Application of Polymers in Sustainable Building Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 30 June 2024 | Viewed by 1796

Special Issue Editors

School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
Interests: microcapsule; self-healing materials; high-performance fibers; intelligent building materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Interests: pavement maintenance; asphalt concrete; self-healing; multi-cavity capsules
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Chemistry and Material Science, Hubei Engineering University, Xiaogan 432000, China
Interests: biomass composites; functional polymer composites; flame retardant materials

E-Mail
Guest Editor
School of Electric Power, Civil Engineering and Architecture, Shanxi University, Taiyuan 030000, China
Interests: polymer-modified asphalt; rejuvenation of reclaimed asphalt pavement (RAP); performance evaluation and characterization of asphalt material; aging and anti-aging of asphalt material

Special Issue Information

Dear Colleagues,

Polymers play a crucial role in sustainable building materials. They are high-molecular-weight compounds composed of repeating units and offer several advantages for sustainable construction. Firstly, polymer materials typically have a low carbon footprint as they can be manufactured from renewable resources, reducing our dependence on finite natural resources. Secondly, polymer materials are lightweight and easy to process, reducing the energy consumption and waste generation during construction. Additionally, they possess excellent thermal and acoustic insulation properties, enhancing energy efficiency and comfort in buildings. Polymers can also be used to manufacture solar panels, insulation materials, and components for renewable energy equipment, further promoting the development of sustainable construction. In summary, the application of polymers in sustainable building materials helps reduce their environmental impact, improve buildings’ performance, and create a more sustainable future.

Dr. Wei Du
Prof. Dr. Quantao Liu
Prof. Dr. Yongbin Yan
Dr. Xiaobin Han
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3924 KiB  
Article
Development of Microparticle Implanted PVDF-HF Polymer Coating on Building Material for Daytime Radiative Cooling
by Usman Saeed, Mohamed Mahfoodh Saleh Altamimi and Hamad Al-Turaif
Polymers 2024, 16(9), 1201; https://doi.org/10.3390/polym16091201 - 25 Apr 2024
Viewed by 397
Abstract
A passive cooling method with great potential to lower space-cooling costs, counteract the urban heat island effect, and slow down worldwide warming is radiant cooling. The solutions available frequently require complex layered structures, costly products, or a reflective layer of metal to accomplish [...] Read more.
A passive cooling method with great potential to lower space-cooling costs, counteract the urban heat island effect, and slow down worldwide warming is radiant cooling. The solutions available frequently require complex layered structures, costly products, or a reflective layer of metal to accomplish daytime radiative cooling, which restricts their applications in many avenues. Furthermore, single-layer paints have been used in attempts to accomplish passive daytime radiative cooling, but these usually require a compact coating or only exhibit limited cooling in daytime. In our study, we investigated and evaluated in daytime the surrounding cooling outcome with aid of one layer coating composed of BaSO4/TiO2 microparticles in various concentrations implanted in the PVDF-HF polymers on a concrete substrate. The 30% BaSO4/TiO2 microparticle in the PVDF-HF coating shows less solar absorbance and excessive emissivity. The value of solar reflectance is improved by employing micro-pores in the structure of PVDF polymers without noticeable effect on thermal emissivity. The 30% BaSO4/TiO2/PVDF coating is accountable for the hydrophobicity and proportionate solar reflection in the UV band, resulting in efficient solar reflectivity of about 95.0%, with emissivity of 95.1% and hydrophobicity exhibiting a 117.1° water contact angle. Also, the developed coating could cool to about 5.1 °C and 3.9 °C below the surrounding temperature beneath the average solar irradiance of 900 W/m−2. Finally, the results demonstrate that the 30% BaSO4/TiO2/PVDF-HF microparticle coating illustrates a typical figure of merit of 0.60 and is also capable of delivering outstanding dependability and harmony with the manufacturing process. Full article
(This article belongs to the Special Issue Application of Polymers in Sustainable Building Materials)
Show Figures

Figure 1

14 pages, 8159 KiB  
Article
Effect of Graphene Oxide Surface Deposition Process on Synthetic Macrofibers and Its Results on the Microstructure of Fiber-Reinforced Concrete
by Vinício Cecconello and Matheus Poletto
Polymers 2024, 16(8), 1168; https://doi.org/10.3390/polym16081168 - 21 Apr 2024
Viewed by 389
Abstract
The improvement of the mechanical properties of concrete can be achieved with the use of synthetic macrofibers. However, this fiber–matrix interaction will be sufficiently efficient for tensile efforts only when there is a binding agent that associates the characteristics of the paste with [...] Read more.
The improvement of the mechanical properties of concrete can be achieved with the use of synthetic macrofibers. However, this fiber–matrix interaction will be sufficiently efficient for tensile efforts only when there is a binding agent that associates the characteristics of the paste with the characteristics of the surface of the reinforcing material. As already identified, in a first phase of this research using synthetic microfibers, a better fiber–matrix interaction can be achieved with the surface treatment of synthetic fibers with graphene oxide. In this way, we sought to evaluate the surface treatment with graphene oxide on two synthetic polypropylene macrofibers (macrofiber “A” and macrofiber “B”) and its contribution to the concrete transition zone. The surface deposition on the macrofiber was carried out using the ultrasonication method; then, the macrofiber with the best deposition for creating reinforced concrete mixtures was identified. To evaluate the quality of GO deposition, scanning electron microscopy (SEM-FEG) and energy-dispersive spectroscopy (EDS) tests were carried out; the same technique was used to evaluate the macrofiber–matrix transition zone. The SEM-FEG images indicated that macrofiber “B” obtained greater homogeneity in surface deposition and it presented a 13% greater deposition of C in the EDS spectra. The SEM-FEG micrographs for reinforced concrete indicated a reduction in voids in the macrofiber–matrix transition zone for concretes that used macrofibers treated with GO. Full article
(This article belongs to the Special Issue Application of Polymers in Sustainable Building Materials)
Show Figures

Figure 1

13 pages, 3775 KiB  
Article
Study on the Effect of Residual Polymer Superplasticizer on the Properties of Graphene–Cement Composites
by Ki Yun Kim, Seok Hwan An and Jea Uk Lee
Polymers 2024, 16(7), 956; https://doi.org/10.3390/polym16070956 - 31 Mar 2024
Viewed by 514
Abstract
Graphene, renowned for its exceptional mechanical, thermal, and electrical properties, is being explored as a cement nanofiller in the construction field. However, the limited water dispersibility of graphene requires the use of polymer superplasticizers, such as polycarboxylate ether (PCE). Previous studies have investigated [...] Read more.
Graphene, renowned for its exceptional mechanical, thermal, and electrical properties, is being explored as a cement nanofiller in the construction field. However, the limited water dispersibility of graphene requires the use of polymer superplasticizers, such as polycarboxylate ether (PCE). Previous studies have investigated the mechanisms by which PCE facilitates the dispersion of graphene within cement nanocomposites. However, such studies have made minimal progress, indicating a lack of understanding of the effect of residual PCE (rPCE) remaining in aqueous solution without binding to graphene. In this study, the effects of rPCE on the dispersion of graphene and the mechanical properties of graphene–cement composites (GCCs) were systematically analyzed. For this purpose, the content of rPCE was accurately measured through the centrifugation process and thermal analysis of graphene dispersion with PCE, and the result was 78.0 wt.% compared to graphene. The optical microscopy, particle size analysis, and contact angle measurement of the graphene dispersions with and without rPCE confirmed that rPCE is crucial for the dispersion of graphene and the enhancement of the interfacial affinity between graphene and cement. Additionally, the compressive strength of GCC with rPCE exhibited a substantial enhancement of approximately 10% (68.36 MPa) compared to plain cement (62.33 MPa). The effectiveness of rPCE in enhancing compressive strength correlated with the uniform dispersion of graphene within GCC and the promotion of cement hydration, as evidenced by field emission scanning electron microscopy and X-ray diffraction, respectively. Full article
(This article belongs to the Special Issue Application of Polymers in Sustainable Building Materials)
Show Figures

Figure 1

Back to TopTop