A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key
Abstract
:1. Introduction
2. Morphological Taxonomy
Species | Cuticle | Number of Rows in Oral Cavity Armature | Eyes | Lunules IV | Granulation on Legs | Egg Type | Egg Process Height (in μm) | Egg Process Base Width (in μm) | Egg Process Shape | Number of Processes on Circumference |
---|---|---|---|---|---|---|---|---|---|---|
Paramacrobiotus alekseevi | smooth | I–III | absent | dentate | IV | richtersi | 11.8–21.8 | 13.3–22.9 | cone with cap | 10–12 |
Paramacrobiotus arduus | smooth | I–III | absent | smooth | I–IV | richtersi | 12.1–18.3 | 10.4–16.3 | simple cone | 16–21 |
Paramacrobiotus areolatus | smooth | I–III | present | crenate | I–IV | areolatus | 20.0–28.0 | 19.0–22.0 | simple cone | ? |
Paramacrobiotus beotiae | smooth | I–III | absent | dentate | ? | beotiae | up to 16.0 | ? | spines | ? |
Paramacrobiotus celsus | smooth | I–III | absent | smooth | I–IV | richtersi | 15.2–19.1 | 14.3–18.2 | simple cone (jagged) | 15–19 |
Paramacrobiotus centesimus | smooth | I–III | absent | smooth | I–IV | areolatus | 7.0–11.0 | ? | simple cone | 11–12 |
Paramacrobiotus chieregoi | smooth | I–III | absent | smooth | ? | chieregoi | ? | ? | elongated cone | 14 |
Paramacrobiotus corgatensis | sculptured | I–III | present | dentate | ? | richtersi | 20.0–25.0 | 18.0–24.0 | simple cone (jagged) | 8–11 |
Paramacrobiotus csotiensis | smooth | II–III | present | ? | ? | csotiensis | ? | ? | hemispherical covered with a hyaline layer | ? |
Paramacrobiotus danielae | sculptured | I–III | present | smooth | ? | areolatus | 14.5 | 24.7 | simple cone | ? |
Paramacrobiotus danielisae | sculptured | I–III | absent | smooth | ? | richtersi | 17.3–23.0 | 17.5–20.0 | simple cone | 9–10 |
Paramacrobiotus depressus | smooth | I–III | absent | smooth | IV | richtersi | 9.3–12.4 | simple cone | 16–23 | |
12.4–15.2 | ||||||||||
Paramacrobiotus derkai | smooth | I–III | present | smooth | I–IV | huziori | 8.0–17.1 | 12.5–28.3 | simple cone | 12–16 |
Paramacrobiotus experimentalis | smooth | I–III | absent | smooth | IV | areolatus | 10.3–14.9 | 13.8–19.4 | simple cone | 10–12 |
Paramacrobiotus fairbanksi | smooth | I–III | absent | smooth | I–IV | richtersi | 10.9–14.9 | 10.9–20.8 | simple cone (jagged) | ? |
Paramacrobiotus filipi | granulation | I–III | absent | smooth | I–IV | richtersi | 17.8–25.2 | 11.7–21.7 | cone with cap | 10–11 |
Paramacrobiotus gadabouti | smooth | I–III | absent | smooth | IV | richtersi | 12.1–23.7 | 15.0–25.5 | truncated cones | 11–13 |
Paramacrobiotus garynahi | with pores | I–III | absent | smooth | I–IV | areolatus | 18.0–30.0 | 20.0–42.0 | cone with cap | 10–13 |
Paramacrobiotus gerlachae | smooth | I–III | absent | smooth | IV | richtersi | 11.8–14.5 | 16.8–18.7 | simple cone | ? |
Paramacrobiotus halei | sculptured | I–III | absent | ? | I–IV | richtersi | 11.0–14.0 | 22.0–23.5 | blunt cone | 11 |
Paramacrobiotus hapukuensis | smooth | I–III | absent | smooth | absent | –areolatus | 15.7–21.1 | 14.8–16.6 | elongated cone | 10 |
Paramacrobiotus huziori | smooth | I–III | present | smooth | I–IV | huziori | 20.0–33.0 | 20.0–30.0 | simple cone | 9–11 |
Paramacrobiotus intii | smooth | II–III | present | dentate | I–IV | areolatus | 15.4–24.4 | 22.0–34.0 | simple cone | 9–10 |
Paramacrobiotus kenianus | smooth | ? | present | ? | ? | richtersi | 13.5 ± 1.9 | 19.7 ± 2.7 | simple cone | 17.7 ± 3.6 |
Paramacrobiotus klymenki | smooth | I–III | absent | dentate | I–IV | areolatus | 14.5–18.5 | 16.4–18.2 | simple cone | 10–11 |
Paramacrobiotus lachowskae | smooth | I–III | present | smooth | I–IV | areolatus | 17.6–32.1 | 8.1–17.7 | hemispherical with filaments | 8–14 |
Paramacrobiotus lorenae | smooth | I–III | absent | smooth | I–IV | richtersi | 25.0–42.2 | 17.8–23.0 | elongated cone | ? |
Paramacrobiotus magdalenae | smooth | I–III | present | smooth | IV | richtersi | 13.0–25.0 | 16.2–21.0 | simple cone | 10–12 |
Paramacrobiotus metropolitanus | smooth | I–III | absent | smooth | IV | areolatus | 7.4–14.6 | 9.8–21.1 | simple cone | 10–15 |
Paramacrobiotus palaui | smooth | ? | present | ? | ? | richtersi | 10.2 ± 1.3 | 13.4 ± 1.3 | simple cone | 15.4 ± 1.4 |
Paramacrobiotus peteri | smooth | I–III | absent | smooth | ? | areolatus | 10.0–14.0 | 9.0–12.0 | simple cone (jagged) | ? |
Paramacrobiotus pius | smooth | I–III | absent | smooth | I–IV | richtersi | up to 12.3 | 19.5–24.7 | simple cone (jagged) | 10 |
Paramacrobiotus priviterae | smooth | I–III | present | smooth | I–IV | richtersi | 11.8–15.0 | 12.9–16.3 | simple cone (jagged) | ? |
Paramacrobiotus richtersi | smooth | I–III | absent | smooth | I–IV | richtersi | 17.1–22.1 | 17.2–22.2 | simple cone | 13–17 |
Paramacrobiotus rioplatensis | smooth | I–III | present | smooth | ? | areolatus | ca. 4.6 | ? | elongated cone | 17–19 |
Paramacrobiotus sagani | granulation | I–III | present | smooth | I–IV | richtersi | 9.4–13.2 | 14.6–22.4 | blunt cone | 10–13 |
Paramacrobiotus savai | smooth | I–III | present | smooth | IV | areolatus | 12.0–18.0 | 16.7–18.5 | blunt cone | ? |
Paramacrobiotus sklodowskae | smooth | I–III | present | smooth | I–IV | richtersi | 16.0–17.5 | 20.5–23.5 | blunt cone | 10 |
Paramacrobiotus spatialis | smooth | I–III | absent | smooth | I–IV | richtersi | 13–16 | 15.2–20.4 | simple cone | 15–23 |
Paramacrobiotus spinosus | smooth | I–III | absent | smooth | I–IV | richtersi | 22.1–42.2 | 17.3–26.0 | elongated cone (jagged) | 10–11 |
Paramacrobiotus submorulatus | smooth | II–III | present | ? | ? | submorulatus | 7.0–8.3 | 17.5–20.4 | hemispherical with concave on top | 13 |
Paramacrobiotus tonollii | smooth | ? | present | smooth | ? | tonollii | 32.0–35.0 | ? | elongated cone | 8–10 |
Paramacrobiotus vanescens | faint punctuation | I–III | absent | ? | I–IV | richtersi | 16.0–17.0 | 24.0–25.0 | blunt cone (jagged) | 9–12 |
Paramacrobiotus walteri | smooth | I–III | present | dentate | I–IV | areolatus | 10.0–17.0 | 9.0–20.0 | simple cone (jagged) | ? |
Paramacrobiotus wauensis | smooth | I–III | absent | ? | ? | ? | ? | ? | ? | ? |
3. Molecular Taxonomy
4. Cryptobiosis
5. Distribution
6. Feeding Behaviour
7. Life History
8. Microbiome
9. Reproduction
10. Key for Species Identification
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guidetti, R.; Bertolani, R.B. Tardigrade taxonomy: An updated check list of the taxa and a list of characters for their identification. Zootaxa 2005, 845, 1. [Google Scholar] [CrossRef]
- Degma, P.; Guidetti, R. Notes to the current checklist of Tardigrada. Zootaxa 2007, 1579, 41–53. [Google Scholar] [CrossRef]
- Vicente, F.; Bertolani, R. Considerations on the taxonomy of the Phylum Tardigrada. Zootaxa 2013, 3626, 245–248. [Google Scholar] [CrossRef]
- Actual Checklist of Tardigrada Species. 2009–2023. Available online: https://iris.unimore.it/retrieve/bf8e14a4-625f-4cdd-8100-347e5cbc5f63/Actual%20checklist%20of%20Tardigrada%2042th%20Edition%2009-01-23.pdf (accessed on 10 July 2023).
- Nelson, D.R.; Guidetti, R.; Rebecchi, L.; Kaczmarek, Ł.; McInnes, S. Phylum Tardigrada. In Thorp and Covich’s Freshwater Invertebrates; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–522. [Google Scholar] [CrossRef]
- Ramazzotti, G.; Maucci, W. Il Phylum Tardigrada. Terza edizione riveduta e corretta. Memorie dell’Isituto Italiano di Idrobiologia Dott. Marco De Marchi 1983, 41, 1–1012. [Google Scholar]
- Beasley, C.W. The Phylum Tardigrada, 3rd ed.; Ramazzotti, G., Maucci, W., Eds.; Abilene, P., Translator; McMurry University: Abilene, TX, USA, 1995; pp. 1–1014. [Google Scholar]
- Thulin, G. Über die phylogenie und das system der. Hereditas 1928, 11, 207–266. [Google Scholar] [CrossRef]
- Guidetti, R.; Schill, R.O.; Bertolani, R.; Dandekar, T.; Wolf, M. New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. J. Zool. Syst. Evol. Res. 2009, 47, 315–321. [Google Scholar] [CrossRef]
- Tumanov, D.V. Notes on the tardigrada of Thailand, with a description of Macrobiotus alekseevi sp. nov. (Eutardigrada, Macrobiotidae). Zootaxa 2005, 999, 1. [Google Scholar] [CrossRef]
- Guidetti, R.; Cesari, M.; Bertolani, R.; Altiero, T.; Rebecchi, L. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). Zool. Lett. 2019, 5, 1. [Google Scholar] [CrossRef]
- Murray, J. XXV.—Arctic Tardigrada, collected by Wm. S. Bruce. Earth Environ. Sci. Trans. R. Soc. Edinb. 1907, 45, 669–681. [Google Scholar] [CrossRef]
- Durante Pasa, M.; Maucci, W. Moss Tardigrada from the Scandinavian Peninsula. Zesz. Nauk. Uniw. Jagiell. Pract. Zool. Kraków 1979, 79, 47–85. [Google Scholar]
- Pilato, G. Macrobiotus centesimus, new species of eutardigrade from the South America. Boll. Delle Sedute Della Accad. Gioenia Di Sci. Nat. Catania 2000, 33, 97–101. [Google Scholar]
- Maucci, W.; Durante Pasa, M.V. Tardigradi muscicoli delle isole Andamane. Boll. Del Mus. Civ. Di Stor. Nat. Di Verona 1980, 7, 281–291. [Google Scholar]
- Pilato, G.; Binda, M.G.; Lisi, O. Notes on tardigrades of the Seychelles with the description of three new species. Ital. J. Zool. 2004, 71, 171–178. [Google Scholar] [CrossRef]
- Iharos, G. Neue Tardigraden-arten aus Ungarn. Acta Zool. Acad. Sci. Hung. 1966, 12, 111–122. [Google Scholar]
- Pilato, G.; Binda, M.G.; Napolitano, A.; Moncada, E. Notes on South American tardigrades with the description of two new species: Pseudechiniscus spinerectus and Macrobiotus danielae. Trop. Zool. 2001, 14, 223–231. [Google Scholar] [CrossRef]
- Pilato, G.; Binda, M.G.; Lisi, O. Three new species of eutardigrades from the Seychelles. N. Z. J. Zool. 2006, 33, 39–48. [Google Scholar] [CrossRef]
- Degma, P.; Michalczyk, Ł.; Kaczmarek, Ł. Macrobiotus derkai, a new species of Tardigrada (Eutardigrada, Macrobiotidae, huziori group) from the Colombian Andes (South America). Zootaxa 2008, 1731, 1. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Mioduchowska, M.; Kačarević, U.; Kubska, K.; Parnikoza, I.; Gołdyn, B.; Roszkowska, M. New records of Antarctic tardigrada with comments on interpopulation variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010. Diversity 2020, 12, 108. [Google Scholar] [CrossRef]
- Schill, R.O.; Förster, F.; Dandekar, T.; Wolf, M. Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada). Org. Divers. Evol. 2010, 10, 287–296. [Google Scholar] [CrossRef]
- Stec, D.; Dudziak, M.; Michalczyk, Ł. Integrative descriptions of two new Macrobiotidae species (Tardigrada: Eutardigrada: Macrobiotoidea) from French Guiana and Malaysian Borneo. Zool. Stud. 2020, 59, e23. [Google Scholar] [CrossRef]
- Kayastha, P.; Stec, D.; Sługocki, Ł.; Gawlak, M.; Mioduchowska, M.; Kaczmarek, Ł. Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae). Sci. Rep. 2023, 13, 2196. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Michalczyk, Ł.; Diduszko, D. Some tardigrades from Siberia (Russia, Baikal region) with a description of Macrobiotus garynahi sp. nov. (Eutardigrada: Macrobiotidae: Richtersi. Zootaxa 2005, 1053, 35–45. [Google Scholar] [CrossRef]
- Bartels, P.J.; Pilato, G.; Lisi, O.; Nelson, D.R. Macrobiotus (Eutardigrada, Macrobiotidae) from the Great Smoky Mountains National Park, Tennessee/North Carolina, USA (North America): Two new species and six new records. Zootaxa 2009, 2022, 45–57. [Google Scholar] [CrossRef]
- Michalczyk, L.; Kaczmarek, L. A new species Macrobiotus magdalenae (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Costa Rican rain forest (Central America). N. Z. J. Zool. 2006, 33, 189–196. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Cytan, J.; Zawierucha, K.; Diduszko, D.; Michalczyk, Ł. Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa 2014, 3790, 357. [Google Scholar] [CrossRef]
- Pilato, G.; Kiosya, Y.; Lisi, O.; Sabella, G. New records of Eutardigrada from Belarus with the description of three new species. Zootaxa 2012, 3179, 39. [Google Scholar] [CrossRef]
- Stec, D.; Roszkowska, M.; Kaczmarek, Ł.; Michalczyk, Ł. Paramacrobiotus lachowskae, a new species of Tardigrada from Colombia (Eutardigrada: Parachela: Macrobiotidae). N. Z. J. Zool. 2018, 45, 43–60. [Google Scholar] [CrossRef]
- Biserov, V.I. Macrobiotus lorenae sp. n., a new species of Tardigrada (Eutardigrada Macrobiotidae) from the Russian Far East. Arthr Sel. 1996, 5, 145–149. [Google Scholar]
- Sugiura, K.; Matsumoto, M.; Kunieda, T. Description of a model tardigrade Paramacrobiotus metropolitanus sp. nov. (Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa 2022, 5134, 92–112. [Google Scholar] [CrossRef]
- Pilato, G.; Claxton, S.; Binda, M. Tardigrades from Australia. III Echiniscus marcusi and Macrobiotus peteri, new species of tardigrades from New South Wales. Animalia 1989, 16, 43–48. [Google Scholar]
- Lisi, O.; Binda, M.G.; Pilato, G. Eremobiotus ginevrae sp. nov. and Paramacrobiotus pius sp. nov., two new species of Eutardigrada. Zootaxa 2016, 4103, 344. [Google Scholar] [CrossRef] [PubMed]
- Binda, M.G.; Pilato, G.; Moncada, E.; Napolitano, A. Some tardigrades from Central Africa with the description of two new species: Macrobiotus ragonesei and M. priviterae (Eutardigrada Macrobiotidae). Trop. Zool. 2001, 14, 233–242. [Google Scholar] [CrossRef]
- Murray, J. Scottish Tardigrada. A review of our present knowledge. Ann. Scott. Nat. Hist. 1911, 78, 88–95. [Google Scholar]
- Claps, M.; Rossi, G. Tardígrados de Uruguay, con descripción de dos nuevas especies (Echiniscidae, Macrobiotidae). Iheringia Sér Zool. 1997, 83, 17–22. [Google Scholar]
- Daza, A.; Caicedo, M.; Lisi, O.; Quiroga, S. New records of tardigrades from Colombia with the description of Paramacrobiotus sagani sp. nov. and Doryphoribius rosanae sp. nov. Zootaxa 2017, 4362, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Binda, M.G.; Pilato, G. Macrobiotus savai and Macrobiotus humilis, two new species of tardigrades from Sri Lanka. Boll. dell’Accad. Gioenia Sci. Nat. 2001, 34, 101–111. [Google Scholar]
- Michalczyk, Ł.; Kaczmarek, Ł.; Węglarska, B. Macrobiotus sklodowskae sp. nov. (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Cyprus. Zootaxa 2006, 1371, 45. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Gawlak, M.; Bartels, P.J.; Nelson, D.R.; Roszkowska, M. Revision of the Genus Paramacrobiotus Guidetti et al., 2009 with the description of a new species, re-descriptions and a key. Ann. Zool. 2017, 67, 627–656. [Google Scholar] [CrossRef]
- Ramazzotti, G. Tre nouve specie di Tardigradi ed altre specie poco comuni. Atti Soc. Nat. Milano 1956, 10, 284–291. [Google Scholar]
- Pilato, G.; Binda, M.G.; Catanzaro, R. Remarks on some tardigrades of the African fauna with the description of three new species of Macrobiotus Schultze 1834. Trop Zool. 1991, 4, 167–178. [Google Scholar] [CrossRef]
- Biserov, V.I. Tardigrades of the Caucasus with a taxonomic analysis of the genus Ramazzottius (Parachela: Hypsibiidae). Zool. Anz. 1998, 236, 139–159. [Google Scholar]
- Iharos, G. Neuere Daten zur Kenntnis der Tardigraden-Fauna von Neuguinea. Opusc. Zool. Bp. 1973, 11, 65–73. [Google Scholar]
- Marley, N.J.; Gawlak, M.; Bartels, P.J.; Nelson, D.R.; Roszkowska, M.; Stec, D.; Degma, P. A clarification for the subgenera of Paramacrobiotus Guidetti, Schill, Bertolani, Dandekar and Wolf, 2009, with respect to the International Code of Zoological Nomenclature. Zootaxa 2018, 4407, 130–134. [Google Scholar] [CrossRef]
- Stec, D.; Krzywański, Ł.; Zawierucha, K.; Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 2020, 188, 694–716. [Google Scholar] [CrossRef]
- Derycke, S.; De Meester, N.; Rigaux, A.; Creer, S.; Bik, H.; Thomas, W.K.; Moens, T. Coexisting cryptic species of the Litoditis marina complex (Nematoda) show differential resource use and have distinct microbiomes with high intraspecific variability. Mol. Ecol. 2016, 25, 2093–2110. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Ratnasingham, S.; De Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B Biol. Sci. 2003, 270 (Suppl. S1), S96–S99. [Google Scholar] [CrossRef]
- Lu, J.M.; Li, T.; Chen, H.W. Molecular phylogenetic analysis of the Stegana ornatipes species group (Diptera: Drosophilidae) in China, with description of a new species. J. Insect Sci. 2011, 11, 20. [Google Scholar] [CrossRef]
- Ciobanu, D.; Zawierucha, K.; Moglan, I.; Kaczmarek, Ł. Milnesium berladnicorum sp. n. (Eutardigrada, Apochela, Milnesiidae), a new species of water bear from Romania. ZooKeys 2014, 429, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Buckley, T.R. Model selection and model averaging in phylogenetics: Advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst. Biol. 2004, 53, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Kačarević, U.; Miamin, V.; Giginiak, Y.; Parnikoza, I.; Roszkowska, M.; Kaczmarek, Ł. Redescription of Antarctic eutardigrade Dastychius improvisus (Dastych, 1984) and some remarks on phylogenetic relationships within Isohypsibioidea. Eur. Zool. J. 2021, 88, 117–131. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Bapteste, E.; van Iersel, L.; Janke, A.; Kelchner, S.; Kelk, S.; McInerney, J.O.; Morrison, D.A.; Nakhleh, L.; Steel, M.; Stougie, L.; et al. Networks: Expanding evolutionary thinking. Trends Genet. 2013, 29, 439–441. [Google Scholar] [CrossRef]
- Suh, A. The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves. Zool. Scr. 2016, 45, 50–62. [Google Scholar] [CrossRef]
- Fleming, J.F.; Arakawa, K. Systematics of tardigrada: A reanalysis of tardigrade taxonomy with specific reference to Guil et al. (2019). Zool. Scr. 2021, 50, 376–382. [Google Scholar] [CrossRef]
- Keilin, D. The Leeuwenhoek Lecture—The problem of anabiosis or latent life: History and current concept. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1959, 150, 149–191. [Google Scholar] [CrossRef]
- Rebecchi, L.; Altiero, T.; Guidetti, R. Anhydrobiosis: The extreme limit of desiccation tolerance. Invertebr. Surviv. J. 2007, 4, 65–81. [Google Scholar]
- Guidetti, R.; Altiero, T.; Rebecchi, L. On dormancy strategies in tardigrades. J. Insect Physiol. 2011, 57, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Møbjerg, N.; Halberg, K.A.; Jørgensen, A.; Persson, D.; Bjørn, M.; Ramløv, H.; Kristensen, R.M. Survival in extreme environments—On the current knowledge of adaptations in tardigrades: Adaptation to extreme environments in tardigrades. Acta Physiol. 2011, 202, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Greven, H. From johann August Ephraim Goeze to Ernst Marcus: A ramble through the history of early tardigrade research (1773 Until 1929). In Water Bears: The Biology of Tardigrades; Schill, R.O., Ed.; Zoological Monographs; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 2, pp. 1–55. [Google Scholar] [CrossRef]
- Reuner, A.; Hengherr, S.; Brümmer, F.; Schill, R.O. Comparative studies on storage cells in tardigrades during starvation and anhydrobiosis. Curr. Zool. 2010, 56, 259–263. [Google Scholar] [CrossRef]
- Rizzo, A.M.; Negroni, M.; Altiero, T.; Montorfano, G.; Corsetto, P.; Berselli, P.; Berra, B.; Guidetti, R.; Rebecchi, L. Antioxidant defences in hydrated and desiccated states of the tardigrade Paramacrobiotus richtersi. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 156, 115–121. [Google Scholar] [CrossRef]
- Tsujimoto, M.; Imura, S.; Kanda, H. Recovery and reproduction of an Antarctic tardigrade retrieved from a moss sample frozen for over 30 years. Cryobiology 2016, 72, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, I.; Boothby, T.C.; Cesari, M.; Goldstein, B.; Guidetti, R.; Rebecchi, L. Production of reactive oxygen species and involvement of bioprotectants during anhydrobiosis in the tardigrade Paramacrobiotus spatialis. Sci. Rep. 2022, 12, 1938. [Google Scholar] [CrossRef]
- Roszkowska, M.; Gołdyn, B.; Wojciechowska, D.; Księżkiewicz, Z.; Fiałkowska, E.; Pluskota, M.; Kmita, H.; Kaczmarek, Ł. How long can tardigrades survive in the anhydrobiotic state? A search for tardigrade anhydrobiosis patterns. PLoS ONE 2023, 18, e0270386. [Google Scholar] [CrossRef]
- Hara, Y.; Shibahara, R.; Kondo, K.; Abe, W.; Kunieda, T. Parallel evolution of trehalose production machinery in anhydrobiotic animals via recurrent gene loss and horizontal transfer. Open Biol. 2021, 11, 200413. [Google Scholar] [CrossRef] [PubMed]
- Boothby, T.C.; Tapia, H.; Brozena, A.H.; Piszkiewicz, S.; Smith, A.E.; Giovannini, I.; Rebecchi, L.; Pielak, G.J.; Koshland, D.; Goldstein, B. Tardigrades use intrinsically disordered proteins to survive desiccation. Mol. Cell 2017, 65, 975–984. [Google Scholar] [CrossRef]
- Bryndová, M.; Stec, D.; Schill, R.O.; Michalczyk, Ł.; Devetter, M. Dietary preferences and diet effects on life-history traits of tardigrades. Zool. J. Linn. Soc. 2020, 188, 865–877. [Google Scholar] [CrossRef]
- Nylin, S.; Gotthard, K. Plasticity in life-history traits. Annu. Rev. Entomol. 1998, 43, 63–83. [Google Scholar] [CrossRef]
- Schill, R.O. Life-history traits in the tardigrade species Paramacrobiotus kenianus and Paramacrobiotus palaui. J. Limnol. 2013, 72, e20. [Google Scholar] [CrossRef]
- Ito, M.; Saigo, T.; Abe, W.; Kubo, T.; Kunieda, T. Establishment of an isogenic strain of the desiccation-sensitive tardigrade Isohypsibius myrops (Parachela, Eutardigrada) and its life history traits. Zool. J. Linn. Soc. 2016, 178, 863–870. [Google Scholar] [CrossRef]
- Lemloh, M.; Brümmer, F.; Schill, R.O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 2011, 49, 58–61. [Google Scholar] [CrossRef]
- Altiero, T.; Rebecchi, L.; Bertolani, R. Phenotypic variations in the life History of two clones of Macrobiotus richtersi (Eutardigrada, Macrobiotidae). Hydrobiologia 2006, 558, 33–40. [Google Scholar] [CrossRef]
- Sugiura, K.; Minato, H.; Suzuki, A.C.; Arakawa, K.; Kunieda, T.; Matsumoto, M. Comparison of sexual reproductive behaviors in two species of Macrobiotidae (Tardigrada: Eutardigrada). Zool. Sci. 2019, 36, 120. [Google Scholar] [CrossRef] [PubMed]
- Hohberg, K. Tardigrade species composition in young soils and some aspects on life history of Macrobiotus richtersi J. Murray, 1911. Pedobiologia 2006, 50, 267–274. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Gerardo, N.M.; Inouye, D.W.; Medina, M.; Xavier, J.B. Animal Behavior and the Microbiome. Science 2012, 338, 198–199. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Ramalho, M.O.; Bueno, O.C.; Moreau, C.S. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evol. Biol. 2017, 17, 96. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The effect of diet on the human gut microbiome: A Metagenomic analysis in humanized gnotobiotic Mice. Sci. Transl. Med. 2009, 1, 6ra14. [Google Scholar] [CrossRef]
- Vecchi, M.; Newton, I.L.G.; Cesari, M.; Rebecchi, L.; Guidetti, R. The microbial community of tardigrades: Environmental influence and species specificity of microbiome structure and composition. Microb. Ecol. 2018, 76, 467–481. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Roszkowska, M.; Poprawa, I.; Janelt, K.; Kmita, H.; Gawlak, M.; Fiałkowska, E.; Mioduchowska, M. Integrative description of bisexual Paramacrobiotus experimentalis sp. nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol. Phylogenet Evol. 2020, 145, 106730. [Google Scholar] [CrossRef] [PubMed]
- Mioduchowska, M.; Nitkiewicz, B.; Roszkowska, M.; Kačarević, U.; Madanecki, P.; Pinceel, T.; Namiotko, T.; Gołdyn, B.; Kaczmarek, Ł. Taxonomic classification of the bacterial endosymbiont Wolbachia based on next-generation sequencing: Is there molecular evidence for its presence in tardigrades? Genome 2021, 64, 951–958. [Google Scholar] [CrossRef] [PubMed]
- McQueen, J.P.; Gattoni, K.; Gendron, E.M.S.; Schmidt, S.K.; Sommers, P.; Porazinska, D.L. Host identity is the dominant factor in the assembly of nematode and tardigrade gut microbiomes in Antarctic Dry Valley streams. Sci. Rep. 2022, 12, 20118. [Google Scholar] [CrossRef] [PubMed]
- Tibbs-Cortes, L.E.; Tibbs-Cortes, B.W.; Schmitz-Esser, S. Tardigrade community microbiomes in North American orchards include putative endosymbionts and plant pathogens. Front. Microbiol. 2022, 13, 866930. [Google Scholar] [CrossRef]
- Zawierucha, K.; Trzebny, A.; Buda, J.; Bagshaw, E.; Franzetti, A.; Dabert, M.; Ambrosini, R. Trophic and symbiotic links between obligate-glacier water bears (Tardigrada) and cryoconite microorganisms. PLoS ONE 2022, 17, e0262039. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Konecka, E.; Gołdyn, B.; Pinceel, T.; Brendonck, L.; Lukić, D.; Kaczmarek, Ł.; Namiotko, T.; Zając, K.; Zając, T.; et al. Playing peekaboo with a master manipulator: Metagenetic detection and phylogenetic analysis of Wolbachia supergroups in freshwater invertebrates. Int. J. Mol. Sci. 2023, 24, 9400. [Google Scholar] [CrossRef]
- Yu, X.J.; Walker, D.H. The Order Rickettsiales. In The Prokaryotes: Volume 5: Proteobacteria: Alpha and Beta Subclasses; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 493–528. [Google Scholar] [CrossRef]
- Jeyaprakash, A.; Hoy, M.A. Long PCR improves Wolbachia DNA amplification: Wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 2000, 9, 393–405. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Jan Czyż, M.; Gołdyn, B.; Kilikowska, A.; Namiotko, T.; Pinceel, T.; Łaciak, M.; Sell, J. Detection of bacterial endosymbionts in freshwater crustaceans: The applicability of non-degenerate primers to amplify the bacterial 16S rRNA gene. PeerJ 2018, 6, e6039. [Google Scholar] [CrossRef]
- Mioduchowska, M.; Katarzyna, Z.; Tadeusz, Z.; Jerzy, S. Wolbachia and Cardinium infection found in threatened unionid species: A new concern for conservation of freshwater mussels? Conserv. Genet. 2020, 21, 381–386. [Google Scholar] [CrossRef]
- Lewis, Z.; Lizé, A. Insect behaviour and the microbiome. Curr. Opin. Insect Sci. 2015, 9, 86–90. [Google Scholar] [CrossRef]
- Engelstädter, J.; Hurst, G.D.D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 127–149. [Google Scholar] [CrossRef]
- Ferrari, J.; Vavre, F. Bacterial symbionts in insects or the story of communities affecting communities. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Bertolani, R. Evolution of the reproductive mechanisms in tardigrades—A review. Zool. Anz. 2001, 240, 247–252. [Google Scholar] [CrossRef]
- Sugiura, K.; Matsumoto, M. Spermatozoa morphology changes during reproduction and first observation of acrosomal contact in two dioecious species of Macrobiotidae (Tardigrada: Eutardigrada). Zygote 2021, 29, 42–48. [Google Scholar] [CrossRef]
- Sugiura, K.; Shiba, K.; Inaba, K.; Matsumoto, M. Morphological differences in tardigrade spermatozoa induce variation in gamete motility. BMC Zool. 2022, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Stec, D.; Arakawa, K.; Michalczyk, Ł. An integrative description of Macrobiotus shonaicus sp. nov. (Tardigrada: Macrobiotidae) from Japan with notes on its phylogenetic position within the hufelandi group. PLoS ONE 2018, 13, e0192210. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayastha, P.; Mioduchowska, M.; Warguła, J.; Kaczmarek, Ł. A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key. Diversity 2023, 15, 977. https://doi.org/10.3390/d15090977
Kayastha P, Mioduchowska M, Warguła J, Kaczmarek Ł. A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key. Diversity. 2023; 15(9):977. https://doi.org/10.3390/d15090977
Chicago/Turabian StyleKayastha, Pushpalata, Monika Mioduchowska, Jędrzej Warguła, and Łukasz Kaczmarek. 2023. "A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key" Diversity 15, no. 9: 977. https://doi.org/10.3390/d15090977
APA StyleKayastha, P., Mioduchowska, M., Warguła, J., & Kaczmarek, Ł. (2023). A Review on the Genus Paramacrobiotus (Tardigrada) with a New Diagnostic Key. Diversity, 15(9), 977. https://doi.org/10.3390/d15090977