Relationship Between Coronary Collateral Circulation and the Neutrophil-Percentage-to-Albumin Ratio in Patients with Chronic Coronary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory
2.3. Coronary Angiography
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
5.1. Limitations
5.2. Simple Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zimarino, M.; D’Andreamatteo, M.; Waksman, R.; Epstein, S.E.; De Caterina, R. The Dynamics of the Coronary Collateral Circulation. Nat. Rev. Cardiol. 2014, 11, 191–197. [Google Scholar] [CrossRef]
- Stoller, M.; Seiler, C. Pathophysiology of Coronary Collaterals. Curr. Cardiol. Rev. 2014, 10, 38–56. [Google Scholar] [CrossRef]
- Carmeliet, P. Mechanisms of Angiogenesis and Arteriogenesis. Nat. Med. 2000, 6, 389–395. [Google Scholar] [CrossRef]
- Zorkun, C.; Akkaya, E.; Zorlu, A.; Tandoğan, I. Determinants of Coronary Collateral Circulation in Patients with Coronary Artery Disease. Anatol. J. Cardiol. 2013, 13, 146–151. [Google Scholar] [CrossRef]
- Gulec, S.; Ozdemir, A.O.; Maradit-Kremers, H.; Dincer, I.; Atmaca, Y.; Erol, C. Elevated Levels of C-Reactive Protein Are Associated with Impaired Coronary Collateral Development. Eur. J. Clin. Investig. 2006, 36, 369–375. [Google Scholar] [CrossRef]
- Allahwala, U.K.; Khachigian, L.M.; Nour, D.; Ridiandres, A.; Billah, M.; Ward, M.; Weaver, J.; Bhindi, R. Recruitment and Maturation of the Coronary Collateral Circulation: Current Understanding and Perspectives in Arteriogenesis. Microvasc. Res. 2020, 132, 104058. [Google Scholar] [CrossRef]
- Rentrop, K.P.; Cohen, M.; Blanke, H.; Phillips, R.A. Changes in Collateral Channel Filling Immediately after Controlled Coronary Artery Occlusion by an Angioplasty Balloon in Human Subjects. J. Am. Coll. Cardiol. 1985, 5, 587–592. [Google Scholar] [CrossRef]
- van Royen, N.; Piek, J.J.; Buschmann, I.; Hoefer, I.; Voskuil, M.; Schaper, W. Stimulation of Arteriogenesis; a New Concept for the Treatment of Arterial Occlusive Disease. Cardiovasc. Res. 2001, 49, 543–553. [Google Scholar] [CrossRef]
- Sianos, G.; Morel, M.-A.; Kappetein, A.P.; Morice, M.-C.; Colombo, A.; Dawkins, K.; van den Brand, M.; Van Dyck, N.; Russell, M.E.; Mohr, F.W.; et al. The SYNTAX Score: An Angiographic Tool Grading the Complexity of Coronary Artery Disease. EuroIntervention 2005, 1, 219–227. [Google Scholar]
- Seiler, C.; Stoller, M.; Pitt, B.; Meier, P. The human coronary collateral circulation: Development and clinical importance. Eur. Heart J. 2001, 22, 954–968. [Google Scholar] [CrossRef]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1142. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Peng, A.; Liu, C.; Lin, J.; Feng, Y.; Wan, J. Association between the pan-immune-inflammation value and coronary collateral circulation in chronic total coronary occlusive patients. BMC Cardiovasc. Disord. 2024, 24, 458. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Kelesoglu, S. The importance of pan-immune inflammation value (PIV) in predicting coronary collateral circulation in stable coronary artery patients. Angiology 2024, 00033197241258529. [Google Scholar] [CrossRef] [PubMed]
- Kelesoglu, S.; Yilmaz, Y.; Elcık, D. Relationship Between C-Reactive Protein to Albumin Ratio and Coronary Collateral Circulation in Patients With Stable Coronary Artery Disease. Angiology 2021, 72, 829–835. [Google Scholar] [CrossRef]
- Koerselman, J.; van der Graaf, Y.; de Jaegere, P.P.T.; Grobbee, D.E. Coronary Collaterals: An Important and Underexposed Aspect of Coronary Artery Disease. Circulation 2003, 107, 2507–2511. [Google Scholar] [CrossRef]
- Gök, M.; Kundi, H.; Kızıltunç, E.; Topcuoglu, C.; Ornek, E. The Relationship between Ischaemia-Modified Albumin and Good Coronary Collateral Circulation. Kardiol. Pol. 2018, 76, 370–375. [Google Scholar] [CrossRef]
- Oğuz, D.; Atmaca, Y.; Ozdöl, C.; Ozdemir, A.O.; Kaya, C.T.; Erol, C. The Relationship between Coronary Collateral Artery Development and Inflammatory Markers. Anadolu Kardiyol. Derg. 2014, 14, 336–341. [Google Scholar] [CrossRef]
- Gok, M.; Kundi, H.; Kiziltunc, E.; Topcuoglu, C.; Ornek, E. Endocan Levels and Coronary Collateral Circulation in Stable Angina Pectoris: A Pilot Study. Angiology 2018, 69, 43–48. [Google Scholar] [CrossRef]
- Doğan, Y.; Yilmaz, Y.; Kelesoğlu, S.; Calapkorur, B.; Neşelioglu, S.; Erel, Ö.; Kalay, N. Are Thiols Useful Biomarkers for Coronary Collateral Circulation in Patients with Stable Coronary Artery Disease? J. Clin. Med. 2023, 12, 6361. [Google Scholar] [CrossRef]
- Sahin, O.; Elcik, D.; Dogan, A.; Cetinkaya, Z.; Cetin, A.; Inanc, M.T.; Topsakal, R.; Kalay, N.; Eryol, N.K.; Oguzhan, A. The Relation of Serum Trace Elements and Coronary Atherosclerotic Progression. Trace Elem. Electrolytes 2019, 36, 210–214. [Google Scholar] [CrossRef]
- Çiçek, Ö.F. Does the Prognostic Nutritional Index Offer New Insights into Coronary Collateral Circulation in Stable Angina? Arq. Bras. Cardiol. 2024, 121, e20240144. [Google Scholar] [CrossRef]
- Çiçek, Ö.F.; Esenboğa, K.; Yalçın, M.U.; Durdu, M.S.; Altunkeser, B.B.; Büyükateş, M. Myocardial Blush Grade Predicts Postoperative Atrial Fibrillation following Mitral Valve Replacement: A Novel Perspective. J. Cardiovasc. Dev. Dis. 2023, 10, 275. [Google Scholar] [CrossRef]
- Xie, H.; Wei, L.; Liu, M.; Liang, Y.; Yuan, G.; Gao, S.; Wang, Q.; Lin, X.; Tang, S.; Gan, J. Neutrophil-Albumin Ratio as a Biomarker for Postoperative Complications and Long-Term Prognosis in Patients with Colorectal Cancer Undergoing Surgical Treatment. Front. Nutr. 2022, 9, 976216. [Google Scholar] [CrossRef]
- Feng, C.; Yu, H.; Lei, H.; Cao, H.; Chen, M.; Liu, S. A Prognostic Model Using the Neutrophil-Albumin Ratio and PG-SGA to Predict Overall Survival in Advanced Palliative Lung Cancer. BMC Palliat. Care 2022, 21, 81. [Google Scholar] [CrossRef]
- Karaca, M.; Gumusdag, A. Prognostic Role of Neutrophil Percentage-to-Albumin Ratio in Patients with Non-ST-Elevation Myocardial Infarction. Medicina 2024, 60, 2101. [Google Scholar] [CrossRef]
- Cui, H.; Ding, X.; Li, W.; Chen, H.; Li, H. The Neutrophil Percentage to Albumin Ratio as a New Predictor of In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction. Med. Sci. Monit. 2019, 25, 7845–7852. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, X.; Zhang, Y.; Wang, Z.; Zhang, S.; Peng, J. Predictive Value of the Neutrophil Percentage-to-Albumin Ratio for Coronary Atherosclerosis Severity in Patients with CKD. BMC Cardiovasc. Disord. 2024, 24, 277. [Google Scholar] [CrossRef]
- Zang, S.-W.; Long, J.-J.; Wang, Y. Neutrophil Percentage to Albumin Ratio as a Predictor for Coronary Slow Flow Phenomenon in Patients with Myocardial Ischemia with No Obstructive Coronary Arteries. Int. J. Gen. Med. 2024, 17, 3511–3519. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Wang, Y.; Liu, J.; Xu, X.; Liu, J.; Chen, M.; Shi, L. The Neutrophil Percentage-to-Albumin Ratio Is Associated with All-Cause Mortality in Patients with Chronic Heart Failure. BMC Cardiovasc. Disord. 2023, 23, 568. [Google Scholar] [CrossRef]
- Wu, C.-C.; Wu, C.-H.; Lee, C.-H.; Cheng, C.-I. Association between Neutrophil Percentage-to-Albumin Ratio (NPAR), Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Long-Term Mortality in Community-Dwelling Adults with Heart Failure: Evidence from US NHANES 2005–2016. BMC Cardiovasc. Disord. 2023, 23, 312. [Google Scholar] [CrossRef]
- Cai, J.; Li, M.; Wang, W.; Luo, R.; Zhang, Z.; Liu, H. The Relationship Between the Neutrophil Percentage-to-Albumin Ratio and Rates of 28-Day Mortality in Atrial Fibrillation Patients 80 Years of Age or Older. J. Inflamm. Res. 2023, 16, 1629–1638. [Google Scholar] [CrossRef]
- Ayhan, S.; Ozturk, S.; Erdem, A.; Ozlu, M.F.; Memioglu, T.; Ozyasar, M.; Yazici, M. Hematological Parameters and Coronary Collateral Circulation in Patients with Stable Coronary Artery Disease. Exp. Clin. Cardiol. 2013, 18, e12–e15. [Google Scholar]
- Açar, G.; Kalkan, M.E.; Avci, A.; Alizade, E.; Tabakci, M.M.; Toprak, C.; Özkan, B.; Alici, G.; Esen, A.M. The Relation of Platelet-Lymphocyte Ratio and Coronary Collateral Circulation in Patients with Stable Angina Pectoris and Chronic Total Occlusion. Clin. Appl. Thromb. Hemost. 2015, 21, 462–468. [Google Scholar] [CrossRef]
- Kelesoglu, S.; Yilmaz, Y.; Elcık, D.; Kalay, N. Systemic Immune Inflammation Index: A Novel Predictor for Coronary Collateral Circulation. Perfusion 2022, 37, 605–612. [Google Scholar] [CrossRef]
- Toprak, K.; Yılmaz, R.; Kaplangoray, M.; Memioğlu, T.; İnanır, M.; Akyol, S.; Özen, K.; Biçer, A.; Demirbağ, R. Comparison of the Effect of Uric Acid/Albumin Ratio on Coronary Colleteral Circulation with Other Inflammation-Based Markers in Stable Coronary Artery Disease Patients. Perfusion 2024, 39, 1440–1452. [Google Scholar] [CrossRef]
- De Servi, S.; Landi, A.; Gualini, E.; Totaro, R.; Savonitto, S.; Leonardi, S. Neutrophil Count as a Risk Factor for Cardiovascular Diseases: How Can We Manage It? J. Cardiovasc. Med. 2024, 25, 759–765. [Google Scholar] [CrossRef]
- Lautz, T.; Lasch, M.; Borgolte, J.; Troidl, K.; Pagel, J.-I.; Caballero-Martinez, A.; Kleinert, E.C.; Walzog, B.; Deindl, E. Midkine Controls Arteriogenesis by Regulating the Bioavailability of Vascular Endothelial Growth Factor A and the Expression of Nitric Oxide Synthase 1 and 3. EBioMedicine 2018, 27, 237–246. [Google Scholar] [CrossRef]
- Ohki, Y.; Heissig, B.; Sato, Y.; Akiyama, H.; Zhu, Z.; Hicklin, D.J.; Shimada, K.; Ogawa, H.; Daida, H.; Hattori, K.; et al. Granulocyte Colony-Stimulating Factor Promotes Neovascularization by Releasing Vascular Endothelial Growth Factor from Neutrophils. FASEB J. 2005, 19, 2005–2007. [Google Scholar] [CrossRef]
- Bagi, Z. Impaired Coronary Collateral Growth: miR-Shaken Neutrophils Caught in the Act. Am. J. Physiol.-Heart Circ. Physiol. 2015, 308, H1321–H1322. [Google Scholar] [CrossRef] [PubMed]
- Milan Manani, S.; Virzì, G.M.; Clementi, A.; Brocca, A.; de Cal, M.; Tantillo, I.; Ferrando, L.; Crepaldi, C.; Ronco, C. Pro-Inflammatory Cytokines: A Possible Relationship with Dialytic Adequacy and Serum Albumin in Peritoneal Dialysis Patients. Clin. Kidney J. 2016, 9, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Arques, S. Human Serum Albumin in Cardiovascular Diseases. Eur. J. Intern. Med. 2018, 52, 8–12. [Google Scholar] [CrossRef] [PubMed]
Coronary Collateral Circulation | ||||
---|---|---|---|---|
Variables | Control Group (n = 110) | Poor (n = 137) | Good (n = 434) | p Value |
Age (years) | 54 (47–63) | 55 (49–64) | 53 (48–61) | 0.081 |
Male gender (n, %) | 79 (72%) | 98 (71.5%) | 329 (76%) | 0.315 |
Diabetes mellitus (n, %) | 40 (37%) | 57 (41.9%) | 148 (34.3%) | 0.21 |
Hypertension (n, %) | 53 (48.1%) | 71 (52.2%) | 212 (49.1%) | 0.56 |
Dyslipidemia (n, %) | 16 (14.6%) | 25 (18.2%) | 60 (13.8) | 0.205 |
Smoking (n, %) | 38 (34.6%) | 56 (40.9%) | 139 (32.1%) | 0.063 |
BMI (kg/m2) | 27.1 ± 3.9 | 28.4 ± 4.5 | 27.9 ± 4.6 | 0.346 |
Systolic blood pressure (mmHg) | 122.6 ± 13.4 | 123.4 ± 18.9 | 121.8 ± 12.8 | 0.152 |
Diastolic blood pressure (mmHg) | 72.9 ± 8.4 | 73.5 ± 8.9 | 74.1 ± 8.5 | 0.31 |
Heart rate (beats/min) | 74.6 ± 12.9 | 76.7 ± 13.1 | 75.9 ± 13 | 0.642 |
Previous medications, n (%) | ||||
ASA, n (%) | 43 (38.9%) | 54 (39.4%) | 175 (40.5%) | 0.76 |
Β-blocker | 15.6 (14.2%) | 27 (19.7%) | 107 (24.8%) | 0.124 |
Statin | 9 (8.6%) | 16 (11.7%) | 46 (10.7%) | 0.63 |
ACEI/ARB, n (%) | 33 (30.1%) | 53 (38.7%) | 186 (43.1%) | 0.167 |
Aldosterone antagonists | 1 (1.2%) | 4 (2.9%) | 19 (4.4%) | 0.129 |
Calcium channel blockers | 10 (9.6%) | 14 (10.2%) | 55 (12.7%) | 0.212 |
nitrate | 1 (1.1%) | 4 (2.9%) | 9 (2.1%) | 0.117 |
Clopidogrel | 3 (3.1%) | 15 (10.9%) | 45 (10.5%) | 0.08 |
Coronary Collateral Circulation | ||||
---|---|---|---|---|
Variables | Control Group (n = 110) | Poor (n = 137) | Good (n = 434) | p Value |
Glucose (mg/dL) | 147.8 ± 64.6 | 161.29 ± 88.6 | 149.5 ± 68.5 | 0.109 |
Creatinine (mg/dL) | 0.94 ± 0.21 | 0.923 ± 0.22 | 0.95 ± 0.2 | 0.13 |
AST (U/L) | 18 (15–21) | 19 (16–22) | 18 (14–22) | 0.184 |
ALT | 18 (16–23) | 20 (15–27) | 19 (14–25) | 0.186 |
Total cholesterol (mg/dL) | 171 (139–208) | 166.5 (142–196) | 175 (141–210) | 0.281 |
High-density lipoprotein cholesterol (mg/dL) | 37 (32–45) | 38 (30–44) | 36 (31–43) | 0.714 |
Low-density lipoprotein cholesterol (mg/dL) | 112 (82–138) | 109 (83–125) | 114 (85–146) | 0.36 |
Triglyceride (mg/dL) | 116 (80–166) | 111 (75–178) | 114 (78–163) | 0.54 |
Hemoglobin (mg/dL) | 13.9 (12.7–15.2) | 14.2 (12.8–15.1) | 14.3 (13.3–15.3) | 0.121 |
Platelets (103/µL) | 221 (185–259) | 224 (186–258) | 219.5 (187.25–261) | 0.841 |
WBC (103/µL) | 7.8 (5.8–9.21) | 12.3 (9.8–16.9) | 7.5 (5.76–9.18) | <0.001 |
Neutrophil (103/µL) | 4.42 (3.32–6.3) | 8.92 (6.38–13.72) | 4.32 (3.22–6.2) | <0.001 |
Lymphocyte (103/µL) | 1.82 (1.36–2.49) | 1.78 (1.34–2.4) | 1.85 (1.39–2.52) | 0.39 |
CRP (mg/L) | 3.86 (1.7–7.9) | 5.66 (4–8) | 3.89 (1.8–8) | <0.001 |
Albumin (g/L) | 3.7(3.4–4.1) | 3.4 (3.3–4.1) | 3.8 (3.5–4.1) | 0.07 |
NLR | 2.21 (1.46–3.3) | 4.6 (2.8–9.6) | 2.23 (1.48–3.21) | <0.001 |
CAR | 0.9 (0.48–1.96) | 1.61 (0.95–2.18) | 0.93 (0.49–1.98) | <0.001 |
NPAR | 1.09 (0.79–1.59) | 2.34 (1.78–3.5) | 1.12 (0.81–1.61) | <0.001 |
Coronary Collateral Circulation | |||
---|---|---|---|
Poor (n = 137) | Good (n = 434) | p Value | |
Rentrop collateral grades: | |||
0 | 76 (55.4%) | 0 (0%) | <0.001 |
1 | 61 (44.6%) | 0 (0%) | |
2 | 0 (0%) | 248 (51.14%) | |
3 | 0 (0%) | 186 (42.8%) | |
Position of chronic total occlusion: | |||
Left anterior descending coronary artery | 49 (35.8%) | 144 (33.2%) | 0.841 |
Left circumflex coronary artery | 43 (31.4%) | 145 (33.4%) | |
Right coronary artery | 45 (32.8%) | 145 (33.4%) | |
SYNTAX score | 21.79 ± 7.85 | 22.94 ± 8.1 | 0.151 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Odds Ratio | 95% CI | p Value | Odds Ratio | 95% CI | p Value | |
WBC | 1.368 | 1.285–1.457 | <0.001 | 1.103 | 0.991–1.227 | 0.074 |
Neutrophil * | 1.422 | 1.325–1.527 | <0.001 | 1.329 | 1.162–1.520 | <0.001 |
CRP ** | 1.053 | 1.006–1.103 | 0.028 | 1.12 | 1.056–1.189 | <0.001 |
NLR * | 1.278 | 1.205–1.356 | <0.001 | 1.11 | 1.045–1.19 | <0.001 |
CAR ** | 1.360 | 1.123–1.647 | 0.002 | 1.56 | 1.24–1.98 | <0.001 |
NPAR * | 3.73 | 2.87–4.85 | <0.001 | 2.79 | 1.7–4.6 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetinkaya, Z.; Yilmaz, Y.; Baran, O.; Secen, O.; Gelen, M.A.; Sahin, S.; Yavcin, O.; Ekmekyapar, M.; Yıldırım, E.; Kelesoglu, S. Relationship Between Coronary Collateral Circulation and the Neutrophil-Percentage-to-Albumin Ratio in Patients with Chronic Coronary Syndrome. Medicina 2025, 61, 779. https://doi.org/10.3390/medicina61050779
Cetinkaya Z, Yilmaz Y, Baran O, Secen O, Gelen MA, Sahin S, Yavcin O, Ekmekyapar M, Yıldırım E, Kelesoglu S. Relationship Between Coronary Collateral Circulation and the Neutrophil-Percentage-to-Albumin Ratio in Patients with Chronic Coronary Syndrome. Medicina. 2025; 61(5):779. https://doi.org/10.3390/medicina61050779
Chicago/Turabian StyleCetinkaya, Zeki, Yucel Yilmaz, Oguzhan Baran, Ozlem Secen, Mehmet Ali Gelen, Seyda Sahin, Ozkan Yavcin, Muhammed Ekmekyapar, Erkan Yıldırım, and Saban Kelesoglu. 2025. "Relationship Between Coronary Collateral Circulation and the Neutrophil-Percentage-to-Albumin Ratio in Patients with Chronic Coronary Syndrome" Medicina 61, no. 5: 779. https://doi.org/10.3390/medicina61050779
APA StyleCetinkaya, Z., Yilmaz, Y., Baran, O., Secen, O., Gelen, M. A., Sahin, S., Yavcin, O., Ekmekyapar, M., Yıldırım, E., & Kelesoglu, S. (2025). Relationship Between Coronary Collateral Circulation and the Neutrophil-Percentage-to-Albumin Ratio in Patients with Chronic Coronary Syndrome. Medicina, 61(5), 779. https://doi.org/10.3390/medicina61050779