High Performance Polymers

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (30 September 2017) | Viewed by 110635

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
Interests: high performance polymers; redox polymers; electrochromic polymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
Interests: electroactive photoluminescence aromatic polymers; organic electrochromic materials; highly transparent polymers and their hybrids for optical and electronic application
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Polymers is dedicated to high performance polymers. High performance polymers are characterized by outstanding thermal stability, chemical resistivity, and mechanical properties. Noted examples include Kapton polyimide film and Nomex and Kevlar aramid fibers, developed by Dupont in the 1960s. High performance polymers have a variety of applications in many different areas, including automotive, aerospace, defense, electronics, medical, and sport and safety equipment. In order to reflect the current state-of-the-art on the subject and to explore potential future developments, the present Special Issue welcomes submissions on all aspects of high performance polymers ranging from synthesis and characterization to structural modification, processing, and new functions and applications.

Prof. Sheng-Huei Hsiao
Prof. Guey-Sheng Liou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • High performance polymers
  • Thermally stable polymers
  • Synthesis and characterization
  • Structure-property relationships
  • Structural modification and processing
  • Aromatic polymers
  • Aramids
  • Polyimides and other heterocyclic polymers
  • New functions and applications

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

5194 KiB  
Article
High-Tg, Low-Dielectric Epoxy Thermosets Derived from Methacrylate-Containing Polyimides
by Chien-Han Chen, Kuan-Wei Lee, Ching-Hsuan Lin, Ming-Jaan Ho, Mao-Feng Hsu, Shou-Jui Hsiang, Nan-Kun Huang and Tzong-Yuan Juang
Polymers 2018, 10(1), 27; https://doi.org/10.3390/polym10010027 - 25 Dec 2017
Cited by 14 | Viewed by 7450
Abstract
Three methacrylate-containing polyimides (Px–MMA; x = 1–3) were prepared from the esterification of hydroxyl-containing polyimides (Px–OH; x = 1–3) with methacrylic anhydride. Px–MMA exhibits active ester linkages (Ph–O–C(=O)–) that can react with epoxy in the presence of 4-dimethylaminopyridine (DMAP), so Px–MMA acted as [...] Read more.
Three methacrylate-containing polyimides (Px–MMA; x = 1–3) were prepared from the esterification of hydroxyl-containing polyimides (Px–OH; x = 1–3) with methacrylic anhydride. Px–MMA exhibits active ester linkages (Ph–O–C(=O)–) that can react with epoxy in the presence of 4-dimethylaminopyridine (DMAP), so Px–MMA acted as a curing agent for a dicyclopentadiene-phenol epoxy (HP7200) to prepare epoxy thermosets (Px–MMA/HP7200; x = 1–3) thermosets. For property comparisons, P1–OH/HP7200 thermosets were also prepared. The reaction between active ester and epoxy results in an ester linkage, which is less polar than secondary alcohol resulting from the reaction between phenolic OH and epoxy, so P1–MMA/HP7200 are more hydrophobic and exhibit better dielectric properties than P1–OH/HP7200. The double bond of methacrylate can cure at higher temperatures, leading to epoxy thermosets with a high-Tg and moderate-to-low dielectric properties. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

6964 KiB  
Article
The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties
by Kai Zhang, Qiaoxi Yu, Longji Zhu, Siwei Liu, Zhenguo Chi, Xudong Chen, Yi Zhang and Jiarui Xu
Polymers 2017, 9(12), 677; https://doi.org/10.3390/polym9120677 - 05 Dec 2017
Cited by 39 | Viewed by 12846
Abstract
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via [...] Read more.
Flexible displays are a systematic revolution in the field of display, in which high-performance and high-barrier polymer substrates are considered to be one of the most important key materials. In this work, high water vapor barrier polyimides containing amide moieties were synthesized via the ternary polymerization of 4,4′-diaminobenzailide (DABA), 4,4′-diaminodipheny ether (ODA), and 3,3′,4,4′-biphenyl-tetracarboxylic acid dianhydride (BPDA) followed by thermal imidization. The relationship between the content of amide moieties and the water vapor barrier property of the prepared polyimides was studied by means of density test, water absorbing test, water contact angle test, water vapor permeation test, fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), thermogravimetry coupled with fourier transform infrared spectrometry (TG-FTIR), wide-angle X-ray diffraction analysis (WXRD), mechanical performance test, etc. The results show that the introduction of amide groups into polyimide (PI) main chains can improve the water vapor barrier properties of the polyimides effectively. The water vapor transmission rate (WVTR) of the polyimide films can be improved from 8.2365 g·(m2·24 h)−1 to 0.8670 g·(m2·24 h)−1 with the increasing content of amide moieties. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

3788 KiB  
Article
Bio-Based Poly(Ether Imide)s from Isohexide-Derived Isomeric Dianhydrides
by Xiaodong Ji, Zikun Wang, Zhen Wang and Jingling Yan
Polymers 2017, 9(11), 569; https://doi.org/10.3390/polym9110569 - 03 Nov 2017
Cited by 10 | Viewed by 6126
Abstract
In this work, four isohexide-derived isomeric dianhydrides were synthesized through a four-step procedure using isohexide and chloro-N-phenylphthalimides as the starting materials. The one-step solution polymerization of these dianhydrides with petroleum- or bio-based diamines enabled the synthesis of poly(ether imide)s (PEIs), which [...] Read more.
In this work, four isohexide-derived isomeric dianhydrides were synthesized through a four-step procedure using isohexide and chloro-N-phenylphthalimides as the starting materials. The one-step solution polymerization of these dianhydrides with petroleum- or bio-based diamines enabled the synthesis of poly(ether imide)s (PEIs), which had viscosities of 0.41 to 2.40 dL∙g−1. The isohexide-derived PEIs were characterized based upon their solubility and their thermal, mechanical, and optical properties. The results showed that most of the isohexide-derived PEIs possessed comparable glass transition temperatures (Tg), tensile strengths, and moduli to petroleum-based PEIs. However, the thermo-oxidative stability of the PEIs was found to be lower than that of the common petroleum-based PEIs. Moreover, the PEIs displayed good optical activity, which originated from their unique chiral isohexide moieties. The isomeric effects of dianhydride monomers on the properties of the resulting PEIs were comparatively studied. The results suggested that the corresponding 4,4′-linked PEIs possessed lower Tg, higher mechanical properties, and higher specific rotations compared to 3,3′-linked polymers. Meanwhile, the polyimides with isomannide residue displayed higher Tg and more specific rotations than the corresponding polymers with isosorbide residue. These results contributed to more restricted rotations of phthalimide segments in 3,3′-linked or isomannide containing polyimides. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

8840 KiB  
Article
Novel Polyamides with 5H-Dibenzo[b,f]azepin-5-yl-Substituted Triphenylamine: Synthesis and Visible-NIR Electrochromic Properties
by Qingyi Lu, Wanan Cai, Haijun Niu, Wen Wang, Xuduo Bai and Yanjun Hou
Polymers 2017, 9(10), 542; https://doi.org/10.3390/polym9100542 - 23 Oct 2017
Cited by 10 | Viewed by 4994
Abstract
In this study, a new diamine monomer, namely 4,4′-diamino-4″-(5H-dibenzo[b,f]azepin-5-yl)triphenylamine, was prepared and polymerized with four kinds of dicarboxylic acids via direct polycondensation reaction resulting in a novel series of soluble and electroactive polyamides (PAs). The tough thin films of [...] Read more.
In this study, a new diamine monomer, namely 4,4′-diamino-4″-(5H-dibenzo[b,f]azepin-5-yl)triphenylamine, was prepared and polymerized with four kinds of dicarboxylic acids via direct polycondensation reaction resulting in a novel series of soluble and electroactive polyamides (PAs). The tough thin films of all PAs could be solution-cast onto an indium-tin oxide (ITO)-coated glass substrate owing to the good solubility in polar organic solvents. Two pairs of obvious redox peaks for these films were observed in cyclic voltammetry (CV) with low onset potentials (Eonset) of 0.37–0.42 V accompanying with remarkable reversible color changes between light yellow and dark blue. A new absorption peak at around 915 nm emerged in near infrared (NIR) spectra; the increasing potential indicated that PAs could be used as a NIR electrochromic material. Moreover, the PAs showed high coloration efficiency (CE; η) in the range of 190–259 cm2 C−1. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

7329 KiB  
Article
Synthesis and Electrochromism of Highly Organosoluble Polyamides and Polyimides with Bulky Trityl-Substituted Triphenylamine Units
by Sheng-Huei Hsiao, Wei-Kai Liao and Guey-Sheng Liou
Polymers 2017, 9(10), 511; https://doi.org/10.3390/polym9100511 - 14 Oct 2017
Cited by 32 | Viewed by 7343
Abstract
Two series of polyamides and polyimides containing bulky trityl-substituted triphenylamine units were synthesized from condensation reactions of 4,4′-diamino-4′′-trityltriphenylamine with various dicarboxylic acids and tetracarboxylic dianhydrides, respectively. The polymers showed good solubility and film-forming ability. Flexible or robust films could be readily obtained via [...] Read more.
Two series of polyamides and polyimides containing bulky trityl-substituted triphenylamine units were synthesized from condensation reactions of 4,4′-diamino-4′′-trityltriphenylamine with various dicarboxylic acids and tetracarboxylic dianhydrides, respectively. The polymers showed good solubility and film-forming ability. Flexible or robust films could be readily obtained via solution-casting. The use of aliphatic diacid or dianhydride reduces interchain charge transfer complexing and leads to colorless polyamide and polyimide films. These polymers showed glass-transition temperatures in the range of 206–336 °C. Cyclic voltammograms of the polyamide and polyimide films displayed reversible electrochemical oxidation processes in the range of 0–1.0 or 0–1.3 V. Upon oxidation, the color of polymer films changes from colorless to blue-green or blue. As compared to the polyimide counterparts, the polyamides showed lower oxidation potentials and thus a higher electrochromic stability and coloration efficiency. Simple electrochromic devices were also fabricated as a preliminary investigation for electrochromic applications of the prepared polymers. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

13360 KiB  
Article
Facile Synthesis of Electroactive and Electrochromic Triptycene Poly(ether-imide)s Containing Triarylamine Units via Oxidative Electro-Coupling
by Sheng-Huei Hsiao and Yu-Chuan Liao
Polymers 2017, 9(10), 497; https://doi.org/10.3390/polym9100497 - 10 Oct 2017
Cited by 11 | Viewed by 6695
Abstract
Two bisimide compounds, TPA–TPDI and NPC–TPDI, consisting of a triptycene core and two triphenylamine (TPA) or N-phenylcarbazole (NPC) end groups were successfully synthesized by the condensation reactions from 1,4-bis(3,4-dicarboxyphenoxy)triptycene dianhydride with 4-aminotriphenylamine and N-(4-aminophenyl)carbazole, respectively. These two monomers could polymerize electrochemically via the [...] Read more.
Two bisimide compounds, TPA–TPDI and NPC–TPDI, consisting of a triptycene core and two triphenylamine (TPA) or N-phenylcarbazole (NPC) end groups were successfully synthesized by the condensation reactions from 1,4-bis(3,4-dicarboxyphenoxy)triptycene dianhydride with 4-aminotriphenylamine and N-(4-aminophenyl)carbazole, respectively. These two monomers could polymerize electrochemically via the oxidative coupling reactions of triarylamine units. The electrochemical and spectroelectrochemical properties of the electro-generated triptycene poly(ether-imide)s (TPA–TPPI and NPC–TPPI) were studied. Both polymers have two colored oxidation states, and TPA–TPPI showed better electrochromic performance than NPC–TPPI. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

1924 KiB  
Article
Synthesis and Characterization of Organosoluble, Thermal Stable and Hydrophobic Polyimides Derived from 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine
by Xiaohua Huang, Beicai Chen, Mei Mei, Hua Li, Chanjuan Liu and Chun Wei
Polymers 2017, 9(10), 484; https://doi.org/10.3390/polym9100484 - 03 Oct 2017
Cited by 18 | Viewed by 5822
Abstract
A novel aromatic diamine monomer, 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine (PPAPP) containing pyridine rings, pyrrolidine groups, and ether linkages, was successfully synthesized using 4-hydroxyacetophenone and 1-chloro-4-nitrobenzene as starting materials by three-step reactions, and then used to synthesize a series of polyimides by polycondensation with various aromatic dianhydrides [...] Read more.
A novel aromatic diamine monomer, 4-(4-(1-pyrrolidinyl)phenyl)-2,6-bis(4-(4-aminophenoxy)phenyl)pyridine (PPAPP) containing pyridine rings, pyrrolidine groups, and ether linkages, was successfully synthesized using 4-hydroxyacetophenone and 1-chloro-4-nitrobenzene as starting materials by three-step reactions, and then used to synthesize a series of polyimides by polycondensation with various aromatic dianhydrides via a two-step method. The structure of PPAPP was characterized by NMR, FT-IR, and mass spectrometry analysis methods. These polymers showed good solubility in common organic solvents (e.g., NMP, DMF, DMSO, and DMAc) at room temperature or on heating. Moreover, they presented a high thermal stability with the glass transition temperature (Tgs) exceeding 316 °C, as well as the temperature of 10% weight loss ranged from 552–580 °C with more than 67% residue at 800 °C under nitrogen. Furthermore, they also exhibited excellent hydrophobicity with a contact angle in the range of 85.6°–97.7°, and the results of Wide-Angle X-ray Diffraction (WAXD) indicated that all of the polymers revealed an amorphous structure. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

7472 KiB  
Article
Melt-Processable Semicrystalline Polyimides Based on 1,4-Bis(3,4-dicarboxyphenoxy)benzene Dianhydride (HQDPA): Synthesis, Crystallization, and Melting Behavior
by Hongfei Zhang, Wei Wang, Guofei Chen, Anjiang Zhang and Xingzhong Fang
Polymers 2017, 9(9), 420; https://doi.org/10.3390/polym9090420 - 06 Sep 2017
Cited by 11 | Viewed by 8583
Abstract
It is a great challenge to develop semicrystalline polyimides exhibited significant recrystallization ability and fast crystallization kinetics from the melt. A series of semicrystalline polyimides based on 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and different diamines, including 1,3-bis(4-aminophenoxy)benzene (TPER), 1,4-bis(4-aminophenoxy)benzene (TPEQ), 4,4′-oxydianiline (4,4′-ODA) and 4,4′-bis(4-aminophenoxy)biphenyl (BAPB), [...] Read more.
It is a great challenge to develop semicrystalline polyimides exhibited significant recrystallization ability and fast crystallization kinetics from the melt. A series of semicrystalline polyimides based on 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) and different diamines, including 1,3-bis(4-aminophenoxy)benzene (TPER), 1,4-bis(4-aminophenoxy)benzene (TPEQ), 4,4′-oxydianiline (4,4′-ODA) and 4,4′-bis(4-aminophenoxy)biphenyl (BAPB), end capped with phthalic anhydride were synthesized. Crystallization and melting behaviors were investigated by differential scanning calorimetry (DSC). The polyimide derived from HQDPA/TPER (PI-1) exhibited a glass transition temperature (Tg) at 190 °C and double melting temperatures (Tms) at 331 °C and 350 °C, and the polyimide derived from HQDPA/TPEQ (PI-2) displayed a Tg at 214 °C and a Tm at 388 °C. PI-1 and PI-2 showed significant recrystallization ability from melt and high crystallization rate by isothermal crystallization kinetics study, while polyimides based on 4,4′-ODA and BAPB lost crystallizability once taken to the melt. These polyimides also exhibited excellent thermo-oxidative stability with 5% weight loss temperature higher than 500 °C and good mechanical properties with tensile moduli of 2.0–3.3 GPa, tensile strengths of 85–105 MPa and elongations at break of 5–18%. PI-1 also possessed outstanding melt flowability with less than 300 Pa·s around 370 °C by rheological measurements. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

5659 KiB  
Article
Enhancement of Thermal Diffusivity in Phase-Separated Bismaleimide/Poly(ether imide) Composite Films Containing Needle-Shaped ZnO Particles
by Shoya Uchida, Ryohei Ishige and Shinji Ando
Polymers 2017, 9(7), 263; https://doi.org/10.3390/polym9070263 - 02 Jul 2017
Cited by 12 | Viewed by 5866
Abstract
Phase-separated polymer blend composite films exhibiting high thermal diffusivity were prepared by blending a soluble polyimide (BPADA-MPD) and a bismaleimide (BMI) with needle-shaped zinc oxide (n-ZnO) particles followed by high-temperature curing at 250 °C. Images recorded with a field-emission scanning electron microscope (FE-SEM) [...] Read more.
Phase-separated polymer blend composite films exhibiting high thermal diffusivity were prepared by blending a soluble polyimide (BPADA-MPD) and a bismaleimide (BMI) with needle-shaped zinc oxide (n-ZnO) particles followed by high-temperature curing at 250 °C. Images recorded with a field-emission scanning electron microscope (FE-SEM) equipped with wavelength-dispersive spectroscopy (WDS) demonstrated that the spontaneously separated phases in the composite films were aligned along the out-of-plane direction, and the n-ZnO particles were selectively incorporated into the BMI phase. The out-of-plane thermal diffusivity of the composite films was significantly higher than those of the previously reported composite films at lower filler contents. Based on wide-angle X-ray diffraction (WAXD) patterns and image analysis, the enhanced thermal diffusivity was attributed to the confinement of the anisotropically shaped particles and their nearly isotropic orientation in one phase of the composite films. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

Review

Jump to: Research

7351 KiB  
Review
Development of Solution-Processable, Optically Transparent Polyimides with Ultra-Low Linear Coefficients of Thermal Expansion
by Masatoshi Hasegawa
Polymers 2017, 9(10), 520; https://doi.org/10.3390/polym9100520 - 18 Oct 2017
Cited by 126 | Viewed by 17120
Abstract
This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs) with ultra-low linear coefficients of thermal expansion (CTE) are proposed in this paper. [...] Read more.
This paper reviews the development of new high-temperature polymeric materials applicable to plastic substrates in image display devices with a focus on our previous results. Novel solution-processable colorless polyimides (PIs) with ultra-low linear coefficients of thermal expansion (CTE) are proposed in this paper. First, the principles of the coloration of PI films are briefly discussed, including the influence of the processing conditions on the film coloration, as well as the chemical and physical factors dominating the low CTE characteristics of the resultant PI films to clarify the challenges in simultaneously achieving excellent optical transparency, a very high Tg, a very low CTE, and excellent film toughness. A possible approach of achieving these target properties is to use semi-cycloaliphatic PI systems consisting of linear chain structures. However, semi-cycloaliphatic PIs obtained using cycloaliphatic diamines suffer various problems during precursor polymerization, cyclodehydration (imidization), and film preparation. In particular, when using trans-1,4-cyclohexanediamine (t-CHDA) as the cycloaliphatic diamine, a serious problem emerges: salt formation in the initial stages of the precursor polymerization, which terminates the polymerization in some cases or significantly extends the reaction period. The system derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) and t-CHDA can be polymerized by a controlled heating method and leads to a PI film with relatively good properties, i.e., excellent light transmittance at 400 nm (T400 = ~80%), a high Tg (>300 °C), and a very low CTE (10 ppm·K−1). However, this PI film is somewhat brittle (the maximum elongation at break, εb max is about 10%). On the other hand, the combination of cycloaliphatic tetracarboxylic dianhydrides and aromatic diamines does not result in salt formation. The steric structures of cycloaliphatic tetracarboxylic dianhydrides significantly influence the polymerizability with aromatic diamines and the CTE values of the resultant PI films. For three isomers of hydrogenated pyromellitic dianhydride, the steric structure effect on the polymerizability and the properties of the PI films is discussed. 1,2,3,4-Cyclobutanetetracarboxylic dianhydride (CBDA) is a very unusual cycloaliphatic tetracarboxylic dianhydride that is suitable for reducing the CTE. For example, the PI system derived from CBDA and 2,2′-bis(trifluoromethyl)benzidine (TFMB) yields a colorless PI film with a relatively low CTE (21 ppm·K−1). However, this PI is insoluble in common organic solvents, which means that it is neither solution-processable nor compatible with the chemical imidization process; furthermore, the film is somewhat brittle (εb < 10%). In addition, the effect of the film preparation route on the film properties is shown to be significant. Films prepared via chemical imidization always have higher optical transparency and lower CTE values than those prepared via the conventional two-step process (i.e., precursor casting and successive thermal imidization). These results suggest that compatibility with the chemical imidization process is the key for achieving our goal. To dramatically improve the solubility in the CBDA-based PI systems, a novel amide-containing aromatic diamine (AB-TFMB), which possesses the structural features of TFMB and 4,4′-diaminobenzanilide (DABA), is proposed. The CBDA(70);6FDA(30)/AB-TFMB copolymer has an ultra-low CTE (7.3 ppm·K−1), excellent optical transparency (T400 = 80.6%, yellowness index (YI) = 2.5, and haze = 1.5%), a very high Tg (329 °C), sufficient ductility (εb max > 30%), and good solution-processability. Therefore, this copolymer is a promising candidate for use as a novel coating-type plastic substrate material. This paper also discusses how the target properties can be achieved without the help of cycloaliphatic monomers. Thus, elaborate molecular design allows the preparation of highly transparent and low-CTE aromatic poly(amide imide) and poly(ester imide) systems. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Figure 1

7042 KiB  
Review
Synthesis, Morphologies and Building Applications of Nanostructured Polymers
by Yong Lu, Kwok Wei Shah and Jianwei Xu
Polymers 2017, 9(10), 506; https://doi.org/10.3390/polym9100506 - 13 Oct 2017
Cited by 30 | Viewed by 8226
Abstract
Nanostructured polymers (NSPs) are polymeric materials in the size of nanoscale, normally consisting of nanoparticles, nanofibers, nanowires, nanospheres and other morphologies. Polymer nanoparticles (PNPs) can be fabricated either by physical methods (i.e., solvent evaporation, nanoprecipitation, salting out) or by direct nanosynthesis, using micro- [...] Read more.
Nanostructured polymers (NSPs) are polymeric materials in the size of nanoscale, normally consisting of nanoparticles, nanofibers, nanowires, nanospheres and other morphologies. Polymer nanoparticles (PNPs) can be fabricated either by physical methods (i.e., solvent evaporation, nanoprecipitation, salting out) or by direct nanosynthesis, using micro- or nanoemulsions with nanoreactor compartments to perform polymerization. Polymer nanofibers (PNFs) can be produced via various techniques and the most commonly used approach is electrospinning, whereby a charged solution of a polymer when exposed to an opposite high electric field is pulled into long thin nanofibers. NSPs in general exhibit enhanced properties such as excellent structural and mechanical properties, making them promising candidates for some particular building applications. A variety of PNFs have been developed and used for noise and air pollution filtration. Moreover, PNFs can also be fabricated with phase change materials which are usually employed for thermal energy storage in construction industry. In this review, we will summarize the morphologies and nanosynthesis methods of NSPs, in particular, PNPs and PNFs. In addition, representative NSPs mainly used in construction are introduced for building applications. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

8414 KiB  
Review
Functional Aromatic Polyamides
by José A. Reglero Ruiz, Miriam Trigo-López, Félix C. García and José M. García
Polymers 2017, 9(9), 414; https://doi.org/10.3390/polym9090414 - 05 Sep 2017
Cited by 81 | Viewed by 17503
Abstract
We describe herein the state of the art following the last 8 years of research into aromatic polyamides, wholly aromatic polyamides or aramids. These polymers belong to the family of high performance materials because of their exceptional thermal and mechanical behavior. Commercially, they [...] Read more.
We describe herein the state of the art following the last 8 years of research into aromatic polyamides, wholly aromatic polyamides or aramids. These polymers belong to the family of high performance materials because of their exceptional thermal and mechanical behavior. Commercially, they have been transformed into fibers mainly for production of advanced composites, paper, and cut and fire protective garments. Huge research efforts have been carried out to take advantage of the mentioned characteristics in advanced fields related to transport applications, optically active materials, electroactive materials, smart materials, or materials with even better mechanical and thermal behavior. Full article
(This article belongs to the Special Issue High Performance Polymers)
Show Figures

Graphical abstract

Back to TopTop