Clinical Performance of Short Expandable Dental Implants for Oral Rehabilitation in Highly Atrophic Alveolar Bone: 3-year Results of a Prospective Single-Center Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Informed Consent
2.3. Study Population and Measures
2.4. Implants
2.5. Surgical and Prosthetic Protocol
2.6. Clinical and Radiological Follow-up
2.7. Data Gathering and Statistics
3. Results
3.1. Study Population
3.2. Oral Health-Related Quality of Life
3.3. Biomechanical Implant Stability
3.4. Crestal Bone Changes
4. Discussion
4.1. Oral Health-Related Quality of Life
4.2. Implant Stability under Difficult Conditions
4.3. Peri-Implant Crestal Bone Loss
4.4. Limitations of the Study and External Validity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fretwurst, T.; Nack, C.; Al-Ghrairi, M.; Raguse, D.; Stricker, A.; Schmelzeisen, R.; Nelson, K.; Nahles, S. Long-term retrospective evaluation of the peri-implant bone level in onlay grafted patients with iliac bone from the anterior superior iliac crest. J. Craniomaxillofac. Surg. 2015, 43, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, J.W.; Rujiter, J.; Cune, M.S.; Terlou, M.; Zoon, M. Onlay grafts in combination with endosseous implants in severe mandibular atrophy: One year results of a prospective, quantitative radiological study. Clin. Oral Implants Res. 2000, 11, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Nkenke, E. Short implants. Do they replace reconstruction of the alveolar crest? Der MKG-Chirurg 2013, 6, 221–227. [Google Scholar] [CrossRef]
- Esposito, M.; Barausse, C.; Pistilli, R.; Sammartino, G.; Grandi, G.; Felice, P. Short implants versus bone augmentation for placing long implants in atrophic maxillae: One-year post-loading results of a pilot randomised controlled trial. Eur. J. Oral Implantol. 2015, 8, 257–268. [Google Scholar]
- Schincaglia, G.P.; Thoma, D.S.; Haas, R.; Tutak, M.; Garcia, A.; Taylor, T.D.; Hämmerle, C.H. Randomised controlled multicenter study comparing short dental implants (6 mm) versus longer dental implants (11–15 mm) in combination with sinus floor elevation procedures. Part 2: Clinical and radiographic outcomes at 1 year of loading. J. Clin. Periodontol. 2015, 42, 1042–1051. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, M.; Vazquez, L.; Rieder, P.; Moraguez, O.; Bernard, J.P.; Belser, U.C. Survival rates of short (6 mm) micro-rough surface implants: A review of literature and meta-analysis. Clin. Oral Implants Res. 2014, 25, 539–545. [Google Scholar] [CrossRef]
- Slotte, C.; Grønningsaeter, A.; Halmøy, A.M.; Öhrnell, L.O.; Mordenfeld, A.; Isaksson, S.; Johansson, L.Å. Four-millimeter-long posterior-mandible implants: 5-year outcomes of a prospective multicenter study. Clin. Implant Dent. Relat. Res. 2015, 17 (Suppl. 2), e385–e395. [Google Scholar] [CrossRef]
- Thoma, D.S.; Haas, R.; Tutak, M.; Garcia, A.; Schincaglia, G.P.; Hämmerle, C.H. Randomised controlled multicenter study comparing short dental implants (6 mm) versus longer dental implants (11–15 mm) in combination with sinus floor elevation procedures. Part 1: Demographic and patient-reported outcomes at 1 year of loading. J. Clin. Periodontol. 2015, 42, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, A.; Herrmann, J.; Glauche, I.; Vollmer, A.; Schlegel, K.A.; Lutz, R. Survival and patient satisfaction of short implants during the first 2 years of function: A retrospective cohort study with 694 implants in 416 patients. Clin. Oral Implants Res. 2016, 27, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Pierrisnard, L.; Renouard, F.; Renault, P.; Barquins, M. Influence of implant length and bicortical anchorage on implant stress distribution. Clin. Implant Dent. Relat. Res. 2003, 5, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Baggi, L.; Capelloni, I.; Di Girolamo, M.; Maceri, F.; Vairo, G. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: A three-dimensional finite element analysis. J. Prosthet. Dent. 2008, 100, 422–431. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, S.L.; Verri, F.R.; Santiago, J.F., Jr.; Almeida, D.A.; De Mello, C.C.; Pellizzer, E.P. A 3-D finite element study of the influence of crown-implant ratio on stress distribution. Braz. Dent. J. 2013, 24, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Moraes, S.L.; Pellizzer, E.P.; Verri, F.R.; Santiago, J.F., Jr.; Silva, J.V. Three-dimensional finite element analysis on stress distribution in retention screws of different crown-implant ratios. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Petrie, C.S.; Williams, J.L. Comparative evaluation of implant designs: Influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin. Oral Implants Res. 2005, 16, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Romanos, G.E.; Kuyunov, O.; Sacks, D.; Calvo-Guirado, J.L.; Delgado-Ruiz, R. Apical stability of implants with progressive thread design in vitro, based on clinicians with different level of experience. J. Periodontol. 2019, 90, 1320–1324. [Google Scholar] [CrossRef]
- Nunes, M.; Almeida, R.F.; Felino, A.C.; Malo, P.; Nobre, M. The influence of crown-to-implant ratio on short implant marginal bone loss. Int. J. Oral Maxillofac. Implants 2016, 31, 1156–1163. [Google Scholar] [CrossRef]
- Brenner, M.; Brandt, J.; Lauer, H.C. Prothetische Versorgung auf kurzen Implantaten. Zahnmed. up2date 2014, 2, 123–142. (In German) [Google Scholar] [CrossRef] [Green Version]
- Eitner, S.; Wichmann, M.; Schlegel, K.A.; Kollmannberger, J.E.; Nickenig, H.J. Oral health-related quality of life and implant therapy: An evaluation of preoperative, intermediate, and post-treatment assessments of patients and physicians. J. Craniomaxillofac. Surg. 2012, 40, 20–23. [Google Scholar] [CrossRef]
- Cawood, J.I.; Howel, R.A. A classification of edentulous jaws. Int. J. Oral Maxillofac. Surg. 1988, 17, 232–236. [Google Scholar] [CrossRef]
- Anitua, E.; Pinas, L.; Escuer-Artero, V.; Fernandez, R.S.; Alkhraisat, M.H. Short dental implants in patients with oral lichen planus: A long-term follow-up. Br. J. Oral Maxillofac. Surg. 2018, 56, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Ngyen, T.T.H.; Eo, M.Y.; Cho, Y.J.; Myoung, H.; Kim, S.M. 7-mm-long dental implants: Retrospective clinical outcome in medically compromised patients. J. Korean Assoc. Oral Maxillofac. Surg. 2019, 45, 260–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edher, F.; Ngyen, C.T. Short dental implants: A scoping review of literature for patients with head and neck cancer. J. Prosthet. Dent. 2018, 119, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Reich, W.; Schweyen, R.; Heinzelmann, C.; Hey, J.; Al-Nawas, B.; Eckert, A.W. Novel expandable short dental implants in situations with reduced vertical bone height—Technical note and first results. Int. J. Implant Dent. 2017, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Buser, D.; Weber, H.P.; Lang, N.P. Tissue integration of non-submerged implants. 1-year results of a prospective study with 100 ITI hollow-cylinder and hollow-screw implants. Clin. Oral Implant Res. 1990, 1, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Karoussis, I.K.; Brägger, U.; Salvi, G.E.; Bürgin, W.; Lang, N.P. Effect of implant design on survival and success rates of titanium oral implants: A 10-year prospective cohort study of the ITI dental implant system. Clin. Oral Implants Res. 2004, 15, 8–17. [Google Scholar] [CrossRef]
- John, M.T.; Micheelis, W.; Biffar, R. Reference values in oral health-related quality of life for the abbreviated version of the Oral Health Impact Profile. Schweiz. Monatsschr. Zahnmed. 2004, 114, 784–791. [Google Scholar]
- John, M.T.; Miglioretti, D.L.; LeResche, L.; Koepsell, T.D.; Hujoel, P.; Micheelis, W. German short forms of the Oral Health Impact Profile. Community Dent. Oral Epidemiol. 2006, 34, 277–288. [Google Scholar] [CrossRef]
- Herrero-Climent, M.; Santos-Garcia, R.; Jaramillo-Santos, R.; Romero-Ruis, M.M.; Fernandez-Palacin, A.; Lazaro-Calvo, P.; Bullon, P.; Rios-Santos, J.V. Assesment of osstell isq‘s reliability for implant stability measurement: A cross-sectional clinical study. Med. Oral Pathol. Oral Cir. Buccal 2013, 18, e877–e882. [Google Scholar] [CrossRef]
- Sennerby, L. 20 Jahre Erfahrung mit der Resonanzfrequenzanalyse. Implantologie 2013, 21, 21–33. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Indikationsklassen für Implantatversorgung zur Regelversorgung. Konsensuskonferenz Implantologie. Available online: www.konsensuskonferenz-implantologie.eu (accessed on 5 May 2014).
- Lekholm, U.; Zarb, G.A. Patient selection and preparation. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry, 1st ed.; Branemark, P.I., Zarb, G.A., Albrektsson, T., Eds.; Quintessence: Chicago, IL, USA, 1985; pp. 199–209. [Google Scholar]
- Sclar, A.G. Chirurgische Techniken zur Versorgung der Periimplantären Weichgewebe. In Weichgewebe und Ästhetik in der Implantologie, 1st ed.; Quintessence Publishung: Berlin, Germany, 2004; pp. 46–49. (In German) [Google Scholar]
- Kim, Y.; Oh, T.J.; Misch, C.E.; Wang, H.L. Occlusal considerations in implant therapy: Clinical guidelines with biomechanical rationale. Clin. Oral Implants Res. 2005, 16, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.D. Occlusion in implant dentistry. A review of the literature of prosthetic determinants and current consepts. Aust. Dent. J. 2008, 53 (Suppl. 1), S60–S68. [Google Scholar] [CrossRef]
- Gomez-Roman, G.; Schulte, W.; D’Hoedt, B.; Axman-Krcmar, D. The Frialit-2 implant system: Five-year clinical experience in single-tooth and immediately postextraction applications. Int. J. Oral Maxillofac. Implants 1997, 12, 299–309. [Google Scholar] [PubMed]
- Linkevicius, T. Zero Bone Loss Consepts, 1st ed.; Quintessence Publishing: Berlin, Germany, 2019; pp. 3–6. [Google Scholar]
- Karthikeyan, I.; Desai, S.R.; Singh, R. Short implants: A systematic review. J. Indian Soc. Periodontol. 2012, 16, 302–312. [Google Scholar] [CrossRef]
- Dursun, E.; Keceli, H.G.; Uysal, S.; Güngör, H.; Muhtarogullari, M.; Tözüm, T.F. Management of limited vertical bone height in the posterior mandible: Short dental implants versus nerve lateralization with standard length implants. J. Craniofac. Surg. 2016, 27, 578–585. [Google Scholar] [CrossRef]
- Malmstrom, H.; Gupta, B.; Ghanem, A.; Cacciato, R.; Ren, Y.; Romanos, G.E. Success rate of short dental implants supporting single crowns and fixed bridges. Clin. Oral Implants Res. 2016, 27, 1093–1098. [Google Scholar] [CrossRef]
- Felice, P.; Pistilli, R.; Barausse, C.; Bruno, V.; Pestilli, V.; Piattelli, M.; Ippolito, D.R.; Esposito, M. Posterior atrophic jaws rehabilitated with prostheses supported by 6 mm long and 4 mm wide implants or by longer implants in augmented bone. 3-year post-loading results from a randomised controlled trial. Eur. J. Oral Implantol. 2018, 11, 175–187. [Google Scholar]
- Rossi, F.; Lang, N.P.; Ricci, E.; Ferraioli, L.; Baldi, N.; Botticelli, D. Long-term follow-up of single crowns supported by short, moderately rough implants—A prospective 10-year cohort study. Clin. Oral Implants Res. 2018, 29, 1212–1219. [Google Scholar] [CrossRef]
- Varela, A.; Jolette, J. Bone toolbox: Biomarkers, imaging tools, biomechanics, and histomorphometry. Toxicol. Pathol. 2018, 46, 511–529. [Google Scholar] [CrossRef]
- Ribeiro-Rotta, R.F.; Lindh, C.; Castro Pereira, A.; Rohlin, M. Ambiguity in bone tissue characteristics as presented in studies on dental implant planning and placement: A systematic review. Clin. Oral Implants Res. 2011, 22, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Parsa, A.; Ibrahim, N.; Hassan, B.; van der Stelt, P.; Wismeijer, D. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and Cone beam-CT. Clin. Oral Implants Res. 2015, 26, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Triches, D.F.; Alonso, F.R.; Mezzomo, L.A.; Schneider, D.R.; Villaronho, E.A.; Rockenbach, M.I.; Teixeira, E.R.; Shinkai, R.S. Relation between insertion torque and tactile, visual, and rescaled gray value measures of bone quality: A cross-sectional clinical study with short implants. Int. J. Implant Dent. 2019, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bechara, S.; Kubilius, R.; Veronesi, G.; Pires, J.T.; Shibli, J.A.; Mangano, F.G. Short (6-mm) dental implants versus sinus floor elevation and placement of longer (≥10 mm) dental implants: A randomized controlled trial with a 3-year follow-up. Clin. Oral Implants Res. 2017, 28, 1097–1107. [Google Scholar] [CrossRef]
- Reißmann, D.R.; Krautz, M.; Schierz, O.; John, M.T.; Rudolph, M.; Szentpétery, A. Was ist klinisch relevant bei Veränderungen der Mundgesundheit? Ergebnisse der deutschen Kurzversion des Oral Health Impact Profiles (OHIP-G14). Dtsch. Zahnärztl. Z. 2008, 63, 668–679. (in German). [Google Scholar]
- Polyzois, G.; Lagouvardos, P.; Partalis, C.; Zoidis, P.; Polyzois, H. Short-term assessment of the OHIP-14 scale on denture wearers using adhesives. J. Prosthodont. 2015, 24, 373–380. [Google Scholar] [CrossRef]
- Xiao, J.R.; Li, D.H.; Chen, Y.X.; Chen, S.J.; Guan, S.M.; Kong, L. Evaluation of fixation of expandable implants in the mandibles of ovarectomized sheep. J. Oral Maxillofac. Surg. 2013, 71, 682–688. [Google Scholar] [CrossRef]
- Nowzari, H.; Chee, W.; Tuan, A.; Abou-Rass, M.; Landesman, H.M. Clinical and microbiological aspects of the Sargon immediate load implant. Compend. Contin. Educ. Dent. 1998, 19, 686–689. [Google Scholar]
- Pommer, B.; Hingsammer, L.; Haas, R.; Mailath-Pokorny, G.; Busenlechner, D.; Watzek, G.; Fürhauser, R. Denture-related biomechanical factors for fixed partial dentures retained on short dental implants. Int. J. Prosthodont. 2015, 28, 412–414. [Google Scholar] [CrossRef] [Green Version]
- Quaranta, A.; D’Isidoro, O.; Bambini, F.; Putignano, A. Potential bone to implant contact area of short versus standard implants: An in vitro micro-computed tomography analysis. Implant Dent. 2016, 25, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.R.; Li, Y.F.; Guan, S.M.; Song, L.; Xu, L.X.; Kong, L. The biomechanical analysis of simulation implants in function under osteoporotic jawbone by comparing cylindrical, apical tapered, neck tapered, and expandable type implants: A 3-dimensional finite element analysis. J. Oral Maxillofac. Surg. 2011, 69, e273–e281. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.J.; Park, J.C.; Yun, J.H.; Jung, U.W.; Kim, C.S.; Choi, S.H.; Cho, K.S. A short-term clinical study of marginal bone level change around microthreded and platform-switched implants. J. Periodontal Implant Sci. 2011, 41, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Padmanabhan, T.V. Resonance frequence analysis. Indian J. Dent. Res. 2011, 22, 567–573. [Google Scholar] [CrossRef]
- Becker, W.; Becker, B.E.; Hujoel, P.; Abu Raz, Z.; Goldstein, M.; Smidt, A. Prospective clinical trial evaluating a new implant system for implant survival, implant stability and radiographic bone changes. Clin. Implant Dent. Relat. Res. 2013, 15, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, S.A.; Pérez-Albacete Martinez, C.; Piattelli, A.; Shibli, J.A.; Markovic, A.; Calvo Guirado, J.L. The influence of three different apical implant designs at stability and osseointegration process: Experimental study in rabbits. Clin. Oral Implants Res. 2017, 28, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.G.; Jimbo, R.; Tovar, N.; Bonfante, E.A. Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent. Mater. 2015, 31, 37–52. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Flores, J.; Alkhraisat, M.H. Transcrestal sinus lift using platelet concentrates in association to short implant placement: A retrospective study of augmented bone height remodeling. Clin. Implant Dent. Relat. Res. 2016, 18, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.H.; Neiva, R.; Coelho, P.G.; Lukasz, W.; Tovar, N.M.; Lo, I.C.; Gil, L.F.; Torroni, A. Alveolar ridge expansion: Comparison of osseodensification and conventional osteotome techniques. J. Craniofac. Surg. 2019, 30, 607–610. [Google Scholar] [CrossRef]
- González-Serrano, J.; Molinero-Mourelle, P.; Pardal-Peláez, B.; Sáez-Alcaide, L.M.; Ortega, R.; López-Quiles, J. Influence of short implants geometry on primary stability. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e602–e607. [Google Scholar] [CrossRef]
- Weerapong, K.; Sirimongkolwattana, S.; Sastraruji, T.; Khongkhunthian, P. Comparative study of immediate loading on short dental implants and conventional dental implants in the posterior mandible: A randomized clinical trial. Int. J. Oral Maxillofac. Implants 2019, 34, 141–149. [Google Scholar] [CrossRef]
- Duan, X.B.; Wu, T.X.; Guo, Y.C.; Zhou, X.D.; Lei, Y.L.; Xu, X.; Mo, A.C.; Wang, Y.Y.; Yuan, Q. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing. Int. J. Oral Sci. 2017, 9, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martellacci, L.; Quaranta, G.; Patini, R.; Isola, G.; Gallenzi, P.; Masucci, L. A literature review of metagenomics and culturomics of the peri-implant microbiome: Current evidence and future perspectives. Materials 2019, 12, 3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martellacci, L.; Quaranta, G.; Fancello, G.; D’Addona, A.; Sanguinetti, M.; Patini, R.; Masucci, L. Characterizing peri-implant and sub-gingival microbiota through culturomics. First isolation of some species in the oral cavity. A pilot study. Pathogens 2020, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Pesce, P.; Patini, R.; Antonacci, D.; Tommasato, G. What are the effects of different abutment morphologies on peri-implant hard and soft tissue behavior? A systematic review and meta-analysis. Int. J. Prosthodont. 2020, 33, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, K.; Ayukawa, Y.; Matsuzaki, T.; Kihara, M.; Koyano, K. The influence of implant-abutment connection on the screw loosening and microleakage. Int. J. Implant Dent. 2018, 4, 11. [Google Scholar] [CrossRef]
- Hall, J.; Neilands, J.; Davies, J.R.; Ekestubbe, A.; Friberg, B. A randomized, controlled clinical study on a new titanium oxide abutment surface for improved healing and soft tissue health. Clin. Implant Dent. Relat. Res. 2019, 21, 55–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streckbein, P.; Streckbein, R.G.; Wilbrand, J.F.; Malik, C.Y.; Schaaf, H.; Howaldt, H.P.; Flach, M. Non-linear 3D evaluation of different oral implant-abutment connections. J. Dent. Res. 2012, 91, 1184–1189. [Google Scholar] [CrossRef]
- Pellizzer, E.P.; De Mello, C.C.; Santiago Junior, J.F.; De Souza Batista, V.E.; de Faria Almeida, D.A.; Verri, F.R. Analysis of the biomechanical behavior of short implants: The photo-elasticity method. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 187–192. [Google Scholar] [CrossRef]
- Khurana, N.; Rodrigues, S.; Shenoy, S.; Saldanha, S.; Pai, U.; Shetty, T.; Srikant, N.; Mahesh, M.; Hegde, P. A comparative evaluation of stress distribution with two attachment systems of varying heights in a mandibular implant-supported overdenture: A three-dimensional finite element analysis. J. Prosthodont. 2019, 28, e795–e805. [Google Scholar] [CrossRef]
- Stimmelmayr, M.; Stangl, M.; Edelhoff, D.; Beuer, F. Clinical prospective study of a modified technique to extend the keratinized gingiva around implants in combination with ridge augmentation: One-year results. Int. J. Oral Maxillofac. Implants 2011, 26, 1094–1101. [Google Scholar]
- Wang, Y.; Zhang, Y.; Miron, R.J. Health, maintenance, and recovery of soft tissues around implants. Clin. Implant Dent. Relat. Res. 2016, 18, 618–634. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.L.; Masri, R.M.; Williams, D.A.; Ji, C.; Romberg, E. Free gingival grafts for implants exhibiting lack of keratinised mucosa: A prospective controlled randomized clinical study. J. Clin. Periodontol. 2017, 44, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Felice, P.; Pistilli, R.; Barausse, C.; Bruno, V.; Trullenque-Eriksson, A.; Esposito, M. Short implants as an alternative to crestal sinus lift: A 1-year multicentre randomised controlled trial. Eur. J. Oral Implantol. 2015, 8, 375–384. [Google Scholar] [PubMed]
- Felice, P.; Barausse, C.; Pistilli, R.; Ippolito, D.R.; Esposito, M. Short implants versus longer implants in vertically augmented posterior mandibles: Results at 8 years after loading from a randomised controlled trial. Eur. J. Oral Implantol. 2018, 11, 385–395. [Google Scholar] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Adult patients | Comorbidity ASA score > III |
Partially or totally edentulous | Pregnancy, bruxism |
Alveolar process atrophy (Cawood and Howell category III–IV) | Smoking ≥10 cigarettes/d |
Minimum alveolar bone height of 7–9 mm for placement of short implants (5–7 mm length) | Patients with a significant risk of developing osteo(radio)necrosis of the jaw (radiotherapy ≥50 Gy, intravenous bisphosphonate therapy) |
Patients that were not willing to accept vertical alveolar bone augmentation | Neurological and psychiatric comorbidities likely to influence the course of treatment |
First implantological treatment | Untreated or poorly controlled diabetes mellitus, immunosuppression |
Comorbidity ASA score I–III | Highly atrophic jaws that required vertical augmentation (Cawood and Howell category > IV) |
Surgical Protocol | Bone Quality | |||
---|---|---|---|---|
D1 (large homogenous cortical bone, little trabecular bone) | D2 (thick cortical bone, dense trabecular bone) | D3 (thin cortical bone, dense trabecular bone) | D4 (thin cortical bone, sparse trabecular bone) | |
| last drill | last drill | second-to-last drill | second-to-last drill (cortical bone only) |
| - | - | - | analog to last drill |
|
Patient * (Gender) | Age (Years) | ASA Score/ Systemic Disease | Surgery (Year) | Oral Disease/ Smoking | Implant Position (FDI; Σ) | Indication Category ** | Bone Quality (Lekholm and Zarb) | Alveolar Process Atrophy (Cawood and Howell) | Prosthetic Treatment | Implant Failure | Follow-up Period (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|
1. # (female) | 80 | 2/ Diabetes mellitus, bronchitis, arterial hypertension | 2014 | None/ no | Maxilla | IIa | D4 | IV | Telescope | 1 (before loading) ## | 64 |
2. # (female) | 64 | 1/ Osteoporosis | 2014 | None/ no | Maxilla 14, 12, 22, 24 (Σ = 4) | IIIa | D4 | IV | Jaw bar | None | 61 |
3. # (male) | 53 | 2/ Cured squamous-cell carcinoma (floor of the mouth) | 2014 | History of marginal periodontitis/ yes | Maxilla (Σ = 3) | IIb | D3 | IV | Ball attachment | 2 (under loading) ## | 60 |
4. (male) | 67 | 1 | 2015 | None/ no | Maxilla 17(2x, | IIIa | D3-D4 | IV | Jaw bar | 3 (before loading) ## | 55 |
5. (female) | 62 | 1 | 2015 | History of mid-facial trauma/ no | Maxilla 16, 14, 12, 22, 24, 26 (Σ = 6) | IIIa | D4 | IV | Jaw bar | None | 52 |
6. (male) | 54 | 2/ Cured squamous-cell carcinoma (tongue) | 2016 | Chronic mucositis/ yes | Maxilla 14, 12, 22, 24 (Σ = 4) | IIIa | D3 | IV | Ball attachment | None | 40 |
7. (male) | 50 | 1 | 2017 | History of marginal periodontitis/ yes | Maxilla 15, 13, 23, 25 (Σ = 4) | IIIa | D3 | III | Ball attachment | None | 32 |
8. # (female) | 44 | 1 | 2014 | None/ no | Maxilla 16, 15, 14 (Σ = 3) | IIa | D3 | III | Bridge | None | 60 |
9. (male) | 76 | 1 | 2015 | None/ no | Maxilla 16, 15, 14 (Σ = 3) | IIb | D3 | III | Bridge | None | 56 |
10. (male) | 61 | 1 | 2015 | None/ no | Maxilla 24, 25 (Σ = 2) | IIb | D2 | III | Bridge | None | 51 |
11. (female) | 62 | 1 | 2015 | History of marginal periodontitis/ no | Maxilla 16, 15, 25, 26 (Σ = 4) | IIb | D4 | IV | Bridge | None | 48 |
12. (male) | 57 | 1 | 2015 | History of marginal periodontitis/ no | Maxilla 26, 27 (Σ = 2) | IIb | D3 | III | Bridge | None | 47 |
13. (male) | 53 | 1 | 2016 | None/ no | Maxilla 25, 26 (Σ = 2) | IIb | D3 | III | Bridge | None | 46 |
14. (female) | 58 | 2/ Cured HCV infection | 2016 | History of marginal periodontitis/ yes | Maxilla 16, 14, 25, 26 (Σ = 4) | IIb | D3-D4 | III | Bridge | None | 41 |
15. # (female) | 65 | 2/ Chronic bronchitis, arterial hypertension | 2014 | None/ no | Mandible 34, | IIIb | D1 | IV | Ball attachment | 1 (under loading) ## | 61 |
16. # (female) | 72 | 2/ Osteoarthrosis | 2015 | History of marginal periodontitis/ no | Mandible 42, 44, 46 (Σ = 3) | IIb | D2 | IV | Ball attachment | None | 50 |
17. (female) | 74 | 3/ Congestive heart failure, arterial hypertension, sicca syndrome | 2016 | None/ no | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D3 | IV | Ball attachment | None | 43 |
18. (male) | 69 | 3/ Cured squamous-cell cancer (oropharynx) | 2016 | Chronic mucositis/ yes | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D2 | IV | Jaw bar | None | 41 |
19. (female) | 63 | 2/ Hypothyroidism | 2016 | None/ no | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D3 | IV | Jaw bar | None | 41 |
20. (female) | 66 | 2/ Osteoporosis | 2016 | History of marginal periodontitis/ no | Mandible 35, 45 (Σ = 2) | IIb | D3 | IV | Ball attachment | None | 40 |
21. (male) | 76 | 3/ Arteriosclerosis, hemiplegia | 2016 | None/ yes | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D2 | IV | Jaw bar | None | 37 |
22. (male) | 59 | 2/ Venous thrombosis | 2016 | None/ no | Mandible 34, 32, | IIIb | D2 | IV | Ball attachment | 1 (under loading) ## | 37 |
23. (female) | 80 | 3/ Coronary arteriosclerosis, congestive heart failure | 2017 | None/ no | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D2 | IV | Ball attachment | None | 32 |
24. (female) | 83 | 3/ Cured squamous-cell carcinoma (maxilla) | 2017 | Leukoplakia/ no | Mandible 34, 32, 42, 44 (Σ = 4) | IIIb | D2 | IV | Ball attachment | None | 32 |
25. (female) | 55 | 1 | 2018 | None/ no | Mandible 35, 31/41, 45 (Σ = 3) | IIIb | D2 | IV | Ball attachment | None | 21 |
26. # (male) | 76 | 1 | 2014 | None/ no | Mandible 35, 36, 37 (Σ = 3) | IIb | D1 | III | Bridge | None | 60 |
27. # (female) | 52 | 1 | 2015 | History of marginal periodontitis/ no | Mandible 35, 36, 37 (Σ = 3) | IIb | D2 | III | Bridge | None | 56 |
28. # (female) | 59 | 1 | 2015 | None/ no | Mandible 35, 36 (Σ = 2) | IIb | D2 | IV | Bridge | None | 51 |
29. (female) | 59 | 2/ Gastric ulcer | 2016 | None/ no | Mandible 47 (Σ = 1) | Ib | D2 | III | Crown | None | 44 |
30. (female) | 48 | 1 | 2016 | None/ yes | Mandible 35, 36 (Σ = 2) | IIb | D2 | III | Bridge | None | 37 |
OHIP-14 Dimension | Variables | Baseline Median (IQR) | Post-Rehabilitation Median (IQR) | Statistics (Wilcoxon Signed Rank Test for Paired Samples) |
---|---|---|---|---|
Functional limitation | Have you had trouble pronouncing any words because of problems with your teeth, mouth, or dentures? | 1 (0–2.5) | 0 (0–0.5) | p = 0.059 |
Have you felt that your sense of taste has worsened because of…? | 0 (0–1.5) | 0 (0–0) | p = 0.194 | |
Physical pain | Have you experienced painful aching in your mouth? | 2 (0–2) | 0 (0–1.5) | p = 0.168 |
Have you found it uncomfortable to eat any foods? | 3 (1–3.5) | 1 (0–1.5) | p = 0.039 * | |
Psychological discomfort | Have you been self-conscious about…? | 2 (0.5–3) | 0 (0–0) | p = 0.026 * |
Have you felt tense? | 2 (0–2.5) | 0 (0–1) | p = 0.031 * | |
Physical disability | Has your diet been unsatisfactory? | 2 (0.5–3.5) | 0 (0–2) | p = 0.071 |
Have you had to interrupt meals? | 2 (0.5–2.5) | 0 (0–0) | p = 0.027 * | |
Psychological disability | Have you found it difficult to relax? | 1 (0.5–2.5) | 0 (0–1) | p = 0.071 |
Have you been slightly embarrassed? | 1 (0.5–2) | 0 (0–0) | p = 0.015 * | |
Social disability | Have you been slightly irritable around other people? | 1 (0.5–2) | 0 (0–0) | p = 0.023 * |
Have you found it difficult to perform your usual jobs? | 1 (0–2) | 0 (0–0.5) | p = 0.068 | |
Handicap | Have you felt that life in general was less satisfying? | 2 (2–3) | 0 (0–2) | p = 0.041 * |
Have you been totally unable to function? | 0 (0–1) | 0 (0–0) | p = 0.157 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reich, W.; Schweyen, R.; Hey, J.; Otto, S.; Eckert, A.W. Clinical Performance of Short Expandable Dental Implants for Oral Rehabilitation in Highly Atrophic Alveolar Bone: 3-year Results of a Prospective Single-Center Cohort Study. Medicina 2020, 56, 333. https://doi.org/10.3390/medicina56070333
Reich W, Schweyen R, Hey J, Otto S, Eckert AW. Clinical Performance of Short Expandable Dental Implants for Oral Rehabilitation in Highly Atrophic Alveolar Bone: 3-year Results of a Prospective Single-Center Cohort Study. Medicina. 2020; 56(7):333. https://doi.org/10.3390/medicina56070333
Chicago/Turabian StyleReich, Waldemar, Ramona Schweyen, Jeremias Hey, Sven Otto, and Alexander Walter Eckert. 2020. "Clinical Performance of Short Expandable Dental Implants for Oral Rehabilitation in Highly Atrophic Alveolar Bone: 3-year Results of a Prospective Single-Center Cohort Study" Medicina 56, no. 7: 333. https://doi.org/10.3390/medicina56070333
APA StyleReich, W., Schweyen, R., Hey, J., Otto, S., & Eckert, A. W. (2020). Clinical Performance of Short Expandable Dental Implants for Oral Rehabilitation in Highly Atrophic Alveolar Bone: 3-year Results of a Prospective Single-Center Cohort Study. Medicina, 56(7), 333. https://doi.org/10.3390/medicina56070333