Enzymes in Monomer and Polymer Synthesis

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (30 December 2011) | Viewed by 106459

Special Issue Editor


E-Mail Website
Guest Editor
Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Interests: biocatalysis in polymer chemistry; enzymatic polymerizations; green polymer chemistry; biocatalytic monomer synthesis; biocatalytic polymer modification; enzyme immobilization; unraveling the mechanism of biocatalytic polymerizations; biobased monomers and polymers; sustainability; polysaccharides; starch; anionic polymerization; controlled radical polymerization; block copolymer synthesis; supramolecular assembly; block copolymer self-assembly
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Enzymatic monomer synthesis, polymer modifications and polymerizations are powerful and versatile approaches which can compete with chemical and physical techniques for the production of known materials such as “commodity plastics” but also for the synthesis of novel macromolecules so far not accessible via traditional chemical approaches. Biocatalytic synthetic pathways towards polymeric materials are very attractive as they have many advantages such as mild reaction conditions, high enantio-, regio-, chemoselectivity and are nontoxic natural catalysts.

This special issue of Polymers entitled "Enzymes in Monomer and Polymer Synthesis" will cover the whole line of current research involved in this field starting from enzyme development, enzyme immobilization, sustainable monomers, in vitro and in vivo monomer synthesis towards enzymatic polymer modifications and polymerizations.

Prof. Dr. Katja Loos
Guest Editor

Keywords

  • Enzymatic Polymerization
  • Biocatalytic Monomer Synthesis
  • Enzyme Immobilization
  • Enzymatic Polymer Modification
  • Polymerizations in Whole Cells

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1777 KiB  
Article
A Systematic Study on the Self-Assembly Behaviour of Multi Component Fmoc-Amino Acid-Poly(oxazoline) Systems
by Pier-Francesco Caponi and Rein V. Ulijn
Polymers 2012, 4(3), 1399-1415; https://doi.org/10.3390/polym4031399 - 24 Jul 2012
Cited by 5 | Viewed by 9144
Abstract
We report a systematic study of a modular approach to create multi-component supramolecular nanostructures that can be tailored to be both enzyme and temperature responsive. Using a straightforward synthetic approach we functionalised a thermal responsive polymer, poly(2-isopropyl-2-oxazoline), with fluorenylmethoxycarbonyl-amino acids that drive the [...] Read more.
We report a systematic study of a modular approach to create multi-component supramolecular nanostructures that can be tailored to be both enzyme and temperature responsive. Using a straightforward synthetic approach we functionalised a thermal responsive polymer, poly(2-isopropyl-2-oxazoline), with fluorenylmethoxycarbonyl-amino acids that drive the self-assembly. Depending on the properties of appended amino acids, these polymers undergo substantial morphological changes in response to the catalytic action of alkaline phosphatase. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

450 KiB  
Article
Random Poly(Amino Acid)s Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3
by Vladimir Dmitrovic, Gijs J.M. Habraken, Marco M.R.M. Hendrix, Wouter J.E.M. Habraken, Andreas Heise, Gijsbertus De With and Nico A.J.M Sommerdijk
Polymers 2012, 4(2), 1195-1210; https://doi.org/10.3390/polym4021195 - 23 May 2012
Cited by 27 | Viewed by 12908
Abstract
Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino [...] Read more.
Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acid)s to mimic the processes involved in the laboratory. Here we report on the synthesis of random aminoacid copolymers of glutamic acid (Glu), lysine (Lys) and alanine (Ala) using the ring opening polymerization (ROP) of their respective N-carboxy anhydrides (NCA). The synthetic approach yields a series of polymers with different monomer composition but with similar degrees of polymerization (DP 45–56) and comparable polydispersities (PDI 1.2–1.6). Using random copolymers we can investigate the influence of composition on the activity of the polymers without having to take into account the effects of secondary structure or specific sequences. We show that variation of the Glu content of the polymer chains affects the nucleation and thereby also the particle size. Moreover, it is shown that the polymers with the highest Glu content affect the kinetics of mineral formation such that the first precipitate is more soluble than in the case of the control. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

1263 KiB  
Article
Modification of oligo-Ricinoleic Acid and Its Derivatives with 10-Undecenoic Acid via Lipase-Catalyzed Esterification
by Douglas G. Hayes, Vinay K. Mannam, Ran Ye, Haizhen Zhao, Salvadora Ortega and M. Claudia Montiel
Polymers 2012, 4(2), 1037-1055; https://doi.org/10.3390/polym4021037 - 17 Apr 2012
Cited by 21 | Viewed by 10635
Abstract
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at [...] Read more.
Lipases were employed under solvent-free conditions to conjugate oligo-ricinoleic acid derivatives with 10-undecenoic acid, to incorporate a reactive terminal double bond into the resultant product. First, undecenoic acid was covalently attached to oligo-ricinoleic acid using immobilized Candida antarctica lipase (CAL) at a 30% yield. Thirty percent conversion also occurred for CAL-catalyzed esterification between undecenoic acid and biocatalytically-prepared polyglycerol polyricinoleate (PGPR), with attachment of undecenoic acid occurring primarily at free hydroxyls of the polyglycerol moiety. The synthesis of oligo-ricinoleyl-, undecenoyl- structured triacylglycerols comprised two steps. The first step, the 1,3-selective lipase-catalyzed interesterification of castor oil with undecenoic acid, occurred successfully. The second step, the CAL-catalyzed reaction between ricinoleyl-, undecenoyl structured TAG and ricinoleic acid, yielded approximately 10% of the desired structured triacylglycerols (TAG); however, a significant portion of the ricinoleic acid underwent self-polymerization as a side-reaction. The employment of gel permeation chromatography, normal phase HPLC, NMR, and acid value measurements was effective for characterizing the reaction pathways and products that formed. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Graphical abstract

1543 KiB  
Article
Papain Catalyzed (co)Oligomerization of α-Amino Acids
by Leendert W. Schwab, Wouter M. J. Kloosterman, Jakob Konieczny and Katja Loos
Polymers 2012, 4(1), 710-740; https://doi.org/10.3390/polym4010710 - 29 Feb 2012
Cited by 33 | Viewed by 14739
Abstract
Four hydrophobic amino acids (Leu, Tyr, Phe, Trp) were oligomerized by the protease papain in homo-oligomerization, binary co-oligomerization and ternary co-oligomerization. After 24 h, solid polydisperse reaction products of the homo-oligomerization were obtained in yields ranging from 30–80% by weight. A DPavg [...] Read more.
Four hydrophobic amino acids (Leu, Tyr, Phe, Trp) were oligomerized by the protease papain in homo-oligomerization, binary co-oligomerization and ternary co-oligomerization. After 24 h, solid polydisperse reaction products of the homo-oligomerization were obtained in yields ranging from 30–80% by weight. A DPavg was calculated based on MALDI-ToF MS results using the ion counts for the chains in the product. Based on the DPavg and the yield of the homo-oligomerization it was determined that the amino acids can be ranked according to reactivity in the order: Tyr > Leu > Phe > Trp. Thermal degradation of the homo-oligomers shows two degradation steps: at 178–239 °C and at 300–330 °C. All the products left a significant amount of char ranging from 18–57% by weight at 800 °C. Binary co-oligomers were obtained as a polydisperse precipitate with a compositional distribution of the chains. Both the compositional and chain length distribution are calculated from MALDI-ToF mass spectra. By comparing the amount of each amino acid present in the chains it was determined that the amino acids are incorporated with a preference: Leu > Tyr > Phe > Trp. Ternary co-oligomers were also obtained as a precipitate and analyzed by MALDI-ToF MS. The compositional distribution and the chain length distribution were calculated from the MALDI-ToF data. The quantity of every amino acid in the chains was determined. Also determined was the influence on the DPavg when the oligomers were compared with corresponding binary co-oligomers. From the combined results it was concluded that in the co-oligomerization of three amino acids the reactivity preference is Leu > Tyr > Phe > Trp. Thermal degradation of all the co-oligomers showed a weight loss of 2 wt% before the main oligomer degradation step at 300–325 °C. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

728 KiB  
Article
A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET) and Polylactic Acid (PLA)
by Doris Ribitsch, Enrique Herrero Acero, Katrin Greimel, Anita Dellacher, Sabine Zitzenbacher, Annemarie Marold, Rosario Diaz Rodriguez, Georg Steinkellner, Karl Gruber, Helmut Schwab and Georg M. Guebitz
Polymers 2012, 4(1), 617-629; https://doi.org/10.3390/polym4010617 - 21 Feb 2012
Cited by 130 | Viewed by 16781
Abstract
A new esterase from Thermobifida halotolerans (Thh_Est) was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA) and polyethylene terephthalate (PET). Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology [...] Read more.
A new esterase from Thermobifida halotolerans (Thh_Est) was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA) and polyethylene terephthalate (PET). Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethyl)terephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl) terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme) while no higher oligomers like bis-(2-hydroxyethyl) terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

447 KiB  
Article
Enzymatic Synthesis and Crosslinking of Novel High Molecular Weight Polyepoxyricinoleate
by Ayaki Kazariya and Shuichi Matsumura
Polymers 2012, 4(1), 486-500; https://doi.org/10.3390/polym4010486 - 10 Feb 2012
Cited by 10 | Viewed by 8322
Abstract
Methyl epoxyricinoleate was prepared in high yield by the lipase-catalyzed epoxidation of methyl ricinoleate with H2O2. A high molecular weight polyepoxyricinoleate (PER) with a maximum weight average molecular weight (Mw) of 272,000 was enzymatically prepared by [...] Read more.
Methyl epoxyricinoleate was prepared in high yield by the lipase-catalyzed epoxidation of methyl ricinoleate with H2O2. A high molecular weight polyepoxyricinoleate (PER) with a maximum weight average molecular weight (Mw) of 272,000 was enzymatically prepared by the polycondensation of methyl epoxyricinoleate using immobilized lipase from Burkholderia cepacia (lipase PS-IM) in bulk at 80 °C for 5 d. PER showed good low temperature fluidability. PER was readily cured by maleic anhydride (MA) at 80 °C to produce a chloroform-insoluble PER-MA film. Both the glass transition temperature and Young’s modulus increased with increasing MA content and PER Mw. In contrast, the elongation at break decreased with increasing MA content and PER Mw. Methyl epoxyricinoleate, PER and PER-MA showed biodegradability by activated sludge, and that of the PER-MA film decreased with increasing MA content. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

Review

Jump to: Research

1541 KiB  
Review
Enzyme Initiated Radical Polymerizations
by Frank Hollmann and Isabel W. C. E. Arends
Polymers 2012, 4(1), 759-793; https://doi.org/10.3390/polym4010759 - 06 Mar 2012
Cited by 179 | Viewed by 20054
Abstract
Biocatalysis is propagating into practically every area of organic chemistry, amongst them radical polymerizations. A review of the recent developments of this dynamic and quickly evolving area of research is presented together with a critical evaluation of its potential to yield novel polymers [...] Read more.
Biocatalysis is propagating into practically every area of organic chemistry, amongst them radical polymerizations. A review of the recent developments of this dynamic and quickly evolving area of research is presented together with a critical evaluation of its potential to yield novel polymers and/or environmentally more benign synthetic procedures. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

531 KiB  
Review
Preparation and Applications of Amylose Supramolecules by Means of Phosphorylase-Catalyzed Enzymatic Polymerization
by Jun-ichi Kadokawa
Polymers 2012, 4(1), 116-133; https://doi.org/10.3390/polym4010116 - 09 Jan 2012
Cited by 54 | Viewed by 11583
Abstract
This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-d-glucose 1-phosphate (G-1-P) as a monomer was carried out in the presence of poly(tetrahydrofuran) (PTHF) of a hydrophobic polyether as a guest polymer, [...] Read more.
This paper reviews preparation and applications of amylose supramolecules by means of phosphorylase-catalyzed enzymatic polymerization. When the enzymatic polymerization of α-d-glucose 1-phosphate (G-1-P) as a monomer was carried out in the presence of poly(tetrahydrofuran) (PTHF) of a hydrophobic polyether as a guest polymer, the supramolecule, i.e., an amylose-PTHF inclusion complex, was formed in the process of polymerization. Because the representation of propagation in the polymerization is similar to the way that vines of plants grow twining around rods, this polymerization method for the preparation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. Various hydrophobic polyethers, polyesters, poly(ester-ether), and polycarbonates were also employed as the guest polymer in the vine-twining polymerization to produce the corresponding inclusion complexes. To obtain the inclusion complex from a strongly hydrophobic guest polymer, the parallel enzymatic polymerization system was developed as an advanced extension of the vine-twining polymerization. In addition, it was found that amylose selectively includes one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest PTHF. Amylose also exhibited selective inclusion behavior toward stereoisomers of poly(lactide)s. Moreover, the preparation of hydrogels through the formation of inclusion complexes of amylose in vine-twining polymerization was achieved. Full article
(This article belongs to the Special Issue Enzymes in Monomer and Polymer Synthesis)
Show Figures

Figure 1

Back to TopTop