Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates
Abstract
:1. Introduction
2. Experimental
2.1. Feedstock Materials and Substrates
2.2. Deposit Preparation
2.3. Deposit Characterization
2.4. Adhesion Test
3. Results
3.1. Microstructure, Surface Roughness, and Thickness
3.2. Adhesion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, C.J.; Webb, A.R.; Brewer, L.N.; Allison, P.G.; Jordon, J.B. Effect of powder heat treatment on fatigue mechanisms of freestanding AA7075 cold spray deposits. Int. J. Fatigue 2023, 167, 107256. [Google Scholar] [CrossRef]
- Fardan, A.; Berndt, C.C.; Ahmed, R. Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review. Surf. Coat. Technol. 2021, 409, 126835. [Google Scholar] [CrossRef]
- Zavalan, F.-L.; Rona, A. A workflow for designing contoured axisymmetric nozzles for enhancing additively manufactured cold spray deposits. Addit. Manuf. 2023, 62, 103379. [Google Scholar] [CrossRef]
- Poza, P.; Garrido-Maneiro, M.Á. Cold-sprayed coatings: Microstructure, mechanical properties, and wear behaviour. Prog. Mater. Sci. 2022, 123, 100839. [Google Scholar] [CrossRef]
- Nooririnah, O.; Muhamad, A.A.; Mohamed, S.; Sham, R.; Raja Mohd Rasi, R.Z.; Yusuf, Y.; Haji Azlan, U.A.A.; Amir Burhanuddin, Z. High Pressure Cold Spray (HPCS) Process as Coating Treatment for Magnesium Chassis: An Overview. Appl. Mech. Mater. 2014, 695, 64–68. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Yin, S.; Li, W.; Luo, X.; Xie, X.; Zhao, R.; Deng, C.; Wang, J.; Liao, H.; et al. Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing. J. Mater. Sci. Technol. 2023, 134, 234–243. [Google Scholar] [CrossRef]
- Winnicki, M.; Baszczuk, A.; Gibas, A.; Jasiorski, M. Experimental study on aluminium bronze coatings fabricated by low pressure cold spraying and subsequent heat treatment. Surf. Coat. Technol. 2023, 456, 129260. [Google Scholar] [CrossRef]
- Jasthi, B.K.; Kuca, T.S.; Ellingsen, M.D.; Ellis, D.L.; Kandadai, V.A.S.; Curtis, T.R. Microstructure and mechanical properties of cold spray additive manufactured Cu-Cr-Nb and Fe-Ni-Cr alloys. Addit. Manuf. 2023, 61, 103354. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, D. Microstructures and salt spray corrosion behaviors of cold sprayed Al coatings on S355 steel in marine environmentI. Surf. Rev. Lett. 2018, 25, 1850115. [Google Scholar] [CrossRef]
- Jafari, R.; Kiilakoski, J.; Honkanen, M.; Vippola, M.; Koivuluoto, H. Wetting Behavior and Functionality Restoration of Cold-Sprayed Aluminum-Quasicrystalline Composite Coatings. J. Therm. Spray Technol. 2023, 32, 609–626. [Google Scholar] [CrossRef]
- Bi, J.K.; Loke, Z.C.K.; Lim, C.K.R.; Teng, K.H.T.; Koh, P.K. Mechanical properties of cold sprayed aluminium 2024 and 7075 coatings for repairs. Aerospace 2022, 9, 65. [Google Scholar] [CrossRef]
- Wei, Y.-K.; Luo, X.-T.; Chu, X.; Ge, Y.; Huang, G.-S.; Xie, Y.-C.; Huang, R.-Z.; Li, C.-J. Ni coatings for corrosion protection of Mg alloys prepared by an in-situ micro-forging assisted cold spray: Effect of powder feedstock characteristics. Corros. Sci. 2021, 184, 109397. [Google Scholar] [CrossRef]
- Alekseeva, E.; Shishkova, M.; Strekalovskaya, D.; Shaposhnikov, N.; Gerashchenkov, D.; Glukhov, P. Performance of Ni-based coatings with various additives fabricated by cold gas spraying. Metals 2022, 12, 314. [Google Scholar] [CrossRef]
- Cojocaru, C.V.; Aghasibeig, M.; Irissou, E. NiCoCrAlX (X = Y, Hf and Si) Bond Coats by Cold Spray for High Temperature Applications. J. Therm. Spray Technol. 2022, 31, 176–185. [Google Scholar] [CrossRef]
- Morks, M.F.; Zahiri, S.; Chen, X.B.; Gulizia, S.; Cole, I.S. Enhancement of the corrosion properties of cold sprayed Ti–6Al–4V coatings on mild steel via silica sealer. Mater. Corros. 2021, 73, 20–30. [Google Scholar] [CrossRef]
- Zeng, G.; Zahiri, S.H.; Gulizia, S.; Chen, Y.; Xu, C.; Chen, X.-B.; Cole, I. A comparative study of cell growth on a cold sprayed Ti–Ta composite. J. Alloys Compd. 2020, 826, 154014. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, N.; Tong, Z.; Zhou, Z. The effect of Fe/Al ratio and substrate hardness on microstructure and deposition behavior of cold-sprayed Fe/Al coatings. Materials 2023, 16, 878. [Google Scholar] [CrossRef]
- Akin, S.; Jo, S.; Jun, M.B.-G. A cold spray-based novel manufacturing route for flexible electronics. J. Manuf. Process. 2023, 86, 98–108. [Google Scholar] [CrossRef]
- Cavaliere, P.; Perrone, A.; Silvello, A.; Laska, A.; Blasi, G.; Cano, I.G.; Sadeghi, B.; Nagy, S. Cyclic behavior of FeCoCrNiMn high entropy alloy coatings produced through cold spray. J. Alloys Compd. 2023, 931, 167550. [Google Scholar] [CrossRef]
- Zehtabi, N.P.; Ardeshiri Lordejani, A.; Guagliano, M.; Bagherifard, S. Numerical Simulation of Cold Spray Bonding for CrFeNi Medium-Entropy Alloy. Adv. Eng. Mater. 2022, 24, 2200603. [Google Scholar] [CrossRef]
- Mao, X.; Duan, F.; Wang, F.; Hang, C.; Chen, H.; Li, M. Interfacial microstructure characterization and solderability of the low pressure cold sprayed Cu-Al2O3 coating on Al substrate. Surf. Coat. Technol. 2023, 452, 129093. [Google Scholar] [CrossRef]
- Wang, H.; Ji, G.; Chen, X.; Bai, X.; Chen, Q. Microstructure characteristics of SiC particle-reinforced aluminum matrix composites coatings by cold spraying. Rare Met. Mater. Eng. 2012, 41, 460–463. [Google Scholar]
- Chen, H.; Pala, Z.; Hussain, T.; McCartney, D.G. Fabrication and microstrain evolution of Al-TiB2 composite coating by cold spray deposition. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2017, 233, 1044–1052. [Google Scholar] [CrossRef]
- Liu, H.; Tariq, N.u.H.; Zhao, F.; Ren, Y.; Cui, X.; Wang, J.; Xiong, T. Influence of Irregular Al2O3 Content on Electrical Conductivity, Adhesion Strength, and Tribological Properties of Cold Sprayed Al-Al2O3 Coatings on Polyether Ether Ketone Substrate. J. Mater. Eng. Perform. 2023. [Google Scholar] [CrossRef]
- Alidokht, S.A.; Vo, P.; Yue, S.; Chromik, R.R. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings. J. Therm. Spray Technol. 2017, 26, 1908–1921. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, W.; Zhang, J.; Song, X.; Chen, L.; Sun, Y.; Li, Z. Ultrasound-assisted transient liquid phase bonding of AZ31B magnesium alloy using Al interlayer. Mater. Charact. 2023, 196, 112556. [Google Scholar] [CrossRef]
- Shao, L.; Xue, N.; Li, W.; Liu, S.; Tu, Z.; Chen, Y.; Zhang, J.; Dai, S.; Liu, Q.; Shi, X.; et al. Effect of Cold-Spray Parameters on Surface Roughness, Thickness and Adhesion of Copper-Based Composite Coating on Aluminum Alloy 6061 T6 Substrate. Processes 2023, 11, 959. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y.; Ouyang, Q.; Zhu, C.; Cao, H.; Zhang, D. Fabrication, mechanical and thermal properties of copper coated graphite films reinforced copper matrix laminated composites via ultrasonic-assisted electroless plating and vacuum hot-pressing sintering. Mater. Sci. Eng. A 2021, 824, 141768. [Google Scholar] [CrossRef]
- Zhao, R.; Li, W.; Wang, T.; Zhan, K.; Yang, Z.; Yan, Y.; Zhao, B.; Yang, J. Fabrication of Cu/graphite film/Cu sandwich composites with ultrahigh thermal conductivity for thermal management applications. Front. Mater. Sci. 2020, 14, 188–197. [Google Scholar] [CrossRef]
- Singh, S.; Chaudhary, S.; Singh, H. Effect of electroplated interlayers on properties of cold-sprayed copper coatings on SS316L steel. Surf. Coat. Technol. 2019, 375, 54–65. [Google Scholar] [CrossRef]
- ISO 4287; Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. ISO: Geneva, Switzerland, 1997.
- Sun, H.; Billard, A.; Luo, H.; Zheng, W.-T.; Zheng, X.-L.; Dai, M.-J.; Lin, S.-S.; Shi, Q.; Sanchette, F. Influence of carbon content on the mechanical properties of TiCN–Cu nanocomposite coatings prepared by multi-arc ion plating. Vacuum 2021, 187, 110139. [Google Scholar] [CrossRef]
- Breuninger, P.; Krull, F.; Huttenlochner, K.; Müller-Reno, C.; Ziegler, C.; Merz, R.; Kopnarski, M.; Antonyuk, S. Microstructuring of steel surfaces via cold spraying with 316L particles for studying the particle-wall collision behavior. Surf. Coat. Technol. 2019, 379, 125054. [Google Scholar] [CrossRef]
- Wang, H.; Li, P.; Guo, W.; Ma, G.; Wang, H. Copper-Based Composite Coatings by Solid-State Cold Spray Deposition: A Review. Coatings 2023, 13, 479. [Google Scholar] [CrossRef]
- Wei, F.J.; Chou, B.Y.; Fung, K.Z.; Tsai, S.Y. Thermomechanical properties of cold-sprayed copper coatings from differently fabricated powders. Surf. Coat. Technol. 2022, 434, 128128. [Google Scholar] [CrossRef]
- Champagne, V.K.; Helfritch, D.; Leyman, P.; Grendahl, S.; Klotz, B. Interface Material Mixing Formed by the Deposition of Copper on Aluminum by Means of the Cold Spray Process. J. Therm. Spray Technol. 2005, 14, 330–334. [Google Scholar] [CrossRef]
- Wu, J.; Fang, H.; Yoon, S.; Kim, H.; Lee, C. Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl. Surf. Sci. 2005, 252, 1368–1377. [Google Scholar] [CrossRef]
- Tripathy, S.; Sahoo, D.; Roy, S.; Pati, S. Effect of Substrate Heating on Corrosion Behavior of Nickel Coated on AISI 1020 Steel by Cold Gas Dynamic Spraying. J. Mater. Eng. Perform. 2022, 32, 5346–5352. [Google Scholar] [CrossRef]
- Suo, X.; Yin, S.; Planche, M.-P.; Liu, T.; Liao, H. Strong effect of carrier gas species on particle velocity during cold spray processes. Surf. Coat. Technol. 2015, 268, 90–93. [Google Scholar] [CrossRef]
- Huang, J.; Ma, W.; Xie, Y.; Fukanum, H.; Zhang, K.; Wang, G.; Huang, R. Influence of cold gas spray processing conditions on the properties of 316L stainless steel coatings. Surf. Eng. 2019, 35, 784–791. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Spelt, J.K.; Papini, M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 2017, 122, 1–17. [Google Scholar] [CrossRef]
- Meeß, J.; Anasenzl, M.; Ossenbrink, R.; Michailov, V. Influence of particle velocities on adhesion strength of cold spray inner diameter coatings. J. Therm. Spray Technol. 2022, 31, 2025–2038. [Google Scholar] [CrossRef]
Elements | Si | Fe | Cu | Cr | Mn | Ti | Zn | Ni | Al | Mg |
---|---|---|---|---|---|---|---|---|---|---|
AZ31B magnesium alloy plate | 0.16 | 0.003 | 0.006 | — | 0.32 | — | 0.61 | 0.001 | 3.05 | Balance |
6061 T6 aluminum alloy plate | 0.4–0.8 | 0–0.7 | 0.15–0.4 | 0.04–0.35 | 0.15 max | 0.15 max | 0.25 max | — | Balance | 0.8–1.2 |
Coating | Substrate | Gas Temperature (°C) | Gas Pressure (MPa) | Gas Flow of Feeding (SLM) | Traverse Velocity (mm s−1) | Distance from the Substrate (mm) | Deposition Layer (Layer) |
---|---|---|---|---|---|---|---|
1 | AZ31B | 900 | 5.5 | 180 | 50 | 20 | 1 |
2 | AZ31B | 900 | 5 | 180 | 50 | 20 | 1 |
3 | AZ31B | 900 | 4.5 | 180 | 50 | 20 | 1 |
4 | AZ31B | 900 | 4 | 180 | 50 | 20 | 1 |
5 | AZ31B | 800 | 5.5 | 180 | 50 | 20 | 1 |
6 | AZ31B | 800 | 5 | 180 | 50 | 20 | 1 |
7 | AZ31B | 800 | 4.5 | 180 | 50 | 20 | 1 |
8 | AZ31B | 800 | 4 | 180 | 50 | 20 | 1 |
9 | AZ31B | 700 | 5.5 | 180 | 50 | 20 | 1 |
10 | AZ31B | 700 | 5 | 180 | 50 | 20 | 1 |
11 | AZ31B | 700 | 4.5 | 180 | 50 | 20 | 1 |
12 | AZ31B | 700 | 4 | 180 | 50 | 20 | 1 |
13 | AZ31B | 600 | 5.5 | 180 | 50 | 20 | 1 |
14 | AZ31B | 600 | 5 | 180 | 50 | 20 | 1 |
15 | AZ31B | 600 | 4.5 | 180 | 50 | 20 | 1 |
16 | AZ31B | 600 | 4 | 180 | 50 | 20 | 1 |
17 | 6061 T6 | 900 | 5.5 | 180 | 50 | 20 | 1 |
18 | 6061 T6 | 900 | 5 | 180 | 50 | 20 | 1 |
19 | 6061 T6 | 900 | 4.5 | 180 | 50 | 20 | 1 |
20 | 6061 T6 | 900 | 4 | 180 | 50 | 20 | 1 |
21 | 6061 T6 | 800 | 5.5 | 180 | 50 | 20 | 1 |
22 | 6061 T6 | 800 | 5 | 180 | 50 | 20 | 1 |
23 | 6061 T6 | 800 | 4.5 | 180 | 50 | 20 | 1 |
24 | 6061 T6 | 800 | 4 | 180 | 50 | 20 | 1 |
25 | 6061 T6 | 700 | 5.5 | 180 | 50 | 20 | 1 |
26 | 6061 T6 | 700 | 5 | 180 | 50 | 20 | 1 |
27 | 6061 T6 | 700 | 4.5 | 180 | 50 | 20 | 1 |
28 | 6061 T6 | 700 | 4 | 180 | 50 | 20 | 1 |
29 | 6061 T6 | 600 | 5.5 | 180 | 50 | 20 | 1 |
30 | 6061 T6 | 600 | 5 | 180 | 50 | 20 | 1 |
31 | 6061 T6 | 600 | 4.5 | 180 | 50 | 20 | 1 |
32 | 6061 T6 | 600 | 4 | 180 | 50 | 20 | 1 |
Sample | 1, 17 | 2, 18 | 3, 19 | 4, 20 | 5, 21 | 6, 22 | 7, 23 | 8, 24 | 9, 25 | 10, 26 | 11, 27 | 12, 28 | 13, 29 | 14, 30 | 15, 31 | 16, 32 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vp (m s−1) | 595 | 585 | 573 | 559 | 578 | 569 | 557 | 545 | 560 | 551 | 540 | 529 | 541 | 532 | 522 | 511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, N.; Li, W.; Shao, L.; Tu, Z.; Chen, Y.; Dai, S.; Ye, N.; Zhang, J.; Liu, Q.; Wang, J.; et al. Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates. Materials 2023, 16, 5120. https://doi.org/10.3390/ma16145120
Xue N, Li W, Shao L, Tu Z, Chen Y, Dai S, Ye N, Zhang J, Liu Q, Wang J, et al. Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates. Materials. 2023; 16(14):5120. https://doi.org/10.3390/ma16145120
Chicago/Turabian StyleXue, Na, Weiwei Li, Ling Shao, Zhibiao Tu, Yingwei Chen, Sheng Dai, Nengyong Ye, Jitang Zhang, Qijie Liu, Jinfang Wang, and et al. 2023. "Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates" Materials 16, no. 14: 5120. https://doi.org/10.3390/ma16145120
APA StyleXue, N., Li, W., Shao, L., Tu, Z., Chen, Y., Dai, S., Ye, N., Zhang, J., Liu, Q., Wang, J., Zhang, M., Shi, X., Wang, T., Chen, M., Huang, Y., Xu, F., & Zhu, L. (2023). Comparison of Cold-Sprayed Coatings of Copper-Based Composite Deposited on AZ31B Magnesium Alloy and 6061 T6 Aluminum Alloy Substrates. Materials, 16(14), 5120. https://doi.org/10.3390/ma16145120