV irradiation. The composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), ATR FT-IR spectroscopy and UV-Vis spectrophotometry. The presence of 8–20 nm spherical nanoparticles, in addition to the silica aggregates and AgNO3 crystals, was detected. The composites showed good antimicrobial activity against the Gram-negative Pseudomonas aeruginosa and the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Thus, they were formulated in an oleogel, obtained using fumed silica as a gelling agent. For comparison, oleogels containing AgNO3 were prepared according to two different formulative techniques. The silica–silver-based oleogels showed good antimicrobial activity and did not show cytotoxic effects for fibroblasts and keratinocytes. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

14 pages, 1979 KiB  
Article
Lutein Encapsulated in PLGA–Phospholipid Nano-Carrier Effectively Mitigates Cytokines by Inhibiting Tumor Necrosis Factor TNF-α and Nuclear Factor NF-κB in Mice Retina
by Ranganathan Arunkumar and Vallikannan Baskaran
J. Funct. Biomater. 2023, 14(4), 197; https://doi.org/10.3390/jfb14040197 - 03 Apr 2023
Cited by 2 | Viewed by 1260
Abstract
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic [...] Read more.
Lutein, a photo- and thermo-labile macular pigment, prevents the retina from suffering ocular inflammation with its antioxidant and anti-inflammatory activity. However, its biological activity is poor due to poor solubility and bioavailability. Therefore, we developed a PLGA NCs (+PL), (poly (lactic-co-glycolic acid) nanocarrier with phospholipid) to improve the biological availability and bioefficacy of lutein in the retina of lipopolysaccharide (LPS)-induced lutein-devoid (LD) mice. The effect of lutein-loaded NCs with/without PL was studied in comparison with micellar lutein. The induction of inflammation by LPS significantly increased the production of nitrites in the LPS-induced group, revealing higher levels of nitric oxide (NO) in the serum (760%) and retina (891%) compared to the control group. Malondialdehyde (MDA) levels in the serum (93%) and retina (205%) of the LPS-induced group were higher compared to the control group. LPS induction resulted in increased protein carbonyls in the serum (481%) and retina (487%) of the LPS group compared to the control group. Further, to conclude, lutein-PLGA NCs (+PL) effectively down-regulated inflammatory complications in the retina. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

21 pages, 3822 KiB  
Article
Preparation and Characterization of Patch Loaded with Clarithromycin Nanovesicles for Transdermal Drug Delivery
by Ahlam Zaid Alkilani, Batool Musleh, Rania Hamed, Lubna Swellmeen and Haneen A. Basheer
J. Funct. Biomater. 2023, 14(2), 57; https://doi.org/10.3390/jfb14020057 - 19 Jan 2023
Cited by 7 | Viewed by 3816
Abstract
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were [...] Read more.
Clarithromycin (CLR), categorized as a Biopharmaceutical Classification System class II drug, has several gastrointestinal tract side effects and an extremely unpalatable bitter taste. The current study aimed to design transdermal patch-embedded CLR niosomes to overcome the aforementioned CLR-related challenges. Various niosomal formulations were successfully fabricated and characterized for their morphology, size, in vitro release, and antimicrobial efficacy. Subsequently, the CLR niosomes were loaded into transdermal patches using the solvent casting method. The polydispersity index of the niosomes ranged from 0.005 to 0.360, indicating the uniformity of the niosomes. The encapsulating efficiency (EE)% varied from 12 to 86%. The optimal Chol: surfactant ratio for drug release was found to be 0.5:1. In addition, the encapsulation of CLR into niosomal nanovesicles did not reduce the antibacterial activity of the CLR. The niosomal patch had a significantly higher permeability coefficient of CLR than the conventional patch. In addition to that, a shear-thinning behavior was observed in the niosomal gels before loading them into a niosomal patch. The flux (Jss) of the niosomal patch was significantly higher than the conventional patch by more than 200 times. In conclusion, niosome-based transdermal patches could be a promising method for the transdermal drug delivery of class II drugs and drugs experiencing GIT side effects. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

Back to TopTop