Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Surgical Technique and Rehabilitation
2.3. Radiographic Evaluation
2.4. Clinical Evaluation
2.5. Second-Look Arthroscopy and Graft Evaluation Method
2.6. Statistical Analysis
3. Results
3.1. Radiologic Outcomes
3.2. Clinical Outcomes
3.3. Second-Look Arthroscopic Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Barrow, A.E.; Pilia, M.; Guda, T.; Kadrmas, W.R.; Burns, T.C. Femoral suspension devices for anterior cruciate ligament reconstruction: Do adjustable loops lengthen? Am. J. Sports Med. 2014, 42, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Mayr, R.; Heinrichs, C.H.; Eichinger, M.; Coppola, C.; Schmoelz, W.; Attal, R. Biomechanical comparison of 2 anterior cruciate ligament graft preparation techniques for tibial fixation: Adjustable-length loop cortical button or interference screw. Am. J. Sports Med. 2015, 43, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Rodeo, S.A.; Kawamura, S.; Kim, H.J.; Dynybil, C.; Ying, L. Tendon healing in a bone tunnel differs at the tunnel entrance versus the tunnel exit: An effect of graft-tunnel motion? Am. J. Sports Med. 2006, 34, 1790–1800. [Google Scholar] [CrossRef]
- Lee, D.H.; Son, D.W.; Seo, Y.R.; Lee, I.G. Comparison of femoral tunnel widening after anterior cruciate ligament reconstruction using cortical button fixation versus transfemoral cross-pin fixation: A systematic review and meta-analysis. Knee Surg. Relat. Res. 2020, 32, 11. [Google Scholar] [CrossRef]
- Mayr, R.; Smekal, V.; Koidl, C.; Coppola, C.; Fritz, J.; Rudisch, A.; Kranewitter, C.; Attal, R. Tunnel widening after ACL reconstruction with aperture screw fixation or all-inside reconstruction with suspensory cortical button fixation: Volumetric measurements on CT and MRI scans. Knee 2017, 24, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.L.; Medeiros, J.V.; Nunes, G.R.S.; de Oliveira, G.T.; Nicolini, A.P. Tibial-graft fixation methods on anterior cruciate ligament reconstructions: A literature review. Knee Surg. Relat. Res. 2021, 33, 7. [Google Scholar] [CrossRef]
- Noonan, B.C.; Bachmaier, S.; Wijdicks, C.A.; Bedi, A. Intraoperative Preconditioning of Fixed and Adjustable Loop Suspensory Anterior Cruciate Ligament Reconstruction With Tibial Screw Fixation-An In Vitro Biomechanical Evaluation Using a Porcine Model. Arthroscopy 2018, 34, 2668–2674. [Google Scholar] [CrossRef]
- Onggo, J.R.; Nambiar, M.; Pai, V. Fixed- Versus Adjustable-Loop Devices for Femoral Fixation in Anterior Cruciate Ligament Reconstruction: A Systematic Review. Arthroscopy 2019, 35, 2484–2498. [Google Scholar] [CrossRef]
- Kamitani, A.; Hara, K.; Arai, Y.; Atsumi, S.; Takahashi, T.; Nakagawa, S.; Fuji, Y.; Inoue, H.; Takahashi, K. Adjustable-Loop Devices Promote Graft Revascularization in the Femoral Tunnel After ACL Reconstruction: Comparison With Fixed-Loop Devices Using Magnetic Resonance Angiography. Orthop. J. Sports Med. 2021, 9, 2325967121992134. [Google Scholar] [CrossRef]
- Asif, N.; Khan, M.J.; Haris, K.P.; Waliullah, S.; Sharma, A.; Firoz, D. A prospective randomized study of arthroscopic ACL reconstruction with adjustable- versus fixed-loop device for femoral side fixation. Knee Surg. Relat. Res. 2021, 33, 42. [Google Scholar] [CrossRef]
- Choi, N.H.; Yang, B.S.; Victoroff, B.N. Clinical and Radiological Outcomes After Hamstring Anterior Cruciate Ligament Reconstructions: Comparison Between Fixed-Loop and Adjustable-Loop Cortical Suspension Devices. Am. J. Sports Med. 2017, 45, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.R.; Sambandam, B.; Singh, A.; Rajagopalakrishnan, R.; Rajasekaran, S. Does Second-Generation Suspensory Implant Negate Tunnel Widening of First-Generation Implant Following Anterior Cruciate Ligament Reconstruction? Knee Surg. Relat. Res. 2018, 30, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Buelow, J.U.; Siebold, R.; Ellermann, A. A prospective evaluation of tunnel enlargement in anterior cruciate ligament reconstruction with hamstrings: Extracortical versus anatomical fixation. Knee Surg. Sports Traumatol. Arthrosc. 2002, 10, 80–85. [Google Scholar] [CrossRef]
- Fauno, P.; Kaalund, S. Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: A prospective randomized study. Arthroscopy 2005, 21, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Baumfeld, J.A.; Diduch, D.R.; Rubino, L.J.; Hart, J.A.; Miller, M.D.; Barr, M.S.; Hart, J.M. Tunnel widening following anterior cruciate ligament reconstruction using hamstring autograft: A comparison between double cross-pin and suspensory graft fixation. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 1108–1113. [Google Scholar] [CrossRef]
- Lind, M.; Feller, J.; Webster, K.E. Bone tunnel widening after anterior cruciate ligament reconstruction using EndoButton or EndoButton continuous loop. Arthroscopy 2009, 25, 1275–1280. [Google Scholar] [CrossRef]
- Oh, J.Y.; Kim, K.T.; Park, Y.J.; Won, H.C.; Yoo, J.I.; Moon, D.K.; Cho, S.H.; Hwang, S.C. Biomechanical comparison of single-bundle versus double-bundle anterior cruciate ligament reconstruction: A meta-analysis. Knee Surg. Relat. Res. 2020, 32, 14. [Google Scholar] [CrossRef]
- Chalmers, P.N.; Mall, N.A.; Moric, M.; Sherman, S.L.; Paletta, G.P.; Cole, B.J.; Bach, B.R., Jr. Does ACL reconstruction alter natural history?: A systematic literature review of long-term outcomes. J. Bone Jt. Surg. Am. 2014, 96, 292–300. [Google Scholar] [CrossRef]
- Leiter, J.R.; Gourlay, R.; McRae, S.; de Korompay, N.; MacDonald, P.B. Long-term follow-up of ACL reconstruction with hamstring autograft. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1061–1069. [Google Scholar] [CrossRef]
- Kim, S.G.; Jung, J.H.; Song, J.H.; Bae, J.H. Evaluation parameters of graft maturation on second-look arthroscopy following anterior cruciate ligament reconstruction: A systematic review. Knee Surg. Relat. Res. 2019, 31, 2. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.G.; Kim, S.H.; Kim, J.G.; Jang, K.M.; Lim, H.C.; Bae, J.H. Hamstring autograft maturation is superior to tibialis allograft following anatomic single-bundle anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1281–1287. [Google Scholar] [CrossRef]
- Fleiss, J.; levin, B.; Paik, M. The measurement of interrater agreement. In Statistical Methods for Rates and Proportions, 3rd ed.; Wiley Online Library: Hoboken, NJ, USA, 1987; Chapter 18. [Google Scholar] [CrossRef]
- Giorgio, N.; Moretti, L.; Pignataro, P.; Carrozzo, M.; Vicenti, G.; Moretti, B. Correlation between fixation systems elasticity and bone tunnel widening after ACL reconstruction. Muscles Ligaments Tendons J. 2016, 6, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Sabat, D.; Kundu, K.; Arora, S.; Kumar, V. Tunnel widening after anterior cruciate ligament reconstruction: A prospective randomized computed tomography—Based study comparing 2 different femoral fixation methods for hamstring graft. Arthroscopy 2011, 27, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Feller, J.; Webster, K.E. Tibial bone tunnel widening is reduced by polylactate/hydroxyapatite interference screws compared to metal screws after ACL reconstruction with hamstring grafts. Knee 2009, 16, 447–451. [Google Scholar] [CrossRef]
- Chang, G.; Rajapakse, C.S.; Babb, J.S.; Honig, S.P.; Recht, M.P.; Regatte, R.R. In vivo estimation of bone stiffness at the distal femur and proximal tibia using ultra-high-field 7-Tesla magnetic resonance imaging and micro-finite element analysis. J. Bone Miner Metab. 2012, 30, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Kuskucu, S.M. Comparison of short-term results of bone tunnel enlargement between EndoButton CL and cross-pin fixation systems after chronic anterior cruciate ligament reconstruction with autologous quadrupled hamstring tendons. J. Int. Med. Res. 2008, 36, 23–30. [Google Scholar] [CrossRef]
- Raj, M.A.V.; Ram, S.M.; Venkateswaran, S.R.; Manoj, J. Bone tunnel widening following arthroscopic reconstruction of anterior cruciate ligament (Acl) using hamstring tendon autograft and its functional consequences. Int. J. Orthop. Sci. 2018, 4, 160–163. [Google Scholar] [CrossRef]
- Mayr, R.; Smekal, V.; Koidl, C.; Coppola, C.; Eichinger, M.; Rudisch, A.; Kranewitter, C.; Attal, R. ACL reconstruction with adjustable-length loop cortical button fixation results in less tibial tunnel widening compared with interference screw fixation. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Monaco, E.; Fabbri, M.; Redler, A.; Gaj, E.; De Carli, A.; Argento, G.; Saithna, A.; Ferretti, A. Anterior cruciate ligament reconstruction is associated with greater tibial tunnel widening when using a bioabsorbable screw compared to an all-inside technique with suspensory fixation. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2577–2584. [Google Scholar] [CrossRef] [Green Version]
- Lopes, O.V., Jr.; de Freitas Spinelli, L.; Leite, L.H.C.; Buzzeto, B.Q.; Saggin, P.R.F.; Kuhn, A. Femoral tunnel enlargement after anterior cruciate ligament reconstruction using RigidFix compared with extracortical fixation. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1591–1597. [Google Scholar] [CrossRef]
- Karikis, I.; Ejerhed, L.; Sernert, N.; Rostgard-Christensen, L.; Kartus, J. Radiographic Tibial Tunnel Assessment After Anterior Cruciate Ligament Reconstruction Using Hamstring Tendon Autografts and Biocomposite Screws: A Prospective Study with 5-Year Follow-Up. Arthroscopy 2017, 33, 2184–2194. [Google Scholar] [CrossRef] [PubMed]
Total (n = 92) | AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|---|
Age (years) | 28.0 ± 11.1 | 29.8 ± 12.0 | 26.0 ± 9.5 | 0.081 |
Sex | 0.557 | |||
Male, n (%) | 79 (85.9) | 40 (83.3) | 39 (88.6) | |
Female, n (%) | 13 (14.1) | 8 (16.7) | 5 (11.4) | |
BMI (kg/m2) | 25.3 ± 3.3 | 25.7 ± 3.4 | 24.9 ± 3.3 | 0.259 |
Immediate Postoperative | 2-Year Postoperative | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 9.10 ± 1.23 | 9.86 ± 1.70 | <0.001 |
Femur AP Middle (mm) | 9.16 ± 1.17 | 10.30 ± 1.82 | <0.001 |
Femur AP Distal (mm) | 9.17 ± 1.15 | 10.45 ± 1.85 | <0.001 |
Tibia AP Proximal (mm) | 9.33 ± 1.05 | 10.63 ± 1.42 | <0.001 |
Tibia AP Middle (mm) | 9.53 ± 1.02 | 11.56 ± 1.60 | <0.001 |
Tibia AP Distal (mm) | 9.60 ± 1.07 | 11.12 ± 1.45 | <0.001 |
Femur Lat Proximal (mm) | 8.64 ± 1.10 | 9.62 ± 1.88 | <0.001 |
Femur Lat Middle (mm) | 8.70 ± 1.12 | 9.98 ± 1.90 | <0.001 |
Femur Lat Distal (mm) | 8.70 ± 1.09 | 9.94 ± 1.85 | <0.001 |
Tibia Lat Proximal (mm) | 9.09 ± 0.88 | 10.94 ± 1.42 | <0.001 |
Tibia Lat Middle (mm) | 9.34 ± 1.02 | 11.70 ± 1.62 | <0.001 |
Tibia Lat Distal (mm) | 9.33 ± 1.11 | 11.67 ± 1.61 | <0.001 |
Immediate Postoperative | 2-Year Postoperative | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 9.61 ± 1.42 | 10.54 ± 1.51 | <0.001 |
Femur AP Middle (mm) | 9.43 ± 1.44 | 10.79 ± 1.53 | <0.001 |
Femur AP Distal (mm) | 9.20 ± 1.18 | 10.76 ± 1.37 | <0.001 |
Tibia AP Proximal (mm) | 9.48 ± 0.85 | 10.81 ± 1.39 | <0.001 |
Tibia AP Middle (mm) | 9.58 ± 0.89 | 10.89 ± 1.06 | <0.001 |
Tibia AP Distal (mm) | 9.53 ± 0.84 | 10.37 ± 1.05 | <0.001 |
Femur Lat Proximal (mm) | 9.19 ± 1.30 | 9.74 ± 1.13 | <0.001 |
Femur Lat Middle (mm) | 8.95 ± 1.09 | 9.86 ± 1.10 | <0.001 |
Femur Lat Distal (mm) | 8.79 ± 0.89 | 9.99 ± 1.02 | <0.001 |
Tibia Lat Proximal (mm) | 9.38 ± 0.87 | 10.38 ± 1.17 | <0.001 |
Tibia Lat Middle (mm) | 9.47 ± 0.82 | 10.50 ± 0.99 | <0.001 |
Tibia Lat Distal (mm) | 9.45 ± 0.87 | 10.30 ± 1.08 | <0.001 |
AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|
Femur AP Proximal (mm) | 0.76 ± 1.37 | 0.93 ± 1.59 | 0.574 |
Femur AP Middle (mm) | 1.14 ± 1.48 | 1.36 ± 1.46 | 0.459 |
Femur AP Distal (mm) | 1.27 ± 1.51 | 1.56 ± 1.45 | 0.355 |
Tibia AP Proximal (mm) | 1.30 ± 1.33 | 1.33 ± 1.61 | 0.914 |
Tibia AP Middle (mm) | 2.03 ± 1.45 | 1.32 ± 1.34 | 0.017 |
Tibia AP Distal (mm) | 1.52 ± 1.41 | 0.84 ± 1.09 | 0.012 |
Femur Lat Proximal (mm) | 0.98 ± 1.47 | 0.54 ± 1.73 | 0.198 |
Femur Lat Middle (mm) | 0.29 ± 1.59 | 0.91 ± 1.46 | 0.244 |
Femur Lat Distal (mm) | 1.23 ± 1.60 | 1.20 ± 1.16 | 0.905 |
Tibia Lat Proximal (mm) | 1.85 ± 1.25 | 1.00 ± 1.19 | 0.001 |
Tibia Lat Middle (mm) | 2.36 ± 1.46 | 1.03 ± 1.10 | <0.001 |
Tibia Lat Distal (mm) | 2.34 ± 1.25 | 0.85 ± 1.27 | <0.001 |
AL Group (n = 48) | IF Group (n = 44) | p-Value * | |
---|---|---|---|
Lysholm score | 82.5 ± 14.5 | 83.5 ± 19.3 | 0.766 |
IKDC subjective score | 75.3 ± 17.4 | 80.5 ± 13.6 | 0.121 |
Tegner activity level ** | 5 | 6 | 0.153 |
AL Group (n = 24) | IF Group (n = 24) | p-Value * | |
---|---|---|---|
Graft integrity ** | 2 | 2 | 1.000 |
Graft synovial coverage ** | 2 | 2 | 0.690 |
Graft tension ** | 2 | 2 | 0.931 |
Graft vascularization ** | 2 | 2 | 0.306 |
KUMC score ** | 8 | 7 | 0.741 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, T.-J.; Jang, K.-M.; Kim, T.-J.; Lee, S.-M.; Bae, J.-H. Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina 2022, 58, 1193. https://doi.org/10.3390/medicina58091193
Lee T-J, Jang K-M, Kim T-J, Lee S-M, Bae J-H. Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina. 2022; 58(9):1193. https://doi.org/10.3390/medicina58091193
Chicago/Turabian StyleLee, Tae-Jin, Ki-Mo Jang, Tae-Jin Kim, Sang-Min Lee, and Ji-Hoon Bae. 2022. "Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction" Medicina 58, no. 9: 1193. https://doi.org/10.3390/medicina58091193
APA StyleLee, T. -J., Jang, K. -M., Kim, T. -J., Lee, S. -M., & Bae, J. -H. (2022). Adjustable-Loop Cortical Suspensory Fixation Results in Greater Tibial Tunnel Widening Compared to Interference Screw Fixation in Primary Anterior Cruciate Ligament Reconstruction. Medicina, 58(9), 1193. https://doi.org/10.3390/medicina58091193