Characteristics and Estimation of the Time of Concentration for Small Forested Catchments in Steep Mountainous Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Field Observation
2.3. Data Analysis
3. Results
3.1. Characteristics of Time of Concentration by Catchment Variables
3.2. Interaction of Empirical Formulas and the Time of Concentration
3.3. Relationship between Observed and Estimated Time of Concentration
4. Discussion
4.1. Influence of Spatial Variations in Time of Concentration
4.2. Identification of Practical Approaches for Estimating the Time of Concentration
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharifi, S.; Hosseini, S.M. Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region. J. Irrig. Drain. Eng. 2011, 137, 712–719. [Google Scholar] [CrossRef]
- Zolghadr, M.; Rafiee, M.R.; Esmaeilmanesh, F.; Fathi, A.; Tripathi, R.P.; Rathnayake, U.; Gunakala, S.R.; Azamathulla, H.M. Computation of time of concentration based on two-dimensional hydraulic simulation. Water 2022, 14, 3155. [Google Scholar] [CrossRef]
- Singh, V.P. Hydrologic Systems: Rainfall Runoff Modeling; Prentice Hall Publication: Bergen, NJ, USA, 1988; Volume 1, p. 960. [Google Scholar]
- McCuen, R.H. Hydrologic Design and Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 1998. [Google Scholar]
- McCuen, R.H.; Wong, S.L.; Rawls, W.J. Estimating urban time of concentration. J. Hydraul. Eng. 1984, 110, 887–904. [Google Scholar] [CrossRef]
- Wong, T.S.W. Evolution of kinematic wave time of concentration formulas for overland flow. J. Hydrol. Eng. 2009, 14, 739–744. [Google Scholar] [CrossRef]
- Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Bell, F.C.; Kar, S.O. Characteristic response times in design flood estimation. J. Hydrol. 1969, 8, 173–196. [Google Scholar] [CrossRef]
- Garg, S.K. Irrigation Engineering and Hydraulic Structures; Khanna Publishers: New Delhi, India, 2001. [Google Scholar]
- Saghafian, B.; Julien, P.Y.; Rajaie, H. Runoff hydrograph simulation based on time variable isochrone technique. J. Hydrol. 2002, 261, 193–203. [Google Scholar] [CrossRef]
- Kang, J.H.; Kayhanian, M.; Stenstrom, M.K. Predicting the existence of stormwater first flush from the time of concentration. Water Res. 2008, 42, 220–228. [Google Scholar] [CrossRef]
- Pavlovic, S.B.; Moglen, G.E. Discretization issues in travel time calculation. J. Hydrol. Eng. 2008, 13, 71–79. [Google Scholar] [CrossRef]
- Fang, X.; Thompson, D.B.; Cleveland, T.G.; Pradhan, P.; Malla, R. Time of concentration estimated using watershed parameters determined by automated and manual methods. J. Irrig. Drain Eng. 2008, 134, 202–211. [Google Scholar] [CrossRef]
- Montesarchio, V.; Ridolfi, E.; Russo, F.; Napolitano, F. Rainfall threshold definition using an entropy decision approach and radar data, Nat. Hazards Earth Syst. Sci. 2011, 11, 2061–2074. [Google Scholar] [CrossRef]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Grimaldi, S.; Petroselli, A.; Tauro, F.; Porfiri, M. Time of concentration: A paradox in modern hydrology. Hydrol. Sci. J. 2012, 57, 217–228. [Google Scholar] [CrossRef]
- Williams, G.B. Flood discharges and the dimensions of spillways in India. Engineering 1922, 134, 321. [Google Scholar]
- Johnstone, D.; Cross, W.P. Elements of Applied Hydrology; Ronald Press: New York, NY, USA, 1949. [Google Scholar]
- Haktanir, T.; Sezen, N. Suitability of two-parameter gamma and three-parameter beta distributions as synthetic unit hydrographs in Anatolia. Hydrol. Sci. J. 1990, 352, 167–184. [Google Scholar] [CrossRef]
- Wu, I.P. Design hydrographs for small watersheds in Indiana. J. Hydr. Div. 1963, 89, 36–65. [Google Scholar] [CrossRef]
- Wait, I.W.; Simonton, D.S. Evaluation of the SCS Lag Time Method for Steep, Rural Watersheds. In Proceedings of the World Environmental and Water Resources Congress, Austin, TX, USA, 17–21 May 2015; pp. 2558–2567. [Google Scholar]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry 2023; Korea Forest Service: Daejeon, Republic of Korea, 2023; No. 23; pp. 24–25. (In Korean)
- Oh, K.D.; Jun, B.H.; Han, H.G.; Jung, S.W.; Cho, Y.H.; Park, S.Y. Curve number for a small forested mountainous catchment. J. Korea Water Resour. Assoc. 2005, 38, 605–616. (In Korean) [Google Scholar] [CrossRef]
- Passalacqua, P.; Tarolli, P.; Foufoula-Georgiou, E. Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resour. Res. 2010, 46, W11535. [Google Scholar]
- Ministry of Land, Transport and Maritime Affairs (MLTM). Investigation on the Typhoon and Heavy Rainfall; MLTM: Sejong, Republic of Korea, 2006; p. 497. (In Korean)
- Pradhan, A.M.S.; Kim, Y.T. Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeok-ri Creek, South Korea. Nat. Hazards 2014, 72, 1189–1217. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.H.; Chun, K.W. Recent increases in sediment disasters in response to climate change and land use, and the role of watershed management strategies in Korea. Int. J. Eros. Control Eng. 2008, 1, 44–53. [Google Scholar] [CrossRef]
- Min, K.H.; Son, Y.H.; Furuya, K. (2019). Categorizing Types of Transition Areas in Biosphere Reserves: A Case Study of the Baekdudaegan Mountain Ranges in South Korea. Int. Rev. Spat. Plan. Sustain. Dev. 2019, 7, 83–100. [Google Scholar]
- Kim, M.S.; Onda, Y.; Uchida, T.; Kim, J.K. Effects of soil depth and subsurface flow along the subsurface topography on shallow landslide predictions at the site of a small granitic hillslope. Geomorphology 2016, 271, 40–54. [Google Scholar] [CrossRef]
- Kim, N.W.; Won, Y.S.; Chung, I.M. The scale of typhoon RUSA. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 3147–3182. [Google Scholar]
- United States Department of Agriculture (USDA); Natural Resources Conservation Service (NRCS). National Engineering Handbook: Part 630—Hydrology National Engineering Handbook; US Government Printing Office: Washington, DC, USA, 2004; pp. 1–424.
- Lee, G.; Yu, W.; APIP, K.J. Catchment-scale soil erosion and sediment yield simulation using a spatially distributed erosion model. Environ. Earth Sci. 2013, 70, 33–47. [Google Scholar] [CrossRef]
- Research Institute for Gangwon (RIG). Watershed Service and Reward in Drinking Water Source (Policy Memo 298); Gangwon Institute: Chuncheon, Republic of Korea, 2013; pp. 1–11. (In Korean) [Google Scholar]
- McCuen, R.H. Uncertainty analyses of watershed time parameters. J. Hydrol. Eng. 2009, 14, 490–498. [Google Scholar] [CrossRef]
- Gericke, O.J.; Smithers, J.C. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrol. Sci. J. 2014, 59, 1935–1971. [Google Scholar] [CrossRef]
- Kerby, W.S. Time of concentration for overland flow. Civ. Eng. 1959, 29, 60. [Google Scholar]
- Dooge, J.C.I. Synthetic Unit Hydrographs Based on Triangular Inflow. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1956; p. 103. [Google Scholar]
- Chow, V.T. Hydrologic Determination of Waterway Areas for the Design of Drainage Structures in Small Drainage Basins; Engineering Experiment Station. Bulletin; University of Illinois: Chicago, IL, USA, 1962; No. 462. [Google Scholar]
- Rziha, F. Eisenbahn-Unter-Und Oberbau; Verlag der KK Hof-und Staatsdr: Vienna, Austria, 1876; Volume 1. [Google Scholar]
- Japan Society of Civil Engineers (JSCE). The Collection of Hydraulic Formulae; Japan Society of Civil Engineers: Tokyo, Japan, 1999. [Google Scholar]
- Asfaha, T.G.; Frankl, A.; Haile, M.; Zenebe, A.; Nyssen, J. Determinants of peak discharge in steep mountain catchments–Case of the Rift Valley escarpment of Northern Ethiopia. J. Hydrol. 2015, 529, 1725–1739. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Ryberg, K.R.; Akyuez, F.A.; Wiche, G.J.; Lin, W. Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012. Hydrol. Process. 2016, 30, 1208–1218. [Google Scholar] [CrossRef]
- Nam, S.; Jang, S.J.; Chun, K.W.; Lee, J.U.; Kim, S.W. Seasonal water temperature variations in response to air temperature and precipitation in a forested headwater stream and an urban river: A case study from the Bukhan River basin, South Korea. Forest Sci. Technol. 2021, 17, 46–55. [Google Scholar] [CrossRef]
- Gomi, T.; Asano, Y.; Uchida, T.; Onda, Y.; Sidle, R.C.; Miyata, S.; Kosugi, K.; Mizugaki, S.; Fukuyama, T.; Fukushima, T. Evaluation of storm runoff pathways in steep nested catchments draining a Japanese cypress forest in central Japan: A geochemical approach. Hydrol. Process. 2010, 24, 550–566. [Google Scholar] [CrossRef]
- Martinez, J.; Reca, J.; Morillas, M.T.; Lopez, J.G. Design and calibration of a compound sharp-crested weir. J. Hydraul. Eng. 2005, 131, 112–116. [Google Scholar] [CrossRef]
- Kaufmann de Almeida, I.; Kaufmann Almeida, A.; Garcia Gabas, S.; Alves Sobrinho, T. Performance of methods for estimating the time of concentration in a watershed of a tropical region. Hydrol. Sci. J. 2017, 62, 2406–2414. [Google Scholar] [CrossRef]
- Kim, J.; Choi, H.T.; Lim, H. Evaluation on the application of the estimation of time of concentration using real rainfall-runoff events in small forest watershed. J. Korean Soc. Hazard Mitig. 2015, 15, 199–206. [Google Scholar] [CrossRef]
- Michailidi, E.M.; Antoniadi, S.; Koukouvinos, A.; Bacchi, B.; Efstratiadis, A. Timing the time of concentration: Shedding light on a paradox. Hydrol. Sci. J. 2018, 63, 721–2740. [Google Scholar] [CrossRef]
- Kent, K.M. Travel time, time of concentration and lag. In National Engineering Handbook; NRCS: Washington, DC, USA, 1972; Volume 4. [Google Scholar]
- Cronshey, R.; McCuen, R.H.; Miller, N.; Rawls, W.; Robbins, S.; Woodward, D. Urban Hydrology for Small Watersheds (TR-55); Natural Resources Conservation Service: Washington, DC, USA, 1986.
- Woodward, D.E. Part 630 Hydrology National Engineering Handbook-Chapter 15 Time of Concentration; United States Department of Agriculture: Washington, DC, USA, 2010; p. 29.
- Pinto, N.L.S.; Holtz, A.C.T.; Martins, J.A.; Gomide, F.L.S. Hidrologia Básica; Editora Blucher: São Paulo, SP, Brasil, 1976; p. 304. [Google Scholar]
- Silveira, A.L.L. Desempenho de Fórmulas de Tempo de Concentração em Bacias Urbanas e Rurais. RBRH Rev. Bras. De Recur. Hidr. 2005, 10, 5–29. [Google Scholar] [CrossRef]
- Jeong, J.H.; Keum, J.H.; Yoon, Y.N. Development of an estimation method for travel time. J. Korea Water Resour. Assoc. 2002, 35, 715–727. (In Korean) [Google Scholar] [CrossRef]
- Jung, C.Y.; Choi, G.W.; Han, M.S.; and Jung, S.M. Estimation of time of concentration for stream at island near coastal region. J. Korean Soc. Hazard Mitig. 2007, 7, 151–158. (In Korean) [Google Scholar]
- Kwon, K.D.; Lee, J.H.; Kang, M.J.; Jee, H.K. Effect of estimation for time of concentration on the design flood. Korean Wetl. Soc. 2014, 16, 125–137. (In Korean) [Google Scholar]
- Yan, J.; Liu, J.; Yu, Y.; Xu, H. Water Quality Prediction in the Luan River Based on 1-DRCNN and BiGRU Hybrid Neural Network Model. Water 2021, 13, 1273. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Demissie, M. Hydrologic modeling of the Iroquois River Watershed using HSPF and SWAT. J. Am. Water Resour. Assoc. 2005, 41, 361–375. [Google Scholar]
- Yndman, R.J. Another look at forecast accuracy metrics for intermittent demand. Foresight 2006, 4, 43–46. [Google Scholar]
- Yang, H.; Lim, H.; Moon, H.; Li, Q.; Nam, S.; Choi, B.; Choi, H.T. Identifying the minimum number of flood events for reasonable flood peak prediction of ungauged forested catchments in South Korea. Forests 2023, 14, 1131. [Google Scholar] [CrossRef]
- Salimi, E.T.; Nohegar, A.; Malekian, A.; Hoseini, M.; Holisaz, A. Estimating time of concentration in large watersheds. Paddy Water Environ. 2017, 15, 123–132. [Google Scholar] [CrossRef]
- Fan, J.; Galoie, M.; Motamedi, A.; Huang, J. Assessment of land cover resolution impact on flood modeling uncertainty. Hydrol. Res. 2021, 52, 78–80. [Google Scholar] [CrossRef]
- Perdikaris, J.; Gharabaghi, B.; Rudra, R. Reference Time of Concentration Estimation for Ungauged Catchments. Earth Sci. Res. 2018, 7, 58. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Askin, R.G. Problems of nonnormality and multicollinearity for forecasting methods based on least squares. AIIE Trans. 1981, 13, 102–115. [Google Scholar] [CrossRef]
- Baig, M.A.; Zaman, Q.; Baig, S.A.; Qasim, M.; Khalil, U.; Khan, S.A.; Ali, S. Regression analysis of hydro-meteorological variables for climate change prediction: A case study of Chitral Basin, Hindukush region. Sci. Total Environ. 2021, 793, 148595. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.H. Multiple linear regression models for predicting nonpoint-source pollutant discharge from a highland agricultural region. Water 2018, 10, 1156. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Development of lag time and time of concentration for a tropical complex catchment under the influence of long-term land use/land cover (LULC) changes. Arab. J. Geosci. 2019, 12, 101. [Google Scholar] [CrossRef]
- Gregory, R.L.; Arnold, C.B. Run-off–rational runoff formulas. Trans. ASCE 1932, 96, 1038–1099. [Google Scholar]
- Gericke, O.J.; Smithers, J.C. Are estimates of catchment response time inconsistent as used in current flood hydrology practice in South Africa? J. S. Afr. Inst. Civ. Eng. 2016, 58, 2–15. [Google Scholar] [CrossRef]
- Soil Conservation Service (SCS). SCS National Engineering Handbook; Section 4. Hydrology, Soil Conservation Service, United States Department of Agriculture (USDA): Washington, DC, USA, 1972.
- United States Department of Agriculture (USDA). Time of concentration (Chapter 15, Section 4, Part 630). In National Engineering Handbook; Woodward, D.E., Ed.; USDA NRCS: Washington, DC, USA, 2010; pp. 1–15. [Google Scholar]
- Tsukamoto, Y.; Ohta, T.; Noguchi, H. Hydrological and Geomorphological Study of Debris Slides on Forested Hillslope in Japan. In Recent Developments in the Explanation and Prediction of Erosion and Sediment Yield; Walling, D.E., Ed.; IAHS Publication 137; IAHS Press: Wallingford, UK, 1982; pp. 89–98. [Google Scholar]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Streamflow generation in steep headwaters: A linked hydro-geomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Leopold, L.B.; Maddock, T., Jr. The Hydraulic Geometry of Stream Channels and Some Geomorphologic Implications; U.S. Geological Survey Professional Paper; United States Geological Survey (USGS): Reston, VA, USA, 1953; No. 252; p. 56.
- Bao, Q.; Laituri, M. The effects of watershed characteristics on storm runoff relationships in Vietnam. J. Environ. Sci. Water Res. 2013, 2, 40–52. [Google Scholar]
- Caruso, B.S.; Down, P.W. Rehabilitation and flood management planning in a steep, boulder-bedded stream. Environ. Manag. 2007, 40, 256–271. [Google Scholar] [CrossRef]
- Uwizeyimana, D.; Mureithi, S.M.; Mvuyekure, S.M.; Karuku, G.; Kironchi, G. Modelling surface runoff using the soil conservation service-curve number method in a drought prone agro-ecological zone in Rwanda. Int. Soil Water Conserv. Res. 2019, 7, 9–17. [Google Scholar] [CrossRef]
- Azizian, A. Uncertainty analysis of time of concentration equations based on frst-order-analysis (FOA) method. Am. J. Eng. Appl. Sci. 2018, 11, 327–341. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaskovicova, L.; Bloschl, G.; Borga, M.; Dumitrescu, A.; et al. Compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef]
- Hynes, H.B.N. The stream and its valley. Proc. Int. Assoc. Theor. Appl. Limnol. 1975, 19, 1–15. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, W.G.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Schumm, S.A.; Lichty, R.W. Time, space and causality in geomorphology. Am. J. Sci. 1965, 263, 110–119. [Google Scholar] [CrossRef]
- Church, M.; Mark, D.M. On size and scale in geomorphology. Prog. Phys. Geogr. 1980, 4, 342–390. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems. Bioscience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Zahraei, A.; Baghbani, R.; Linhoss, A. Applying a graphical method in evaluation of empirical methods for estimating time of concentration in an Arid Region. Water 2021, 13, 2624. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees. Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Andreassian, V. Waters and forests: From historical and controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- Upegui, J.J.V.; Gutiérrez, A.B. Estimación del Tiempo de Concentración y Tiempo de Rezago em la Cuenca Experimental Urbana de la Quebrada San Luis, Manizales. Dyna 2011, 78, 58–71. [Google Scholar]
- Liang, J.; Melching, C.S. Comparison of computed and experimentally assessed times of concentration for a V-shaped laboratory watershed. J. Hydrol. Eng. 2012, 17, 1389–1396. [Google Scholar] [CrossRef]
- Yogi, F.; Correa, C.J.P.; Arruda, E.M.; Tonello, K.C. Sensitivity analysis of rainfall–runoff parameters models to estimate flows. Appl. Water Sci. 2021, 11, 25. [Google Scholar] [CrossRef]
- Beven, K.J. A history of the concept of time of concentration. Hydrol. Earth Syst. Sci. 2020, 24, 2655–2670. [Google Scholar] [CrossRef]
- Almeida, A.K.; de Almeida, I.K.; Guarienti, J.A.; Gabas, S.G. The time of concentration application in studies around the world: A review. Environ. Sci. Pollut. Res. 2022, 29, 8126–8172. [Google Scholar] [CrossRef]
- Markewich, H.W.; Pavich, M.J.; Buell, G. Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States. Geomorphology 1990, 3, 417–447. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; de Bievre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on hydrology of the Andean páramos. Earth Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Weingartner, R.; Barben, M.; Spreafico, M. Floods in mountain areas-an overview based on examples from Switzerland. J. Hydrol. 2003, 282, 10–24. [Google Scholar] [CrossRef]
- Ruiz-Villanueva, V.; Diez-Herrero, A.; Stoffel, M.; Bollschweiler, M.; Bodoque, J.M.; Ballesteros, J.A. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment (Central Spain). Geomorphology 2010, 118, 383–392. [Google Scholar] [CrossRef]
Site | Location | Climate Class | Area (km2) | Altitude (m) | Slope Gradient (°) * | Soil Depth (cm) * | Underlying Geology | Forest Type | Age Class | Stream Length (km) | Stream Slope (m/m) * |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | GG | Dwa | 0.02 | 120–208 | 21.9 | 38.7 | Ig | BF | V | 0.3 | 0.3 |
C2 | GG | Dwa | 0.04 | 120–272 | 20.6 | 32.7 | Ig | MF | V | 0.5 | 0.3 |
C3 | GN | Cwa | 0.05 | 146–366 | 31.7 | 31.7 | Sed | CF | IV | 0.5 | 0.5 |
C4 | GW | Dwb | 0.06 | 1120–1320 | 23.6 | 67.3 | Sed | BF | VI | 0.4 | 0.5 |
C5 | GN | Cwa | 0.12 | 160–415 | 31.2 | 27.4 | Sed | MF | IV | 0.6 | 0.4 |
C6 | GG | Dwa | 0.13 | 165–306 | 22.3 | 63.6 | Meta | CF | V | 0.5 | 0.3 |
C7 | GG | Dwa | 0.13 | 681–1009 | 31.2 | 76.6 | Meta | BF | IV | 0.8 | 0.4 |
C8 | CB | Dwa | 0.15 | 303–545 | 27.0 | 55.9 | Sed | MF | V | 0.8 | 0.3 |
C9 | JB | Cfa | 0.17 | 146–345 | 28.8 | 52.3 | Ig | CF | I | 0.7 | 0.3 |
C10 | GB | Cwa | 0.18 | 494–716 | 25.0 | 62.1 | Ig | BF | IV | 0.8 | 0.3 |
C11 | GG | Dwa | 0.19 | 694–955 | 27.3 | 83.7 | Meta | BF | V | 0.7 | 0.4 |
C12 | GG | Dwa | 0.20 | 695–919 | 22.3 | 62.6 | Meta | MF | IV | 0.8 | 0.3 |
C13 | SS | Cwa | 0.22 | 59–310 | 23.5 | 40.4 | Ig | BF | V | 0.8 | 0.3 |
C14 | GG | Dwa | 0.24 | 241–460 | 20.0 | 66.2 | Meta | BF | VII | 0.7 | 0.3 |
C15 | GG | Dwa | 0.34 | 260–637 | 34.2 | 56.7 | Meta | BF | V | 1.0 | 0.4 |
C16 | JN | Cfa | 0.35 | 124–515 | 21.1 | 44.9 | Ig | BF | IV | 1.3 | 0.3 |
C17 | GW | Dwb | 0.41 | 960–1368 | 27.0 | 74.9 | Ig | BF | VII | 1.1 | 0.4 |
C18 | JN | Cwa | 0.41 | 326–765 | 29.9 | 28.2 | Meta | BF | III | 1.2 | 0.4 |
C19 | GW | Dwb | 0.45 | 680–936 | 24.1 | 55.7 | Ig | BF | V | 0.9 | 0.3 |
C20 | GB | Cwa | 0.46 | 386–600 | 29.8 | 56.1 | Sed | MF | IV | 1.1 | 0.2 |
C21 | GG | Dwa | 0.47 | 546–919 | 20.4 | 65.2 | Meta | CF | IV | 1.6 | 0.2 |
C22 | GW | Dwa | 0.55 | 270–648 | 27.2 | 71.3 | Meta | MF | V | 1.2 | 0.3 |
C23 | JB | Dwb | 0.56 | 745–1235 | 34.9 | 63.5 | Meta | BF | IV | 1.2 | 0.4 |
C24 | GN | Cwa | 0.59 | 495–1000 | 32.0 | 31.4 | Ig | BF | V | 1.1 | 0.5 |
C25 | GW | Dwa | 1.01 | 282–687 | 29.3 | 70.0 | Meta | MF | V | 1.5 | 0.3 |
C26 | GB | Dwb | 1.02 | 861–1340 | 31.2 | 64.9 | Meta | BF | V | 1.6 | 0.3 |
C27 | GB | Dfb | 1.03 | 472–915 | 28.9 | 64.5 | Meta | MF | VI | 2.2 | 0.2 |
C28 | GW | Dwb | 1.06 | 490–845 | 32.8 | 55.1 | Ig | MF | VI | 1.5 | 0.2 |
C29 | JB | Dwb | 1.07 | 511–1003 | 30.4 | 52.2 | Meta | BF | V | 1.7 | 0.3 |
C30 | JB | Dwb | 1.21 | 405–850 | 33.3 | 38.2 | Meta | MF | V | 1.4 | 0.3 |
C31 | JB | Dwb | 1.92 | 570–1065 | 30.4 | 71.8 | Ig | MF | IV | 2.7 | 0.2 |
C32 | GW | Dfa | 1.98 | 210–600 | 27.3 | 37.6 | Meta | MF | V | 2.1 | 0.2 |
C33 | GW | Dfb | 1.99 | 580–1155 | 29.6 | 55.0 | Ig | MF | IV | 3.2 | 0.2 |
C34 | CB | Dwa | 2.09 | 325–901 | 27.7 | 49.7 | Ig | MF | V | 2.5 | 0.2 |
C35 | GW | Dwb | 2.19 | 627–1190 | 23.4 | 56.4 | Sed | MF | V | 2.3 | 0.2 |
C36 | GW | Dwb | 2.81 | 430–915 | 27.6 | 57.0 | Ig | MF | V | 2.8 | 0.2 |
C37 | GW | Dwb | 3.80 | 726–1365 | 22.3 | 73.9 | Sed | MF | IV | 2.9 | 0.2 |
C38 | GW | Dwb | 5.57 | 672–1560 | 25.9 | 62.9 | Sed | MF | V | 3.1 | 0.3 |
C39 | GW | Dwb | 9.69 | 600–1375 | 27.2 | 71.9 | Sed | MF | V | 5.3 | 0.1 |
Equation Name [References] | Formulas for TC | Variables and Units | Remarks |
---|---|---|---|
Kirpich [7,13] | TC: time of concentration (min) L: channel length (km) S: channel slope (m/m) | Tennessee small catchments (0.004–0.45 km2) and slope (3–12%) | |
Kerby [36] | TC: time of concentration (hr) L: flow path length (m) S: flow path average slope (m/m) n: roughness coefficient | Developed in catchments from the United States with area (<0.04 km2) and slope (<1%) | |
SCS Lag [51,52,53] | TC: time of concentration (hr) CN: runoff curve number L: flow length (km) S: average watershed slope (m/m) | Developed in 24 rural basins in the United States with area (<8.09 km2) | |
Rziha [39] | TC: time of concentration (hr) L: stream length (km) S: stream slope (m/m) | Natural upstream (S ≥ 1/200) | |
Picking [54,55] | TC: time of concentration (hr) L: length of the main stream (km) S: average slope of the main (m/m) | Data of rural basins | |
Kraven (I) [40] | TC: time of concentration (hr) L: stream length (km) S: stream slope (m/m) | Natural downstream (S < 1/200) |
Year | n | PT (mm) | P10 (mm) | PD (hr) | API1 (mm) | TC (min) |
---|---|---|---|---|---|---|
2010–2021 | 3648 | 38.3 ± 41.9 (2.2–698.4) | 5.0 ± 3.7 (1.7–29.5) | 1.0 ± 0.9 (0.1–12.1) | 10.6 ± 21.1 (0.0–253.8) | 25.5 ± 19.1 (5.0–115.4) |
Equation Name [References] | Residual (min) | MAE | RMSE | MAPE | NSE |
---|---|---|---|---|---|
Kirpich [7,13] | 18.3 ± 6.8 (8.1–35.8) | 9.63 | 19.55 | 0.39 | −1.75 |
Kerby [36] | −17.1 ± 7.0 (−31.7–0.4) | 17.15 | 18.51 | 0.70 | −1.47 |
SCS Lag [51,52,53] | −10.4 ± 16.2 (−76.3–13.3) | 12.68 | 19.23 | 0.39 | −1.66 |
Rziha [39] | 24.2 ± 9.4 (10.4–52.0) | 24.23 | 25.97 | 0.91 | −3.85 |
Picking [54,55] | 16.8 ± 6.8 (6.6–35.4) | 16.81 | 18.12 | 0.63 | −1.36 |
Kraven (I) [40] | 25.8 ± 10.6 (10.7–59.8) | 25.75 | 27.85 | 0.96 | −4.58 |
Equation | Residual (min) | MAE | RMSE | MAPE | NSE | Comments |
---|---|---|---|---|---|---|
−0.04 ± 4.0 (−7.8–9.7) | 3.30 | 4.02 | 0.15 | 0.88 | Multiple regression | |
0.9± 4.5 (−6.4–12.3) | 3.35 | 4.56 | 0.14 | 0.85 | Modified empirical formula | |
−1.0 ± 6.0 (−12.5–15.5) | 4.77 | 6.04 | 0.19 | 0.74 | Modified SCS Lag |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Lim, H.; Choi, B.; Li, Q.; Moon, H.; Choi, H.T. Characteristics and Estimation of the Time of Concentration for Small Forested Catchments in Steep Mountainous Terrain. Forests 2024, 15, 186. https://doi.org/10.3390/f15010186
Nam S, Lim H, Choi B, Li Q, Moon H, Choi HT. Characteristics and Estimation of the Time of Concentration for Small Forested Catchments in Steep Mountainous Terrain. Forests. 2024; 15(1):186. https://doi.org/10.3390/f15010186
Chicago/Turabian StyleNam, Sooyoun, Honggeun Lim, Byoungki Choi, Qiwen Li, Haewon Moon, and Hyung Tae Choi. 2024. "Characteristics and Estimation of the Time of Concentration for Small Forested Catchments in Steep Mountainous Terrain" Forests 15, no. 1: 186. https://doi.org/10.3390/f15010186
APA StyleNam, S., Lim, H., Choi, B., Li, Q., Moon, H., & Choi, H. T. (2024). Characteristics and Estimation of the Time of Concentration for Small Forested Catchments in Steep Mountainous Terrain. Forests, 15(1), 186. https://doi.org/10.3390/f15010186