Restoration of Wetlands for Climate Change Mitigation

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Biodiversity and Functionality of Aquatic Ecosystems".

Deadline for manuscript submissions: closed (15 January 2024) | Viewed by 3941

Special Issue Editors


E-Mail Website
Guest Editor
The Nature Conservancy (TNC), Baxter, MN, USA
Interests: freshwater; biodiversity; conservation; hydrology

E-Mail Website
Guest Editor
1. Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, MN, USA
2. The Nature Conservancy, Minneapolis, MN, USA
Interests: restoration; hydrology; wetlands; water quality; climate change

E-Mail Website
Guest Editor
Marcelle Experimental Forest, The United States Forest Service (USFS), Grand Rapids, MN, USA
Interests: peatlands; climate change; soil science; carbon balance; hydrology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Wetlands play key roles in global hydrologic, biogeochemical and climatic cycles. While wetland restoration has been extensively implemented and researched, wetland restoration for climate change mitigatoin is a relatively new endeavor. There has been much academic research on the impacts of climate change on wetlands but little practical research to determine their benefits for climate change mitigation and to identify potenital issues, especially in the north-central United States. Some of the roles of wetlands in mitigating climate change include: 

  • Regulating surface flow to store flood waters and reduce downstream impacts;
  • Moderating the loss of carbon dioxide in drained peatlands;
  • Regulating methane release and the cycling and transport of pollutants such as mercury and excess nutrients.

Most wetland restoration designs have focused on hydrologic regime, water quality benefits and/or providing waterfowl habitat. Wetland restoration prioritization and design for climate change mitigation is relatively new and may vary from previous design goals.  For example, establishing the Sphagnum moss layer is vital to many ecological proceses and carbon retention in restored peatlands. 

This Special Issue will focus on the role of peatlands in mitigating climate change; however, research or policy assessment on other types of wetland restoration are welcome.

Dr. Kristen Blann
Dr. Christian Lenhart
Dr. Randall K. Kolka
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • peatlands
  • restoration
  • climate change
  • mitigation
  • carbon
  • hydrology

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2488 KiB  
Article
Wetland Creation and Reforestation of Legacy Surface Mines in the Central Appalachian Region (USA): A Potential Climate-Adaptation Approach for Pond-Breeding Amphibians?
by Lauren Sherman, Christopher D. Barton, Jacquelyn C. Guzy, Rebecca N. Davenport, John J. Cox, Jeffery L. Larkin, Todd Fearer, Jillian C. Newman and Steven J. Price
Water 2024, 16(9), 1202; https://doi.org/10.3390/w16091202 - 23 Apr 2024
Viewed by 499
Abstract
Habitat restoration and creation within human-altered landscapes can buffer the impacts of climate change on wildlife. The Forestry Reclamation Approach (FRA) is a coal surface mine reclamation practice that enhances reforestation through soil decompaction and the planting of native trees. Recently, wetland creation [...] Read more.
Habitat restoration and creation within human-altered landscapes can buffer the impacts of climate change on wildlife. The Forestry Reclamation Approach (FRA) is a coal surface mine reclamation practice that enhances reforestation through soil decompaction and the planting of native trees. Recently, wetland creation has been coupled with FRA to increase habitat available for wildlife, including amphibians. Our objective was to evaluate the response of pond-breeding amphibians to the FRA by comparing species occupancy, richness, and abundance across two FRA age-classes (2–5-year and 8–11-year reclaimed forests), traditionally reclaimed sites that were left to naturally regenerate after mining, and in mature, unmined forests in the Monongahela National Forest (West Virginia, USA). We found that species richness and occupancy estimates did not differ across treatment types. Spotted Salamanders (Ambystoma maculatum) and Eastern Newts (Notophthalmus viridescens) had the greatest estimated abundances in wetlands in the older FRA treatment. Additionally, larger wetlands had greater abundances of Eastern Newts, Wood Frogs (Lithobates sylvaticus), and Green Frogs (L. clamitans) compared to smaller wetlands. Our results suggest that wetland creation and reforestation increases the number of breeding sites and promotes microhabitat and microclimate conditions that likely maximize the resilience of pond-breeding amphibians to anticipated climate changes in the study area. Full article
(This article belongs to the Special Issue Restoration of Wetlands for Climate Change Mitigation)
Show Figures

Figure 1

29 pages, 17666 KiB  
Article
Use of the Gas Emission Site Type Method in the Evaluation of the CO2 Emissions in Raised Bogs
by Roman Cieśliński and Katarzyna Kubiak-Wójcicka
Water 2024, 16(7), 1069; https://doi.org/10.3390/w16071069 - 08 Apr 2024
Viewed by 568
Abstract
Peatbogs are important in global greenhouse gas budget estimates. The main aim of the work was to assess the amount of greenhouse gas emissions based on the Greenhouse Gas Emission Site Type (GEST) method and compare them with actual field measurements. The research [...] Read more.
Peatbogs are important in global greenhouse gas budget estimates. The main aim of the work was to assess the amount of greenhouse gas emissions based on the Greenhouse Gas Emission Site Type (GEST) method and compare them with actual field measurements. The research was carried out in selected peatbog areas in the coastal zone of northern Poland. The proposed method allowed us to assess whether the restoration treatments carried out in peatbogs contributed to the emission of these gases. The results of this research using the GEST method indicate that, in the studied peatbog areas, the reduction in CO2 emissions was approximately 12%. These results were compared with actual measurements of greenhouse gas emissions made using the chamber method in 2018. The average CO2 emission for the entire peatbog was 16,338.7 t CO2-eq./yr. Comparing this result with the result obtained using the GEST method, it should be stated that it is lower by 2.464.1 t CO2-eq./year, which gives an approximately 13% overestimation of the result by the Gas Emission Site Type method. Full article
(This article belongs to the Special Issue Restoration of Wetlands for Climate Change Mitigation)
Show Figures

Figure 1

14 pages, 1644 KiB  
Article
A Comparison of Greenhouse Gas Emission Patterns in Different Water Levels in Peatlands
by Chengcheng Peng, Hengfei Li, Nan Yang and Mingzhi Lu
Water 2024, 16(7), 985; https://doi.org/10.3390/w16070985 - 28 Mar 2024
Viewed by 600
Abstract
Peatlands store large amounts of carbon in wetland ecosystems. The hydrological conditions within peatlands are important factors that affect the biochemical cycle and patterns of greenhouse gas emissions in these peatlands. This study was carried out in Changbai Mountain Jinchuan peatland to investigate [...] Read more.
Peatlands store large amounts of carbon in wetland ecosystems. The hydrological conditions within peatlands are important factors that affect the biochemical cycle and patterns of greenhouse gas emissions in these peatlands. This study was carried out in Changbai Mountain Jinchuan peatland to investigate variations in carbon dioxide and methane emissions in peat swamps that have undergone distinct saturation conditions. Three peatland types (high water levels (S1); medium water levels (S2); low water levels (S3)) at different flood depths were selected as specific sampling points. The static box and gas chromatography methods were used at different time periods (6:00; 12:00; and 18:00) from July to September. The discharge flux of CO2 and CH4 slowly increased with the increase in the water level. The results indicate similarity in the fluctuation trends between the fluxes of CO2 and CH4 in S1 and S2 to the fluctuations of water levels. During the entire growth season, the flux range of CO2 and CH4 was −695.329~859.907 mg m2h−1 and 259.981~147.155 mg m2h−1, respectively. Furthermore, there was variation in mutation characteristics between two gases, the CO2 exhibited larger mutation range (−7.08~3.40) than CH4 (−1.79~1.26). In terms of daily flux changes, CO2 showed an upward trend, while CH4 had a downward trend. These results indicate variations in saturation conditions tend to affect discharge of greenhouse gases, with subsequent effects on climate change. This study highlights potential theoretical support to reduce anthropogenic activities on peatlands. This can be achieved by undertaking measures to conserve peatlands and explore mitigation measures to minimize greenhouse gas emissions and hence impacts of climate change. Full article
(This article belongs to the Special Issue Restoration of Wetlands for Climate Change Mitigation)
Show Figures

Figure 1

14 pages, 4030 KiB  
Article
Stocks and Sources of Soil Carbon and Nitrogen in Non-Native Kandelia obovata Afforestation and Spartina alterniflora Invasion: A Case Study on Northern Margin Mangroves in the Subtropical Coastal Wetlands of China
by Qianwen Ye, Cuicui Hou, Qiang Wang, Changjun Gao, Kay Stefanik, Feng Li and Bingbing Jiang
Water 2024, 16(6), 866; https://doi.org/10.3390/w16060866 - 17 Mar 2024
Viewed by 842
Abstract
For decades in China, carbon neutrality policies have spurred the establishment of northern margin mangroves as artificial blue carbon ecosystems. However, there has been limited research on the impact of plantation and invasion on the stocks and sources of soil carbon and nitrogen [...] Read more.
For decades in China, carbon neutrality policies have spurred the establishment of northern margin mangroves as artificial blue carbon ecosystems. However, there has been limited research on the impact of plantation and invasion on the stocks and sources of soil carbon and nitrogen in rehabilitated coastal wetlands. Non-native Kandelia obovata afforestation began on Ximen Island, Zhejiang, China, where Spartina alterniflora invasion had also occurred decades ago. Soil cores were collected from both mangrove and salt marsh habitats with depths from 0 to 50 cm and were analyzed for total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and the isotope of carbon and nitrogen in sediments. The results indicated that there were no significant differences in the TC, SOC, and C/N ratio between the K. obovata and the S. alterniflora, but there were significant differences in TN, isotope δ13C, and δ15N. The SOC content of both ecosystems in the 0–20 cm layer was significantly higher than that in the 30–50 cm layer. Our study has shown that the main sources of carbon and nitrogen for mangroves and salt marshes are different, especially under the impact of external factors, such as tidal waves and aquaculture. These findings provide insight into the ecological functioning of subtropical coastal wetlands and an understanding of the biogeochemical cycles of northern margin mangrove ecosystems. Full article
(This article belongs to the Special Issue Restoration of Wetlands for Climate Change Mitigation)
Show Figures

Figure 1

18 pages, 3176 KiB  
Article
Treatment Wetland Plant Harvests as a Tool for Soil Phosphorus Reduction in North Central US Agricultural Watersheds
by Nadia Alsadi and Christian Lenhart
Water 2024, 16(5), 642; https://doi.org/10.3390/w16050642 - 22 Feb 2024
Viewed by 650
Abstract
Agricultural watersheds in the North Central United States have been intensively farmed for decades with widespread application of fertilizer and extensive tilling practices. Soil phosphorus built up in sediments over time as a result of these practices may be released under anaerobic conditions, [...] Read more.
Agricultural watersheds in the North Central United States have been intensively farmed for decades with widespread application of fertilizer and extensive tilling practices. Soil phosphorus built up in sediments over time as a result of these practices may be released under anaerobic conditions, such as flood events. These floods are increasing in frequency and intensity due to climate change, leading to downstream water-quality concerns. Edge-of-field best management practices, including constructed treatment wetlands, provide a natural buffer for excess phosphorus runoff, but may only be a temporary solution if soil becomes oversaturated with phosphorus over extended periods of time. Preventing wetlands from becoming sources of phosphorus to water bodies may be essential for management in future years when considering impacts from climate change. This research assesses how wetland plant harvesting can reduce soil phosphorus accumulation (measured as Olsen phosphorus) in edge-of-field treatment wetlands, thereby preventing these systems from becoming phosphorus sources and ensuring the longevity of water-quality benefits from these systems. Using several 380 L controlled wetland mesocosm experiments in 2018–2019, we assessed above-ground plant material (S. tabernaemontani and B. fluviatilis) and soil Olsen P through the growing season and after harvest. We observed a reduction in soil phosphorus from wetland plant harvesting between 1–50% over one year, with a mean reduction of 7.9 mg/kg. B. fluviatilis initially contained higher P concentration early in the season (0.82% P content) compared to S. tabernaemontani (0.76% P), but S. tabernaemontani retained higher P later in the season (0.3% P content) compared to B. fluviatilis (0.25%). Time of season may significantly impact plant P removal potential, including accessibility of treatment wetland sites. While controlled mesocosm experiments may not always be applicable to real landscape-level management, this study highlights the potential for reductions in soil phosphorus and corresponding downstream phosphorus fluxes in edge-of-field treatment wetlands through plant harvest during the growing season. Plant harvesting can be used by land managers in edge-of-field treatment wetlands as an adaptation mechanism for shifting environmental conditions, such as increased heavy rainfall occurrences and flood events, that are exacerbated by climate change in this region. Full article
(This article belongs to the Special Issue Restoration of Wetlands for Climate Change Mitigation)
Show Figures

Figure 1

Back to TopTop