sustainability-logo

Journal Browser

Journal Browser

Advancements in Sustainable Composite Materials: From Innovative Technologies to Eco-Friendly Design

A special issue of Sustainability (ISSN 2071-1050). This special issue belongs to the section "Sustainable Materials".

Deadline for manuscript submissions: 14 November 2024 | Viewed by 9635

Special Issue Editors


E-Mail Website
Guest Editor
1. Laboratory of Advanced Materials and Devices, School of Physics, Aristotle University of Thessaloniki, GR 54636 Thessaloniki, Greece
2. Department of Chemistry, University of Ioannina, P.O. Box 1186, GR-45110 Ioannina, Greece
Interests: sustainable material science; sustainable composites; thermal properties; crystallization; degradation; kinetics; structural characterization
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

This Special Issue, titled "Advancements in Sustainable Composite Materials: From Innovative Technologies to Eco-Friendly Design", aims to address the growing interest in innovative and high-performance materials, with a focus on polymer composite materials. Composite materials have gained attention due to their excellent strength-to-weight ratio and wide-ranging applications across industries such as aerospace, automotive, electronics, construction, packaging, and medical devices. This Special Issue emphasizes both the exploration of new techniques for composite material production and the optimization of existing processes to obtain high-performance, lightweight materials.

We invite contributions to this Special Issue which cover various aspects of polymer composite materials, innovative technologies, and manufacturing processes. Authors are encouraged to present research on established manufacturing methods as well as explore new and innovative approaches. Additionally, this Special Issue welcomes the submission of research on coating technologies, fiber treatments, and materials that play a role in creating cost-effective and sustainable composite materials. This encompasses the exploration of surface coatings and treatments that enhance the performance or sustainability of composites, as well as the investigation of new materials that exhibit eco-friendly characteristics and can be incorporated into composite structures. The mechanical, thermal, microstructural, and morphological properties of these materials will be explored too.

Submissions related to topics such as bioplastics and microplastics, their synthesis and characterization, and their applications are also welcomed. By focusing on sustainable material science and material design, this Special Issue seeks to advance research and innovation in the development of composite materials that not only possess exceptional performance characteristics, but also adhere to principles of sustainability.

The aim of this Issue is to contribute to the creation of materials that are environmentally friendly, socially responsible, and economically viable, promoting a more sustainable future across industries.

We look forward to receiving your contributions.

Dr. Evangelia Tarani
Prof. Dr. George Z. Papageorgiou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainable material science
  • material design
  • environmental friendliness
  • sustainable composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2977 KiB  
Article
Experimental and Numerical Studies on the Fire Performance of Thin Sustainable Wood-Based Laminated Veneers
by Avishek Chanda, Oisik Das and Debes Bhattacharyya
Sustainability 2024, 16(16), 7188; https://doi.org/10.3390/su16167188 - 21 Aug 2024
Viewed by 755
Abstract
Wood and wood-based products are abundantly used, especially in structural applications, due to the impetus for sustainable development. The present work helps highlight the fire performance of plywood, one of the most used wood-based laminated structural components, under three different heat fluxes of [...] Read more.
Wood and wood-based products are abundantly used, especially in structural applications, due to the impetus for sustainable development. The present work helps highlight the fire performance of plywood, one of the most used wood-based laminated structural components, under three different heat fluxes of 35 kW/m2, 50 kW/m2, and 65 kW/m2. The effects on the various fire reaction properties, namely, time to ignition, heat release rate, peak heat release rate, time to peak heat release rate, time to flameout, total burn time, and mass loss, were observed and reported. The times to ignition (42.2% and 35.4%), peak heat release rate (27.7% and 18.9%), flameout (22.2% and 28.6%), burn time (10.6% and 16.1%), and residual mass (25% and 53.3%) were reduced with the increase in heat flux from 35 kW/m2 to 65 kW/m2, respectively, whereas the peak heat release (21.7% and 2.4%) and ignition temperature (6.5% and 6.6%) were observed to increase. The vertical burning test (UL-94) illustrated the plywood samples to have a V-1 rating, with self-extinguishing capabilities. A numerical predictive model has also been developed based on the Fire Dynamics Simulator to predict the time to ignition, time to flameout, and heat release rate trend along with the peak heat release rate—it is shown to have good agreement with the experimental results, with an average correlation coefficient of 0.87. Full article
Show Figures

Figure 1

21 pages, 6345 KiB  
Article
The Development of Sustainable Biocomposite Materials Based on Poly(lactic acid) and Silverskin, a Coffee Industry By-Product, for Food Packaging Applications
by Argyri-Ioanna Petaloti and Dimitris S. Achilias
Sustainability 2024, 16(12), 5075; https://doi.org/10.3390/su16125075 - 14 Jun 2024
Cited by 1 | Viewed by 1018
Abstract
Aligned with the principles of the circular economy and aiming at the production of environmentally friendly materials for food packaging applications, sustainable biocomposite films based on poly(lactic acid) (PLA) and coffee silverskin (SS), were developed. Coffee silverskin is a by-product of the coffee [...] Read more.
Aligned with the principles of the circular economy and aiming at the production of environmentally friendly materials for food packaging applications, sustainable biocomposite films based on poly(lactic acid) (PLA) and coffee silverskin (SS), were developed. Coffee silverskin is a by-product of the coffee roasting process, while PLA is one of the most promising bio-based polymers. Several composites were prepared with different loadings of SS, ranging from 2.5 to 20 wt.%, via the solution casting method. The findings indicated that the effective dispersion of coffee silverskin in PLA was successfully accomplished and that a bleaching treatment of the filler leads to better interfacial interaction. The addition of silverskin, in any proportion, did not affect the melting point and glass transition temperature of the polymer matrix or the oxygen permeability of the film. Moreover, the degree of swelling was increased, more so for the films with modified particles, whereas the water vapor transmission rate and permeability increased only after the addition of high amounts (>10%) of surface-treated silverskin. A gradual decrease in color lightness was measured with the increasing concentration of silverskin, and the color was more intense in the untreated samples. The antioxidant activity of the films increased gradually with increasing additions of coffee silverskin due to the presence of compounds such as polyphenols. The chemical treatment of coffee silverskin resulted in the films having improved mechanical properties, as the chemical treatment facilitated stronger bonding between the base material and the additive. Therefore, sustainable composites with enhanced antioxidant activity can be produced by the incorporation of a food industry by-product into a PLA matrix. Full article
Show Figures

Figure 1

12 pages, 2593 KiB  
Article
Biodegradability and Water Absorption of Macadamia Nutshell Powder-Reinforced Poly(lactic Acid) Biocomposites
by Chensong Dong, Ian J. Davies and Celso Carlino Maria Fornari Junior
Sustainability 2024, 16(8), 3139; https://doi.org/10.3390/su16083139 - 9 Apr 2024
Viewed by 1460
Abstract
This study investigates the biodegradability and water absorption properties of Macadamia nutshell powder and poly(lactic acid) (PLA) biocomposites using a Design of Experiments (DOE) approach. The influences of processing methods, the Macadamia nutshell powder’s weight content, and the powder’s condition are studied. A [...] Read more.
This study investigates the biodegradability and water absorption properties of Macadamia nutshell powder and poly(lactic acid) (PLA) biocomposites using a Design of Experiments (DOE) approach. The influences of processing methods, the Macadamia nutshell powder’s weight content, and the powder’s condition are studied. A biodegradability test is performed in accordance with the American Society for Testing and Materials (ASTM) D5338-11 by burying the test specimens in wet garden soil at a controlled temperature of 50 °C and 100% humidity. The specimens obtained by counter-rotating processing exhibit varying weight loss patterns with an increasing powder weight content, while the specimens obtained by co-rotating processing demonstrate consistent behaviour. This study highlights the complex nature of PLA biodegradation, which is affected by diverse factors such as test conditions and environments, thereby contributing to a deeper understanding of the sustainability implications. A water absorption test is carried out in accordance with ASTM D570-98. It is shown that the water absorption characteristics are predominantly determined by the hydrophilic nature of Macadamia nutshells, with an increased powder weight content leading to higher absorption. Pure PLA, due to its hydrophobic nature, exhibits minimal water absorption. By unravelling the complexities of PLA biodegradation and water absorption in Macadamia nutshell and PLA biocomposites, this study not only advances the understanding of materials’ behaviour but also underscores the potential sustainability implications of utilizing natural resources in composite materials. This research contributes valuable insights to the broader discourse on environmentally friendly materials and their role in promoting sustainable practices. Full article
Show Figures

Figure 1

26 pages, 8154 KiB  
Article
Performance Study of Sustainable Concrete Containing Recycled Aggregates from Non-Selected Construction and Demolition Waste
by Davood Akbarimehr, Abolfazl Eslami, Asgar Nasiri, Mohammad Rahai and Moses Karakouzian
Sustainability 2024, 16(7), 2601; https://doi.org/10.3390/su16072601 - 22 Mar 2024
Cited by 2 | Viewed by 1515
Abstract
In the present study, we investigated the mechanical performance of concrete composed of non-selected construction and demolition waste (C&DW) sourced from both old and new sections of an inactive waste landfill site in Karaj, Iran. Initially, we determined the composition of the coarse [...] Read more.
In the present study, we investigated the mechanical performance of concrete composed of non-selected construction and demolition waste (C&DW) sourced from both old and new sections of an inactive waste landfill site in Karaj, Iran. Initially, we determined the composition of the coarse and fine C&DW used in concrete production. Subsequently, we meticulously examined the physical and chemical properties of both the C&DW and virgin materials to enable thorough comparisons of the results. We then conducted experimental analyses on 33 concrete mixtures containing recycled C&DW, utilizing various tests, including a compressive strength test (CST) for cylindrical and cubic samples, modulus of elasticity (MOE), wide wheel abrasion test (Capon test), British pendulum number (BPN), and ultrasonic pulse velocity (UPV) test. We considered both non-separated fine and coarse C&DW at different replacement ratios in the recycled concrete (RC). Our findings indicate that using non-separated coarse and fine C&DW in concrete yielded satisfactory results, leading to significant savings in virgin materials required for concrete preparation and promoting sustainable development. Furthermore, non-selected C&DW proved to be a viable sustainable material for similar concrete applications. The results revealed a decrease in brick material consumption in various constructions over the past 20 years in Karaj, contributing to the enhanced strength of C&DW concrete. However, the presence of clay minerals in aged landfill sites can adversely affect concrete performance as a potential destructive factor. Despite the possible negative impact of incorporating fine recycled C&DW materials on concrete mechanical performance, the Capon test results demonstrated that the presence of coarse C&DW can enhance concrete’s wear resistance. Full article
Show Figures

Figure 1

21 pages, 18655 KiB  
Article
Sustainability in the Manufacturing of Eco-Friendly Aluminum Matrix Composite Materials
by Anna Wąsik, Beata Leszczyńska-Madej and Marcin Madej
Sustainability 2024, 16(2), 903; https://doi.org/10.3390/su16020903 - 21 Jan 2024
Viewed by 1486
Abstract
The purpose of this work was to consolidate the eco-friendly Al–SiC composites prepared with various weight fractions of ceramic particles (0; 2.5; 5; 10; 15 wt.% SiC) in the energy-saving sintering process under vacuum and in a nitrogen atmosphere at 600 °C. The [...] Read more.
The purpose of this work was to consolidate the eco-friendly Al–SiC composites prepared with various weight fractions of ceramic particles (0; 2.5; 5; 10; 15 wt.% SiC) in the energy-saving sintering process under vacuum and in a nitrogen atmosphere at 600 °C. The density of the manufactured composites was determined using Archimedes’ method. The mechanical properties and strength characteristics of the metal–ceramic interface were measured using three-point flexural and uniaxial compression tests, as well as the Brinell hardness measurement. The tribological properties were evaluated by determining the coefficients of friction and weight losses of the tested materials and identifying the tribological wear mechanisms. Advanced microstructural observation methods, such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were used to analyze the microstructure of the composites in detail, including the identification of the phase composition using X-ray analysis methods. Low-cost composites with a porosity not exceeding 7% were successfully produced via energy-saving production routes. Simultaneously, owing to the formation of aluminum nitrides during sintering in a nitrogen atmosphere, these composites exhibited mechanical and tribological properties superior to those of materials sintered under vacuum. Full article
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 4635 KiB  
Review
Recent Trends in the Synthesis of Monomers for Furanoate Polyesters and Their Nanocomposites’ Fabrication as a Sustainable Packaging Material
by Johan Stanley, Lidija Fras Zemljič, Dimitra A. Lambropoulou and Dimitrios N. Bikiaris
Sustainability 2024, 16(19), 8632; https://doi.org/10.3390/su16198632 - 5 Oct 2024
Viewed by 1090
Abstract
Furanoate polyesters are an extremely promising new class of materials for packaging applications, particularly furanoate-based nanocomposites, which have gained a high interest level in research and development in both academia and industries. The monomers utilised for the synthesis of furanoate-based polyesters were derived [...] Read more.
Furanoate polyesters are an extremely promising new class of materials for packaging applications, particularly furanoate-based nanocomposites, which have gained a high interest level in research and development in both academia and industries. The monomers utilised for the synthesis of furanoate-based polyesters were derived from lignocellulosic biomass, which is essential for both eco-friendliness and sustainability. Also, these polyesters have a lower carbon footprint compared to fossil-based plastics, contributing to greenhouse gas reduction. The furanoate-based nanocomposites exhibit enhanced performance characteristics, such as high thermal stability, excellent mechanical strength, superior barrier resistance, and good bacteriostatic rate, making them suitable for a wide range of industrial applications, especially for food-packaging applications. This paper reviews the recent trends in the synthesis routes of monomers, such as the various catalytic activities involved in the oxidation of 5(hydroxymethyl)furfural (HMF) into 2,5-furandicarboxylic acid (FDCA) and its ester, dimethyl furan-2,5-dicarboxylate (DMFD). In addition, this review explores the fabrication of different furanoate-based nanocomposites prepared by in situ polymerization, by melt mixing or solvent evaporation methods, and by using different types of nanoparticles to enhance the overall material properties of the resulting nanocomposites. Emphasis was given to presenting the effect of these nanoparticles on the furanoate polyester’s properties. Full article
Show Figures

Figure 1

28 pages, 7265 KiB  
Review
Effect of Treated/Untreated Recycled Aggregate Concrete: Structural Behavior of RC Beams
by Ayman Abdo, Ayman El-Zohairy, Yasser Alashker, Mohamed Abd El-Aziz Badran and Sayed Ahmed
Sustainability 2024, 16(10), 4039; https://doi.org/10.3390/su16104039 - 11 May 2024
Viewed by 1405
Abstract
Using recycled concrete aggregates from construction and demolition wastes on structural concrete is a sustainable solution to reduce the consumption of natural resources and the detrimental effects of concrete production on the environment. This paper has collected much data from the literature to [...] Read more.
Using recycled concrete aggregates from construction and demolition wastes on structural concrete is a sustainable solution to reduce the consumption of natural resources and the detrimental effects of concrete production on the environment. This paper has collected much data from the literature to study fresh, mechanical properties and durability of concrete made of treated/untreated recycled aggregate (RA). Furthermore, the flexural and shear behavior of recycled aggregate concrete (RAC) beams was studied. This study discussed the distinctions and similarities between reinforced RAC beams and reinforced natural aggregate concrete (NAC) beams. The results of this review’s analysis clearly show that reinforced RAC beams with different RAC ratios perform structurally on par with or slightly worse than reinforced NAC beams, demonstrating the viability of RAC for structural applications. Emphasis is placed on carefully choosing and adjusting material models for recycled aggregate concrete. Ultimately, guidelines for future inquiries in this field are delineated and deliberated upon. The review will be advantageous for academics and professionals who aim to acquire a comprehensive comprehension of the behavior of RAC beams. It addresses several practical concerns connected to the numerical modeling of these components, which have not been adequately covered in existing literature. Full article
Show Figures

Figure 1

Back to TopTop