Novel Microwave-Assisted Synthesis of COFs: 2020–2022
Abstract
:1. Introduction
2. Structure and Characteristics of COFs
2.1. Monomers and Linkages
2.2. Topology
3. General Notions of Microwave-Assisted Synthesis
4. Microwave-Assisted Synthesis of COFs
4.1. Imines- and Enamines-Based 2D COFs
4.2. Triazine-Based 2D COFs
4.3. Other 2D COFs
4.4. 3D COFs
5. Summary and Expectations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Zhang, H.; Zhao, D. Functional Covalent Organic Framework Films Based on Surface and Interfacial Chemistry for Molecular Separations. Langmuir 2023, 39, 20–27. [Google Scholar] [CrossRef]
- Gu, H.; Liu, X.; Wang, S.; Chen, Z.; Yang, H.; Hu, B.; Shen, C.; Wang, X. COF-Based Composites: Extraordinary Removal Performance for Heavy Metals and Radionuclides from Aqueous Solutions. Rev. Environ. Contam. Toxicol. 2022, 260, 23. [Google Scholar] [CrossRef]
- Sani, R.; Dey, T.K.; Sarkar, M.; Basu, P.; Islam, S.M. A study of contemporary progress relating to COF materials for CO2 capture and fixation reactions. Mater. Adv. 2022, 3, 5575–5597. [Google Scholar] [CrossRef]
- Wang, S.; Xia, X.; Chen, F.E. Engineering of Covalent Organic Framework-Based Advanced Platforms for Enzyme Immobilization: Strategies, Research Progress, and Prospects. Adv. Mater. Interfaces 2022, 9, 2200874. [Google Scholar] [CrossRef]
- Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781. [Google Scholar] [CrossRef]
- Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. Trends Analyt. Chem. 2022, 157, 116741. [Google Scholar] [CrossRef]
- Liang, Z.; Shen, R.; Ng, Y.H.; Fu, Y.; Ma, T.; Zhang, P.; Li, Y.; Li, X. Covalent organic frameworks: Fundamentals, mechanisms, modification, and applications in photocatalysis. Chem. Catal. 2022, 2, 2157–2228. [Google Scholar] [CrossRef]
- Lv, M.; Ren, X.; Cao, R.; Chang, Z.; Chang, X.; Bai, F.; Li, Y. Zn (II) Porphyrin Built-in D–A Covalent Organic Framework for Efficient Photocatalytic H2 Evolution. Polymers 2022, 14, 4893. [Google Scholar] [CrossRef]
- Tang, J.; Su, C.; Shao, Z. Covalent Organic Framework (COF)-Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods 2021, 5, 2100945. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Martínez-Fernández, M.; Segura, J.L.; Lorenzo, E. Electrochemical (Bio)Sensors Base on Covalent Organic Frameworks (COFs). Sensors 2022, 22, 4758. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Liu, Q.; Zhao, G.; Sun, Y.; Guo, H. Covalent organic frameworks for solid-state electrolytes of lithium metal batteries. J. Mater. Chem. A 2022, 10, 7497–7516. [Google Scholar] [CrossRef]
- Verma, P.; Le Brocq, J.J.M.; Raja, R. Rational Design and Application of Covalent Organic Frameworks for Solar Fuel Production. Molecules 2021, 26, 4181. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wang, W. Covalent Organic Frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Guo, L.; Jin, S.; Tan, B. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef] [Green Version]
- Segura, J.L.; Mancheño, M.J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties, and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671. [Google Scholar] [CrossRef]
- Wang, P.-L.; Ding, S.-Y.; Zhang, Z.-C.; Wang, Z.-P.; Wang, W. Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. J. Am. Chem. Soc. 2019, 141, 18004–18008. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; Xu, T.; Xie, Z.; Liu, J.; Yu, X.; Ma, S.; Qin, T.; Chen, L. De novo design and facile synthesis of 2D Covalent Organic Frameworks: A Two-inOne Strategy. J. Am. Chem. Soc. 2019, 141, 13822–13828. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-San-Miguel, D.; Abrishamkar, A.; Navarro, J.A.R.; Rodriguez-Trujillo, R.; Amabilino, D.B.; Mas-Ballesté, R.; Zamora, F.; Puigmartí-Luis, J. Crystalline Fibres of a Covalent Organic Framework through Bottom-up Microfluidic Synthesis. ChemComm 2016, 52, 9212–9215. [Google Scholar] [CrossRef]
- Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and applications of three-dimensional covalent organic frameworks. Chem. Soc. Rev. 2020, 49, 1357–1384. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrillo, C.; Torres-García, J.; Benítez, M.; El Haskouri, J.; Amorós, P.; Ros-Lis, J.V. Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators. Molecules 2022, 27, 2712. [Google Scholar] [CrossRef]
- Głowniak, S.; Szczęśniak, B.; Choma, J.; Jaroniec, M. Advances in Microwave Synthesis of Nanoporous Materials. Adv. Mater. 2021, 33, 2103477. [Google Scholar] [CrossRef]
- Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A.K. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications-A review. Chemosphere 2022, 298, 134184. [Google Scholar] [CrossRef]
- Nagase, T.; Miyakawa, M.; Nishioka, M.; Ikeda, T. Microwave-assisted Green Synthesis of Mesoporous Zeolite Adsorbents for Direct Air Capture of CO2. Chem. Lett. 2022, 51, 296–299. [Google Scholar] [CrossRef]
- Díaz de Greñu, B.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Recent progress of microwave-assisted synthesis of silica materials. Nanomaterials 2020, 10, 1092. [Google Scholar] [CrossRef] [PubMed]
- Díaz de Greñu, B.; Torres, J.; García-González, J.; Muñoz-Pina, S.; de los Reyes, R.; Costero, A.M.; Amorós, P.; Ros-Lis, J.V. Microwave-assisted synthesis of covalent organic frameworks: A review. ChemSusChem 2021, 14, 208–233. [Google Scholar] [CrossRef]
- Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1, 16068. [Google Scholar] [CrossRef]
- Diercks, C.S.; Yaghi, O.M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, 923. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hao, W.; Zhang, T.; Chen, W.; Zhang, G.; Chen, L. Metallosalphen-based 2D Covalent Organic Frameworks with an unprecedented tju topology via K-shaped two-in-one monomers. Chem. Mater. 2022, 34, 5888–5895. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Guo, H.; Wang, T.; Gong, L.; Wang, Y.; Ai, J.; Huang, D.; Chen, H.; Yang, W. Fluorescence properties and analytical applications of covalent organic frameworks. Anal. Methods. 2017, 9, 3737–3750. [Google Scholar] [CrossRef]
- Sobol, H.; Tomiyasu, K. Milestones of microwaves. IEEE Trans. Microwave Theory Tech. 2002, 50, 594–611. [Google Scholar] [CrossRef]
- Gupta, M.; Leong, E.W.W. Microwaves and Metals; Wiley: Singapore, 2011; pp. 25–41. [Google Scholar]
- Sun, J.; Wang, W.; Yue, Q. Review on microwave-matter interaction fundamentals and efficient microwave-associated heating strategies. Materials 2016, 9, 231. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Chia, L.H.L.; Boey, F.Y.C. Thermal and non-thermal interaction of microwave radiation with materials. J. Mater. Sci. 1995, 30, 5321–5327. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Deng, L.; Xu, P.; Du, Y.; Ouyang, S.; Liu, Z. Evidence for non-thermal microwave effect in processing of tailing-based glass-ceramics. J. Eur. Ceram. Soc. 2019, 39, 1389–1396. [Google Scholar] [CrossRef]
- Gupta, M.; Leong, E.W.W. Microwaves and Metals; Wiley: Singapore, 2011; pp. 43–63. [Google Scholar]
- Schanche, J.S. Microwave synthesis solutions from personal chemistry. Mol. Divers. 2003, 7, 291–298. [Google Scholar] [CrossRef]
- Peng, P.; Shi, L.; Huo, F.; Zhang, S.; Mi, C.; Cheng, Y.; Xiang, Z. In Situ Charge Exfoliated Soluble Covalent Organic Framework Directly Used for Zn-Air Flow Battery. ACS Nano 2019, 13, 878–884. [Google Scholar] [CrossRef]
- Zhang, Y.; Duan, J.; Ma, D.; Li, P.; Li, S.; Li, H.; Zhou, J.; Ma, X.; Feng, X.; Wang, B. Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2017, 56, 16313–16317, Angew. Chem.2017, 129, 16531–16535. [Google Scholar] [CrossRef]
- Guntern, Y.T.; Vávra, J.; Karve, V.V.; Varandili, S.B.; Lecina, O.S.; Gadiyar, C.; Buonsanti, R. Synthetic Tunability of Colloidal Covalent Organic Framework/Nanocrystal Hybrids. Chem. Mater. 2021, 33, 2646–2654. [Google Scholar] [CrossRef]
- Hao, K.; Guo, Z.; Lin, L.; Sun, P.; Li, Y.; Tian, H.; Chen, X. Covalent organic framework nanoparticles for anti-tumor gene therapy. Sci. China Chem. 2021, 64, 1235–1241. [Google Scholar] [CrossRef]
- Lu, Y.; Song, G.; He, B.; Zhang, H.; Wang, X.; Zhou, D.; Dai, W.; Zhang, Q. Strengthened Tumor Photodynamic Therapy Based on a Visible Nanoscale Covalent Organic Polymer Engineered by Microwave Assisted Synthesis. Adv. Funct. Mater. 2020, 30, 2004834. [Google Scholar] [CrossRef]
- Chen, L.; Du, J.; Zhou, W.; Shen, H.; Tan, L.; Zhou, C.; Dong, L. Microwave-Assisted Solvothermal Synthesis of Covalent Organic Frameworks (COFs) with Stable Superhydrophobicity for Oil/Water Separation. Chem. Asian J. 2020, 15, 3421–3427. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Skorjanc, T.; Prakasam, T.; Garai, B.; Abubakar, S.; Zalch, C.S.; Gándara, F.; Pasricha, R.; Sharma, S.K.; Varghese, S.; et al. Hydrophobicity Tuning in Isostructural Urchin-Shaped Covalent Organic Frame-work Nanoparticles by Pore Surface Engineering for Oil-Water Separation. ACS Appl. Nano Mater. 2022, 5, 13745–13751. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, C.; Tan, L.; Shen, H.; Lu, C.; Dong, L. Enhancement of compatibility between covalent organic framework and polyamide membrane via an interfacial bridging method: Toward highly efficient water purification. J. Membr. Sci. 2022, 656, 120590. [Google Scholar] [CrossRef]
- Spaulding, V.; Zosel, K.; Duong, P.H.H.; Li-Oakey, K.D.; Parkinson, B.A.; Gomez-Gualdron, D.A.; Hoberg, J.O. A self-assembling, biporous, metal-binding covalent organic framework and its application for gas separation. Mater. Adv. 2021, 2, 3362–3369. [Google Scholar] [CrossRef]
- Martín-Illán, J.Á.; Rodríguez-San-Miguel, D.; Franco, C.; Imaz, I.; Maspoch, D.; Puigmartí-Luis, J.; Zamora, F. Green synthesis of imine-based covalent organic frameworks in water. Chem. Commun. 2020, 56, 6704–6707. [Google Scholar] [CrossRef]
- Kong, D.; Han, X.; Xie, J.; Ruan, Q.; Windle, C.D.; Gadipelli, S.; Shen, K.; Bai, Z.; Guo, Z.; Tang, J. Tunable Covalent Triazine-Based Frameworks (CTF-0) for Visible-Light-Driven Hydrogen and Oxygen Generation from Water Splitting. ACS Catal. 2019, 9, 7697–7707. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Liang, Y.; Xu, Y. Rapid, Ordered Polymerization of Crystalline Semiconducting Covalent Triazine Frameworks. Angew. Chem. Int. Ed. 2022, 61, e202113926. [Google Scholar] [CrossRef]
- Rademacher, L.; Beglau, T.H.Y.; Heinen, T.; Barthel, J.; Janiak, C. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Front. Chem. 2022, 10, 945261. [Google Scholar] [CrossRef]
- Kuehl, V.A.; Wenzel, M.J.; Parkinson, B.A.; Oliveira, L.S.; Hoberg, J.O. Pitfalls in the synthesis of polyimide-linked two-dimensional covalent organic frameworks. J. Mater. Chem. A 2021, 9, 15301–15309. [Google Scholar] [CrossRef]
- Ji, W.; Guo, Y.S.; Xie, H.M.; Wang, X.; Jiang, X.; Guo, D.S. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. J. Hazard. Mater. 2020, 397, 122793. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zheng, L.; Li, X.; Wang, H.; Lv, L.P.; Chen, S.; Sun, W.; Wang, Y. Cobalt Coordinated Cyano Covalent-Organic Framework for High-Performance Potassium-Organic Batteries. ACS Appl. Mater. Interfaces 2021, 13, 48913–48922. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Gándara, F.; Pascal, S.; Naleem, N.; Abubakar, S.; Ali, L.; Mohammed, A.K.; Raya, J.; Kirmizialtin, S.; et al. Covalent Organic Framework Based Azacalix [4]arene for the Efficient Capture of Dialysis Waste Products. ACS Appl. Mater. Interfaces 2022, 14, 39293–39298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, L.; Lv, Y.; Tan, T. Facile manufacture of COF-based mixed matrix membranes for efficient CO2 separation. Chem. Eng. J. 2022, 430, 133001. [Google Scholar] [CrossRef]
- Wang, R.; Shi, X.; Zhang, Z.; Xiao, A.; Sun, S.P.; Cui, Z.; Wang, Y. Unidirectional diffusion synthesis of covalent organic frameworks (COFs) on polymeric substrates for dye separation. J. Membr. Sci. 2019, 586, 274–280. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.; Ning, G.H.; Leng, K.; Tian, B.; Liu, C.; Tang, W.; Sen Xu, H.; Loh, K.P. Highly photoluminescent two-dimensional imine-based covalent organic frameworks for chemical sensing. Chem. Commun. 2018, 54, 2349–2352. [Google Scholar] [CrossRef]
- Vitaku, E.; Dichtel, W.R. Synthesis of 2D imine-linked covalent organic frameworks through formal transamination reactions. J. Am. Chem. Soc. 2017, 139, 12911–12914. [Google Scholar] [CrossRef] [PubMed]
- Martín-Illán, J.A.; Royuela, S.; Mar Ramos, M.; Segura, J.L.; Zamora, F. Gas-Solid Heterogeneous Postsynthetic Modification of Imine-Based Covalent Organic Frameworks. Chem. Eur. J. 2020, 26, 6495–6498. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, L.; Gándara, F.; Ma, Y.; Liu, Z.; Zhu, C.; Lyu, H.; Trickett, C.A.; Kapustin, E.A.; Terasaki, O.; et al. A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 13166–13172. [Google Scholar] [CrossRef]
- Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453, Angew. Chem.2008, 120, 3499–3502. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Bojdys, M.J.; Dawson, R.; Laybourn, A.; Khimyak, Y.Z.; Adams, D.J.; Cooper, A.I. Porous, Fluorescent, Covalent Triazine-Based Frameworks via Room-Temperature and Microwave-Assisted Synthesis. Adv. Mater. 2012, 24, 2357–2361. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Lee, J.; Vo, H.T.; Kim, S.; Lee, H.; Park, T. Amine-Functionalized Covalent Organic Framework for Efficient SO2 Capture with High Reversible. Sci. Rep. 2017, 7, 557. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, A.; Ma, R.; Wu, B.; Wen, T.; Ai, Y.; Sun, M.; Jin, J.; Wang, S.; Wang, X. Experimental and theoretical insights into copper phthalocyanine-based covalent organic frameworks for highly efficient radioactive iodine capture. Chin. Chem. Lett. 2022, 33, 3549–3555. [Google Scholar] [CrossRef]
- Beagle, L.K.; Moore, D.C.; Kim, G.; Tran, L.D.; Miesle, P.; Nguyen, C.; Fang, Q.; Kim, K.-H.; Prusnik, T.A.; Newburger, M.; et al. Microwave Facilitated Covalent Organic Framework/Transition Metal Dichalcogenide Heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 46876–46883. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.L.; Clowes, R.; Ritchie, L.K.; Cooper, A.I. Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks. Chem. Mater. 2009, 21, 204–206. [Google Scholar] [CrossRef]
COF/POF | Knot/Vertice | Linker/Edge | MW Oven 1 | Power [W] | t | P | T [°C] | Solvent 2 | Pore Size [nm] | SBET [m2 g−1] | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
LZU-1 | TFB | NBPDA | n.a. | n.a. | 30 min | n.a. | 120 | Et/ TFA | 1.3 | 1388 | n.a. | [43,44] |
Au@LZU1 | TFB | NBPDA | 1500 MW high-pressure | n.a. | 20 min | n.a. | 120 | Et/ TFMS | 1.3 | 1066 | n.a. | [43] |
LZU-PEI | TFB | NBPDA | n.a. | n.a. | 30 min | n.a. | 120 | Et/ TFMS/ PEI | n.a. | n.a. | gene vector | [44] |
LZU-Cys | TFB | NBPDA | n.a. | n.a. | 30 min | n.a. | 120 | Et/ TFMS Cys | n.a. | n.a. | gene vector | [44] |
nCOP | TAPP | BPDA | CEM-D | n.a. | 20 min | n.a. | 120 | DMF/ Me | n.a. | n.a. | pH-responsive cross-linkers | [45] |
TAPB-TDA | TAPB | TDA | JC-101W | 200 | 1 h | n.a. | n.a. | Dx/ Ms/ HAc | 0.4 | 170 | oil/water separation | [46] |
TAPB-TFA | TAPB | TFA | JC-101W | 200 | 1 h | n.a. | n.a. | Ms/ HAc | 0.1 | 96 | oil/water separation | [46] |
TAB-DFP | TAPB | DFP | n.a. | n.a. | 2 h | n.a. | 100 | Dx/ HAc | 1.6 | 491 | n.a. | [47] |
TAB-MPPD | TAPB | MPPD | n.a. | n.a. | 2 h | n.a. | 100 | Dx/ HAc | 1.3 | 44 | oil/water separation | [47] |
TAPB-BPTA | TAPB | BPTA | JC-101W | 200 | 1 h | n.a. | n.a. | Ms/ HAc | 1.3 | 1653 | interfacial bridging | [48] |
DPCOF | DBPT | HKT + DADTA | Mon-Pro/ Mon-300 | n.a. | 3 h | n.a. | 200 | HCl/ MNp | n.a. | n.a. | Gas separation | [49] |
IrNCOF | DBPT | HKT + DADTA | Mon-Pro/ Mon-300 | n.a. | 12 min + 2 h | n.a. | 185 + 200 | HCl/ MNp/ IrCl3 | n.a. | n.a. | Gas separation | [49] |
PtNCOF | DBPT | HKT + DADTA | Mon-Pro/ Mon-300 | n.a. | 3.5 h | n.a. | 200 | HCl/ MNp/ PtCl2 | n.a. | n.a. | Gas separation | [49] |
NiCOF | DBPT | HKT + DADTA | Mon-Pro/ Mon-300 | n.a. | 3 h | n.a. | 200 | HCl/ MNp/ NiCl2 | n.a. | n.a. | Gas separation | [49] |
TAPB-BTCA | TAPB | BTCA | ETHOS 1 | 200 | 5 h | n.a. | 80 | H2O/ HAc | n.a. | 566 | n.a. | [50] |
CTF-0 | TCB | CEM-D CEM-S | 300 | 30 min | 300 psi | 110 | TFMS | n.a. | 0.5–5 | photocatalysis | [51] | |
CTF-0 | TCB | NN-GF33KB | 800 | 20 min | n.a. | n.a. | CF3SO3H | 0.67 | 282 | n.a. | [52] | |
CTF-DCB | DCB | NN-GF33KB | 800 | 20 min | n.a. | n.a. | CF3SO3H | 1.1 | 672 | n.a. | [52] | |
CTF-BPDCN | BPDCN | NN-GF33KB | 220 | 3 h | n.a. | n.a. | CF3SO3H | 2.0 | 536 | n.a. | [52] | |
Pd@CTF | DCP | CEM-D | 100 | 20 min | n.a. | 250 | Pd(acac)2 | n.a. | 904–1353 | Oxygen reduction reaction | [53] | |
IrOx@CTF | DCP | CEM-D | 100 | 3 × 10 min | n.a. | 250 | Ir4(CO)12 | n.a. | 918–1229 | Hydrogen evolution reaction | [53] | |
PI-COF | TAPA | PMDA | AP-Mul | n.a. | 2 h | n.a. | 200 | MPy | 10–20 | n.a. | n.a. | [54] |
MA-PMDA | MA | PMDA | AP-Mul | n.a. | 2 h | n.a. | 200 | MPy | 10–20 | n.a. | n.a. | [54] |
MA-NTDA | MA | NTDA | AP-Mul | n.a. | 2 h | n.a. | 200 | MPy | 10–20 | n.a. | n.a. | [54] |
TH-COF | HHTP | TFPC | MDS-6 G | 100 | 30 min | n.a. | 70 | Dx/ Ms/ TEA | 2.2 | 1254 | analysis of trace perfluorinated alkyl substances in water | [55] |
COF-Co | HHTP | TFPN | Nova-2s | n.a. | 72 h | n.a. | 120 | Co(CH3CO2)2 | n.a. | n.a. | Potassium ion batteries | [56] |
ACA-COF | ACA | BDB | n.a. | n.a. | 3 h | n.a. | 90 | Et/ H2O | 1.2 and 7.5 | 58 | Removal of pollutants from dialysis wastewater | [57] |
2D-COF | TAPB | BDB | n.a. | n.a. | 2 h | n.a. | 100 | Et/ H2O | n.a. | 30 | CO2 capture | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Carríllo, C.; Benítez, M.; El Haskouri, J.; Amorós, P.; Ros-Lis, J.V. Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules 2023, 28, 3112. https://doi.org/10.3390/molecules28073112
Rodríguez-Carríllo C, Benítez M, El Haskouri J, Amorós P, Ros-Lis JV. Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules. 2023; 28(7):3112. https://doi.org/10.3390/molecules28073112
Chicago/Turabian StyleRodríguez-Carríllo, Cristina, Miriam Benítez, Jamal El Haskouri, Pedro Amorós, and Jose V. Ros-Lis. 2023. "Novel Microwave-Assisted Synthesis of COFs: 2020–2022" Molecules 28, no. 7: 3112. https://doi.org/10.3390/molecules28073112
APA StyleRodríguez-Carríllo, C., Benítez, M., El Haskouri, J., Amorós, P., & Ros-Lis, J. V. (2023). Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules, 28(7), 3112. https://doi.org/10.3390/molecules28073112