An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles
Abstract
:1. Introduction
2. Motor Model-Based Approach to Fault Diagnosis
2.1. State Estimation Method
2.2. Parameter Estimation Method
- In the process of parameter estimation, a large amount of sensor data needs to be obtained, and complex calculations and analysis are carried out, which requires significant hardware and algorithms;
- The parameter estimation method is subject to the accuracy of the motor model and the satisfaction of the assumptions. If the model is not accurate or the assumptions are not valid, it may lead to the deviation of the parameter estimation results;
- The parameter estimation method is sensitive to noise and interference, which may affect the stability and accuracy of the system;
- Parameter estimation methods usually require a long training time and a large amount of sample data, which may have certain limitations for fault diagnosis scenarios with high real-time requirements.
3. Signal Processing-Based Diagnostic Methods
3.1. Signal Processing Methods
3.2. Application of Signal Processing Methods
3.2.1. Diagnostic Method Based on Stator Current Signal
3.2.2. Diagnostic Method Based on Stator Voltage Signal
3.2.3. Diagnostic Method Based on Vibration Signals
3.2.4. Fault Localization Method Based on Characteristics of the Motor Magnetic Field
3.3. Fault Feature Extraction of Non-Stationary Information
4. Artificial Intelligence-Based Fault Diagnosis Methods
4.1. Application of Convolutional Neural Network (CNN)
- Capturing the time domain or frequency domain signal of the motor in normal and abnormal conditions using sensors;
- Preprocessing the signal and divide the signal into a training set and a test set;
- Using the received data to determine the model construction of CNN;
- Initializing the parameters of the CNN network, train it using the labeled training set through supervised learning, and iteratively update the network parameters until the maximum number of iterations is achieved;
- Using the trained CNN model to troubleshoot the test set.
4.2. Application of Recurrent Neural Network (RNN)
4.3. Application of Self-Encoding Network (AE)
4.4. Application of Generative Adversarial Network (GAN)
4.5. Challenges and Future Work
5. Prospects for the Development of Diagnostic Technology
- Promoting continuous development and innovation in sensor technology, including vibration sensors, temperature sensors, current sensors, etc., enables the acquisition of more precise and diverse motor operation data, facilitating the design and optimization of feature extraction and diagnostic algorithms for PMSMs;
- Investigating future research prospects for identifying EV motor faults through an AI-based onboard diagnostic system poses a formidable challenge;
- Integrating multiple data sources (such as vibration, sound, current, etc.) for data fusion and comprehensive analysis can enhance the diagnostic accuracy of ITSF. Through the amalgamation of data from various sensors, a more thorough and dependable fault signature can be derived, thereby enhancing the robustness and reliability of diagnostics;
- Detecting faults in EV motors during operation in real-time without employing complex signal decomposition methods remains a challenging task;
- Diagnosing hybrid simultaneous faults in EV motors is also a focus of research;
- Monitoring the motor’s condition and providing early warning of failures when EVs operate under complex conditions is of paramount importance.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, A.; Alaküla, M.; Márquez-Fernández, F.J. Characterization of Onboard Condition Monitoring Techniques for Stator Insulation Systems in Electric Vehicles—A Review. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 3179–3186. [Google Scholar]
- Xian, R.; Wang, L.; Zhang, B.; Li, J.; Xian, R.; Li, J. Identification Method of Interturn Short Circuit Fault for Distribution Transformer Based on Power Loss Variation. IEEE Trans. Ind. Inform. 2003, 20, 2444–2454. [Google Scholar] [CrossRef]
- Faiz, J.; Nejadi-Koti, H.; Valipour, Z. Comprehensive Review on Inter-turn Fault Indexes in Permanent Magnet Motors. IET Electr. Power Appl. 2017, 11, 142–156. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Ye, H.; Zhou, W. A Review of Permanent Magnet Synchronous Motor Fault Diagnosis. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–5. [Google Scholar]
- Wu, C.; Guo, C.; Xie, Z.; Ni, F.; Liu, H. A Signal-Based Fault Detection and Tolerance Control Method of Current Sensor for PMSM Drive. IEEE Trans. Ind. Electron. 2018, 65, 9646–9657. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Xu, Z.; Cheng, M.; Wang, W.; Hu, Y. Comprehensive Diagnosis and Tolerance Strategies for Electrical Faults and Sensor Faults in Dual Three-Phase PMSM Drives. IEEE Trans. Power Electron. 2018, 34, 6669–6684. [Google Scholar] [CrossRef]
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault Diagnosis and Fault-Tolerant Control of PMSM Drives–State of the Art and Future Challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Akrad, A.; Hilairet, M.; Diallo, D. Design of a Fault-Tolerant Controller Based on Observers for a PMSM Drive. IEEE Trans. Ind. Electron. 2011, 58, 1416–1427. [Google Scholar] [CrossRef]
- Dai, X.; Gao, Z. From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis. IEEE Trans. Ind. Inform. 2013, 9, 2226–2238. [Google Scholar] [CrossRef]
- Mansouri, B.; Idrissi, H.J.; Venon, A. Inter-Turn Short-Circuit Failure of PMSM Indicator Based on Kalman Filtering in Operational Behavior. In Proceedings of the Annual Conference of the PHM Society, Scottsdale, AZ, USA, 21–26 September 2019; Volume 11. [Google Scholar]
- Namdar, A.; Samet, H.; Allahbakhshi, M.; Tajdinian, M.; Ghanbari, T. A Robust Stator Inter-Turn Fault Detection in Induction Motor Utilizing Kalman Filter-Based Algorithm. Measurement 2022, 187, 110181. [Google Scholar] [CrossRef]
- Lee, D.; Park, H.J.; Lee, D.; Lee, S.; Choi, J.-H. A Novel Kalman Filter-Based Prognostics Framework for Performance Degradation of Quadcopter Motors. IEEE Trans. Instrum. Meas. 2023, 73, 1–12. [Google Scholar] [CrossRef]
- Chang, C.-C.; Cheng, T.-H. Motor-Efficiency Estimation and Control of Multirotors Comprising a Cooperative Transportation System. IEEE Access. 2023, 11, 36566–36578. [Google Scholar] [CrossRef]
- Hasan, A.; Tahavori, M.; Midtiby, H.S. Model-Based Fault Diagnosis Algorithms for Robotic Systems. IEEE Access 2023, 11, 2250–2258. [Google Scholar] [CrossRef]
- El Sayed, W.; Abd El Geliel, M.; Lotfy, A. Fault Diagnosis of PMSG Stator Inter-Turn Fault Using Extended Kalman Filter and Unscented Kalman Filter. Energies 2020, 13, 2972. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Jlassi, I.; Cardoso, A.J.M.; Yahia, K.; Sahraoui, M. Inter-Turn Short-Circuit Faults Diagnosis in Synchronous Reluctance Machines, Using the Luenberger State Observer and Current’s Second-Order Harmonic. IEEE Trans. Ind. Electron. 2021, 69, 8420–8429. [Google Scholar] [CrossRef]
- Guezmil, A.; Berriri, H.; Pusca, R.; Sakly, A.; Romary, R.; Mimouni, M.F. Detecting Inter-Turn Short-Circuit Fault in Induction Machine Using High-Order Sliding Mode Observer: Simulation and Experimental Verification. J. Control Autom. Electr. Syst. 2017, 28, 532–540. [Google Scholar] [CrossRef]
- Bouakoura, M.; Naït-Saïd, M.-S.; Nait-Said, N. Incipient Inter-Turn Short Circuit Fault Estimation Based on a Faulty Model Observer and Ann-Method for Induction Motor Drives. Recent Adv. Electr. Electron. Eng. Former. Recent Pat. Electr. Electron. Eng. 2019, 12, 374–383. [Google Scholar] [CrossRef]
- Vasilios, I.C. Detection of PMSM Inter-Turn Short-Circuit Based on a Fault-Related Disturbance Observer. Int. J. Simul. Syst. Sci. Technol. 2020, 21, 31.1–31.7. [Google Scholar]
- Yang, J.; Dou, M.; Dai, Z.; Zhao, D.; Zhang, Z. Modeling and Fault Diagnosis of Inter-Turn Short Circuit for Five-Phase PMSM Based on Particle Swarm Optimization. In Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 20–24 March 2016; pp. 3134–3139. [Google Scholar]
- Haddad, R.Z.; Strangas, E.G. Detection of Static Eccentricity and Turn-to-Turn Short Circuit Faults in Permanent Magnet Synchronous AC Machines. In Proceedings of the 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; pp. 277–283. [Google Scholar]
- Park, J.-K.; Jeong, C.-L.; Lee, S.-T.; Hur, J. Early Detection Technique for Stator Winding Inter-Turn Fault in BLDC Motor Using Input Impedance. IEEE Trans. Ind. Appl. 2014, 51, 240–247. [Google Scholar] [CrossRef]
- Qi, Y.; Zafarani, M.; Akin, B.; Fedigan, S.E. Analysis and Detection of Inter-Turn Short-Circuit Fault through Extended Self-Commissioning. IEEE Trans. Ind. Appl. 2016, 53, 2730–2739. [Google Scholar] [CrossRef]
- Leboeuf, N.; Boileau, T.; Nahid-Mobarakeh, B.; Takorabet, N.; Meibody-Tabar, F.; Clerc, G. Estimating Permanent-Magnet Motor Parameters under Inter-Turn Fault Conditions. IEEE Trans. Magn. 2012, 48, 963–966. [Google Scholar] [CrossRef]
- Leboeuf, N.; Boileau, T.; Nahid-Mobarakeh, B.; Takorabet, N.; Meibody-Tabar, F.; Clerc, G. Inductance Calculations in Permanent-Magnet Motors under Fault Conditions. IEEE Trans. Magn. 2012, 48, 2605–2616. [Google Scholar] [CrossRef]
- Sarikhani, A.; Mohammed, O.A. Inter-Turn Fault Detection in PM Synchronous Machines by Physics-Based Back Electromotive Force Estimation. IEEE Trans. Ind. Electron. 2013, 60, 3472–3484. [Google Scholar] [CrossRef]
- Quattrocchi, G.; Berri, P.; Dalla, M.V.; Maggiore, P. Diagnostics of Electro-Mechanical Actuators Based Upon the Back-EMF Reconstruction. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Online, 2–4 September 2020; Volume 1024, p. 012096. [Google Scholar]
- Xu, Z.; Zhang, J.; Zhang, Y.; Zhao, J. Winding Condition Monitoring for Inverter-Fed PMSM Using High-Frequency Current Injection. IEEE Trans. Ind. Appl. 2021, 57, 5818–5828. [Google Scholar] [CrossRef]
- Raj, K.K.; Joshi, S.H.; Kumar, R. A State-Space Model for Induction Machine Stator Inter-Turn Fault and Its Evaluation at Low Severities by PCA. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Brisbane, Australia, 8–10 December 2021; pp. 1–6. [Google Scholar]
- Yang, J.; Li, Z.; Zhang, P.; Zhang, K.; Xu, Y. Motor Current Time-varying Quadratic Phase Coupling Analysis and its Application in Traction Motor Fault Detection under Varying-speed Condition. IEEE Sens. J. 2024, 24, 12877–12886. [Google Scholar] [CrossRef]
- Cai , B.; Hao, K.; Wang, Z.; Yang, C.; Kong, X.; Liu, Z.; Ji, R.; Liu, Y. Data-driven early fault diagnostic methodology of permanent magnet synchronous motor. Expert Syst. Appl. 2021, 177, 115000. [Google Scholar] [CrossRef]
- Rojas, C.; Melero, M.; Cabanas, M.; Cano, J.; Orcajo, G.; Pedrayes, F. Finite Element Model for the Study of Inter-Turn Short Circuits in Induction Motors. In Proceedings of the 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, Poland, 6–8 September 2007; pp. 415–419. [Google Scholar]
- Ghanbari, T.; Mehraban, A.; Farjah, E. Inter-Turn Fault Detection of Induction Motors Using a Method Based on Spectrogram of Motor Currents. Measurement 2022, 205, 112180. [Google Scholar] [CrossRef]
- Mejia-Barron, A.; Tapia-Tinoco, G.; Razo-Hernandez, J.R.; Valtierra-Rodriguez, M.; Granados-Lieberman, D. A Neural Network-Based Model for MCSA of Inter-Turn Short-Circuit Faults in Induction Motors and Its Power Hardware in the Loop Simulation. Comput. Electr. Eng. 2021, 93, 107234. [Google Scholar] [CrossRef]
- Zouzou, S.; Sahraoui, M.; Ghoggal, A.; Guedidi, S. Detection of Inter-Turn Short-Circuit and Broken Rotor Bars in Induction Motors Using the Partial Relative Indexes: Application on the MCSA. In Proceedings of the The XIX International Conference on Electrical Machines-ICEM 2010, Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar]
- Prasob, K.; Kumar, N.P.; Isha, T. Inter-Turn Short Circuit Fault Analysis of PWM Inverter Fed Three-Phase Induction Motor Using Finite Element Method. In Proceedings of the 2017 international conference on circuit, power and computing technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
- Sahraoui, M.; Ghoggal, A.; Guedidi, S.; Zouzou, S.E. Detection of Inter-Turn Short-Circuit in Induction Motors Using Park–Hilbert Method. Int. J. Syst. Assur. Eng. Manag. 2014, 5, 337–351. [Google Scholar] [CrossRef]
- Gyftakis, K.N.; Marques-Cardoso, A.J. Reliable Detection of Very Low Severity Level Stator Inter-Turn Faults in Induction Motors. In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019; Volume 1, pp. 1290–1295. [Google Scholar]
- Rebouças Filho, P.P.; Nascimento, N.M.; Sousa, I.R.; Medeiros, C.M.; de Albuquerque, V.H.C. A Reliable Approach for Detection of Incipient Faults of Short-Circuits in Induction Generators Using Machine Learning. Comput. Electr. Eng. 2018, 71, 440–451. [Google Scholar] [CrossRef]
- Zaparoli, I.O.; Rabelo Baccarini, L.M.; Lamim Filho, P.C.M.; Batista, F.B. Transient Envelope Current Analysis for Inter-Turn Short-Circuit Detection in Induction Motor Stator. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 97. [Google Scholar] [CrossRef]
- Seera, M.; Lim, C.P.; Ishak, D.; Singh, H. Fault Detection and Diagnosis of Induction Motors Using Motor Current Signature Analysis and a Hybrid FMM–CART Model. IEEE Trans. Neural Netw. Learn. Syst. 2011, 23, 97–108. [Google Scholar] [CrossRef]
- Jung, W.; Yun, S.-H.; Lim, Y.-S.; Cheong, S.; Bae, J.; Park, Y.-H. Fault Diagnosis of Inter-Turn Short Circuit in Permanent Magnet Synchronous Motors with Current Signal Imaging and Semi-Supervised Learning. In Proceedings of the IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar]
- Jeong, H.; Moon, S.; Lee, J.; Kim, S.W. Inter-Turn Short Fault Diagnosis of Permanent Magnet Synchronous Machines Using Negative Sequence Components. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 170–174. [Google Scholar]
- Ehya, H.; Nysveen, A. Pattern Recognition of Interturn Short Circuit Fault in a Synchronous Generator Using Magnetic Flux. IEEE Trans. Ind. Appl. 2021, 57, 3573–3581. [Google Scholar] [CrossRef]
- Sarkar, S.; Das, S.; Purkait, P.; Chakravorti, S. Application of Wavelet Transform to Discriminate Induction Motor Stator Winding Short Circuit Faults from Incipient Insulation Failures. In Proceedings of the 2012 1st International Conference on Power and Energy in NERIST (ICPEN), Nirjuli, Arunachal Pradesh, India, 28–29 December 2012; pp. 1–6. [Google Scholar]
- Hammond, D.N.A.; Frimpong, E.A.; Ohene, J.Y. Detection of Inter-Turn Faults in Transformers Using Continuous Wavelet Transform and Convolutional Neural Network. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020; pp. 1–4. [Google Scholar]
- Hossein, S.; Abedi, M. Detection of the Stator Inter-Turn Fault Using the Energy Feature of the Wavelet Coefficients Obtained through Continuous Wavelet Transform. Sci. Iran. Trans. Comput. Sci. Eng. Electr. Eng. 2023, 30, 536–550. [Google Scholar]
- Das, S.; Koley, C.; Purkait, P.; Chakravorti, S. Wavelet Aided SVM Classifier for Stator Inter-Turn Fault Monitoring in Induction Motors. In Proceedings of the IEEE PES general meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [Google Scholar]
- Cherif, H.; Menacer, A.; Romary, R.; Pusca, R. Dispersion Field Analysis Using Discrete Wavelet Transform for Inter-Turn Stator Fault Detection in Induction Motors. In Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Tinos, Greece, 29 August–1 September 2017; pp. 104–109. [Google Scholar]
- Bessam, B.; Menacer, A.; Boumehraz, M.; Cherif, H. Wavelet Transform and Neural Network Techniques for Inter-Turn Short Circuit Diagnosis and Location in Induction Motor. Int. J. Syst. Assur. Eng. Manag. 2017, 8, 478–488. [Google Scholar] [CrossRef]
- Roshanfekr, R.; Jalilian, A. Wavelet-Based Index to Discriminate between Minor Inter-Turn Short-Circuit and Resistive Asymmetrical Faults in Stator Windings of Doubly Fed Induction Generators: A Simulation Study. IET Gener. Transm. Distrib. 2016, 10, 374–381. [Google Scholar] [CrossRef]
- DOĞAN, Z.; SELÇUK, R. A Diagnosis of Stator Winding Fault Based on Empirical Mode Decomposition in PMSMs. Balk. J. Electr. Comput. Eng. 2020, 8, 73–80. [Google Scholar] [CrossRef]
- Caballero-Peña, J.A.; Rosero-Garcìa, J. Decentralized Inter-Turn Fault Diagnosis of Induction Motors Based on Wireless Sensor Networks. Dyna 2021, 88, 237–246. [Google Scholar]
- Climente-Alarcón, V.; Antonino-Daviu, J.; Riera-Guasp, M.; Puche, R.; Escobar-Moreira, L.; Jover-Rodriguez, P.; Arkkio, A. Diagnosis of Stator Short-Circuits through Wigner-Ville Transient-Based Analysis. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 1097–1102. [Google Scholar]
- Chen, Y.; Liang, S.; Li, W.; Liang, H.; Wang, C. Faults and Diagnosis Methods of Permanent Magnet Synchronous Motors: A Review. Appl. Sci. 2019, 9, 2116. [Google Scholar] [CrossRef]
- Faiz, J.; Mazaheri-Tehrani, E. Demagnetization Modeling and Fault Diagnosing Techniques in Permanent Magnet Machines under Stationary and Nonstationary Conditions: An Overview. IEEE Trans. Ind. Appl. 2016, 53, 2772–2785. [Google Scholar] [CrossRef]
- Wang, C.; Prieto, M.D.; Romeral, L.; Chen, Z.; Blaabjerg, F.; Liu, X. Detection of Partial Demagnetization Fault in PMSMs Operating under Nonstationary Conditions. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Park, J.-K.; Hur, J. Detection of Inter-Turn and Dynamic Eccentricity Faults Using Stator Current Frequency Pattern in IPM-Type BLDC Motors. IEEE Trans. Ind. Electron. 2015, 63, 1771–1780. [Google Scholar] [CrossRef]
- Urresty, J.-C.; Riba, J.-R.; Saavedra, H.; Romeral, L. Detection of Inter-Turns Short Circuits in Permanent Magnet Synchronous Motors Operating under Transient Conditions by Means of the Zero Sequence Voltage. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011; pp. 1–9. [Google Scholar]
- Ogidi, O.O.; Barendse, P.S.; Khan, M.A. The Detection of Interturn Short Circuit Faults in Axial-Flux Permanent Magnet Machine with Concentrated Windings. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 1810–1817. [Google Scholar]
- Mirchevska, B.; Pek, C.; Werling, M.; Althoff, M.; Boedecker, J. High-Level Decision Making for Safe and Reasonable Autonomous Lane Changing Using Reinforcement Learning. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2156–2162. [Google Scholar]
- Huang, S.; Bi, Z.; Sun, Z.; Aggarwal, A.; Huang, X.; Wu, L.; Niu, F. Detection of Stator Winding Faults in PMSMs Based on Second Harmonics of Phase Instantaneous Reactive Powers. Energies 2022, 15, 3248. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, F.; Wang, Z.; Yang, J. Analysis of Stator Winding Inter-Turn Short Circuit Fault of PMSM for Electric Vehicle Based on Finite Element Simulation. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–6. [Google Scholar]
- Kim, K.-H.; Gu, B.-G.; Jung, I.-S. Online Fault-Detecting Scheme of an Inverter-Fed Permanent Magnet Synchronous Motor under Stator Winding Shorted Turn and Inverter Switch Open. IET Electr. Power Appl. 2011, 5, 529–539. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhu, Z.Q. Current harmonics and unbalance suppression of dual three-phase PMSM based on adaptive linear neuron controller. IEEE Trans. Energy Convers. 2023, 38, 2353–2363. [Google Scholar] [CrossRef]
- Li, Y.; Liang, Y. A Comparative Study on Inter-Tern Short Circuit Fault of PMSM Using Finite Element Analysis and Experiment. In Proceedings of the 2015 International Conference on Advanced Mechatronic Systems (ICAMechS), Beijing, China, 22–24 August 2015; pp. 290–294. [Google Scholar]
- Qi, Z.; Liang, Y. Evaluating the Stator Winding Inter-Tern Short Circuit Fault of Permanent Magnet Motor Using FEA Combined with Experiment. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 1034–1038. [Google Scholar]
- Nejad, M.S.; Taghipour, M. Inter-Turn Stator Winding Fault Diagnosis and Determination of Fault Percent in PMSM. In Proceedings of the 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 18–19 April 2011; pp. 128–131. [Google Scholar]
- Alam, M.; Shah, V.; Payami, S. Online Fault Diagnosis of Static and Dynamic Eccentricity in Switched Reluctance Motors Using Parks Vector Algorithm. In Proceedings of the 10th International Conference on Power Electronics, Machines and Drives (PEMD 2020), Online, 15–17 December 2020. [Google Scholar]
- Fonseca, D.; Cardoso, A.J.M. On-Line Inter-Turn Short-Circuit Fault Diagnosis in Switched Reluctance Motors. In Proceedings of the 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 12–15 May 2019; pp. 198–202. [Google Scholar]
- Kim, K.-H. Simple Online Fault Detecting Scheme for Short-Circuited Turn in a PMSM through Current Harmonic Monitoring. IEEE Trans. Ind. Electron. 2010, 58, 2565–2568. [Google Scholar] [CrossRef]
- Jeong, H.; Moon, S.; Kim, S.W. An Early Stage Interturn Fault Diagnosis of PMSMs by Using Negative-Sequence Components. IEEE Trans. Ind. Electron. 2017, 64, 5701–5708. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Lopez, C.A.; Foster, S.N.; Strangas, E.G. A Voltage-Based Approach for Fault Detection and Separation in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Appl. 2017, 53, 5305–5314. [Google Scholar] [CrossRef]
- Gu, B.-G.; Choi, J.-H.; Jung, I.-S. Development and Analysis of Interturn Short Fault Model of PMSMs with Series and Parallel Winding Connections. IEEE Trans. Power Electron. 2013, 29, 2016–2026. [Google Scholar] [CrossRef]
- Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Synchronous Demodulation of Control Voltages for Stator Interturn Fault Detection in PMSM. IEEE Trans. Power Electron. 2013, 28, 5647–5654. [Google Scholar] [CrossRef]
- de Souza, T.S.; Bastos, R.R.; Cardoso Filho, B.J. Synchronous-frame modeling and dq current control of an unbalanced nine-phase induction motor due to open phases. IEEE Trans. Ind. Appl. 2020, 56, 2097–2106. [Google Scholar] [CrossRef]
- Şahin, İ.; Keysan, O. Model Predictive Controller Utilized as an Observer for Inter-Turn Short Circuit Detection in Induction Motors. IEEE Trans. Energy Convers. 2020, 36, 1449–1458. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J.; Xiong, J.; Wu, Y.; Cheng, M. An Improved High Frequency Voltage Injection Method for Inter-Turn Short-Circuit Fault Detection in PMSMs. IEEE Trans. Transp. Electrification 2022, 9, 3228–3239. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Zou, J. An Inter-Turn Short-Circuits Fault Detection Strategy Considering Inverter Nonlinearity and Current Measurement Errors for Sensorless Control of SPMSM. IEEE Trans. Ind. Electron. 2021, 69, 11709–11722. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Li, J. Diagnosis of Inter-Turn Short Circuit of Synchronous Generator Rotor Winding Based on Volterra Kernel Identification. Energies 2018, 11, 2524. [Google Scholar] [CrossRef]
- Kim, K.-T.; Hur, J.; Kang, G.-H. Inter-Turn Fault Analysis of IPM Type BLDC Motor Using Fault Impedance Modeling. In Proceedings of the 8th International Conference on Power Electronics-ECCE Asia, Jeju, Republic of Korea, 30 May–3 June 2011; pp. 2216–2224. [Google Scholar]
- Goktas, T.; Zafarani, M.; Lee, K.W.; Akin, B.; Sculley, T. Comprehensive Analysis of Magnet Defect Fault Monitoring Through Leakage Flux. IEEE Trans. Magn. 2017, 53, 1–10. [Google Scholar] [CrossRef]
- Da, Y.; Shi, X.; Krishnamurthy, M. A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis. IEEE Trans. Power Electron. 2013, 28, 4104–4112. [Google Scholar] [CrossRef]
- De Bisschop, J.; Sergeant, P.; Dupre, L. Demagnetization Fault Detection in Axial Flux PM Machines by Using Sensing Coils and an Analytical Model. In Proceedings of the 2016 IEEE Conference on Electromagnetic Field Computation (CEFC), Miami, Fl, USA, 13–16 November 2016. [Google Scholar] [CrossRef]
- Liu, X.; Miao, W.; Xu, Q.; Cao, L.; Liu, C.; Pong, P.W.T. Inter-Turn Short-Circuit Fault Detection Approach for Permanent Magnet Synchronous Machines Through Stray Magnetic Field Sensing. IEEE Sens. J. 2019, 19, 7884–7895. [Google Scholar] [CrossRef]
- Gao, C.; Gao, B.; Xu, X.; Si, J.; Hu, Y. Automatic Demagnetization Fault Location of Direct-Drive Permanent Magnet Synchronous Motor Using Knowledge Graph. IEEE Trans. Instrum. Meas. 2024, 73, 1–12. [Google Scholar] [CrossRef]
- Arellano-Padilla, J.; Sumner, M.; Gerada, C. Winding Condition Monitoring Scheme for a Permanent Magnet Machine Using High-Frequency Injection. IET Electr. Power Appl. 2011, 5, 89–99. [Google Scholar] [CrossRef]
- Lee, J.; Moon, S.; Jeong, H.; Kim, S.W. Robust Diagnosis Method Based on Parameter Estimation for an Interturn Short-Circuit Fault in Multipole PMSM under High-Speed Operation. Sensors 2015, 15, 29452–29466. [Google Scholar] [CrossRef]
- de Castro, B.A.; Binotto, A.; Ardila-Rey, J.A.; Fraga, J.R.C.P.; Smith, C.; Andreoli, A.L. New Algorithm Applied to Transformers’ Failures Detection Based on Karhunen-Loève Transform. IEEE Trans. Ind. Inform. 2023, 19, 10883–10891. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, B.; Li, C.; Lin, J.; Zhang, D. Feature mode decomposition: New decomposition theory for rotating machinery fault diagnosis. IEEE Trans. Ind. Electron. 2022, 70, 1949–1960. [Google Scholar] [CrossRef]
- Berzoy, A.; Eldeeb, H.H.; Mohammed, O.A. On-Line Detection of Stator Faults in DTC-Driven IM Using SC Impedance Matrix off-Diagonal Term. IEEE Trans. Ind. Appl. 2019, 55, 5906–5915. [Google Scholar] [CrossRef]
- Niu, D.; Song, D. Model-Based Robust Fault Diagnosis of Incipient ITSC for PMSM in Elevator Traction System. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Hmida, M.A.; Braham, A. Fault Detection of VFD-Fed Induction Motor under Transient Conditions Using Harmonic Wavelet Transform. IEEE Trans. Instrum. Meas. 2020, 69, 8207–8215. [Google Scholar] [CrossRef]
- Gyftakis, K.N. A Comparative Investigation of Interturn Faults in Induction Motors Suggesting a Novel Transient Diagnostic Method Based on the Goerges Phenomenon. IEEE Trans. Ind. Appl. 2021, 58, 304–313. [Google Scholar] [CrossRef]
- Cai, B.; Liu, Y.; Xie, M. A Dynamic-Bayesian-Network-Based Fault Diagnosis Methodology Considering Transient and Intermittent Faults. IEEE Trans. Autom. Sci. Eng. 2016, 14, 276–285. [Google Scholar] [CrossRef]
- Burriel-Valencia, J.; Puche-Panadero, R.; Martinez-Roman, J.; Sapena-Bano, A.; Pineda-Sanchez, M. Short-Frequency Fourier Transform for Fault Diagnosis of Induction Machines Working in Transient Regime. IEEE Trans. Instrum. Meas. 2017, 66, 432–440. [Google Scholar] [CrossRef]
- Wang, P.; Wang, K.; Chen, L. Broken Rotor Bars Detection in Inverter-Fed Induction Motors under Continuous Switching of Different Speed Modes. IEEE Trans. Ind. Electron. 2023, 71, 975–984. [Google Scholar] [CrossRef]
- Cui, L.; Yan, L.; Zhao, D. Instantaneous Frequency Estimation-Based Order Tracking for Bearing Fault Diagnosis Under Strong Noise. IEEE Sens. J. 2023, 23, 30940–30949. [Google Scholar] [CrossRef]
- Tran, V.T.; Yang, B.-S.; Oh, M.-S.; Tan, A.C.C. Fault Diagnosis of Induction Motor Based on Decision Trees and Adaptive Neuro-Fuzzy Inference. Expert Syst. Appl. 2009, 36, 1840–1849. [Google Scholar] [CrossRef]
- Yang, F.; Xiao, D. Sensor Location Strategy in Large-Scale Systems for Fault Detection Applications. J. Comput. 2008, 3, 51–57. [Google Scholar] [CrossRef]
- Kafeel, A.; Aziz, S.; Awais, M.; Khan, M.A.; Afaq, K.; Idris, S.A.; Alshazly, H.; Mostafa, S.M. An Expert System for Rotating Machine Fault Detection Using Vibration Signal Analysis. Sensors 2021, 21, 7587. [Google Scholar] [CrossRef]
- Poręba, J.; Baranowski, J. Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain. Energies 2022, 15, 5535. [Google Scholar] [CrossRef]
- Bensaoucha, S.; Brik, Y.; Moreau, S.; Bessedik, S.A.; Ameur, A. Induction Machine Stator Short-Circuit Fault Detection Using Support Vector Machine. COMPEL -Int. J. Comput. Math. Electr. Electron. Eng. 2021, 40, 373–389. [Google Scholar] [CrossRef]
- Quiroz, J.C.; Mariun, N.; Mehrjou, M.R.; Izadi, M.; Misron, N.; Radzi, M.A.M. Fault Detection of Broken Rotor Bar in LS-PMSM Using Random Forests. Measurement 2018, 116, 273–280. [Google Scholar] [CrossRef]
- Samanta, S.; Bera, J.; Sarkar, G. KNN Based Fault Diagnosis System for Induction Motor. In Proceedings of the 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, India, 28–30 January 2016; pp. 304–308. [Google Scholar]
- Saini, M.K.; Aggarwal, A. Detection and Diagnosis of Induction Motor Bearing Faults Using Multiwavelet Transform and Naive Bayes Classifier. Int. Trans. Electr. Energy Syst. 2018, 28, e2577. [Google Scholar] [CrossRef]
- Yan, W.; Wang, J.; Lu, S.; Zhou, M.; Peng, X. A Review of Real-Time Fault Diagnosis Methods for Industrial Smart Manufacturing. Processes 2023, 11, 369. [Google Scholar] [CrossRef]
- An, K.; Lu, J.; Zhu, Q.; Wang, X.; De Silva, C.W.; Xia, M.; Lu, S. Edge Solution for Real-Time Motor Fault Diagnosis Based on Efficient Convolutional Neural Network. IEEE Trans. Instrum. Meas. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Sanchez, O.D.; Martinez-Soltero, G.; Alvarez, J.G.; Alanis, A.Y. Real-Time Neural Classifiers for Sensor Faults in Three Phase Induction Motors. IEEE Access 2023, 11, 19657–19668. [Google Scholar] [CrossRef]
- Tao, H.; Jia, P.; Wang, X.; Wang, L. Real-Time Fault Diagnosis for Hydraulic System Based on Multi-Sensor Convolutional Neural Network. Sensors 2024, 24, 353. [Google Scholar] [CrossRef]
- Eren, L.; Ince, T.; Kiranyaz, S. A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier. J. Signal Process. Syst. 2019, 91, 179–189. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, W.; Xue, F.; Li, D.; Xie, S.; Fleischer, J. A Novel Intelligent Fault Diagnosis Method of Rolling Bearing Based on Two-Stream Feature Fusion Convolutional Neural Network. Measurement 2021, 176, 109226. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Khan, T.; Alekhya, P.; Seshadrinath, J. Incipient Inter-Turn Fault Diagnosis in Induction Motors Using CNN and LSTM Based Methods. In Proceedings of the 2018 IEEE Industry Applications Society Annual Meeting (IAS), Portland, OR, USA, 23–27 September 2018; pp. 1–6. [Google Scholar]
- Maraaba, L.S.; Milhem, A.S.; Nemer, I.A.; Al-Duwaish, H.; Abido, M.A. Convolutional Neural Network-Based Inter-Turn Fault Diagnosis in LSPMSMs. IEEE Access 2020, 8, 81960–81970. [Google Scholar] [CrossRef]
- Skowron, M.; Orlowska-Kowalska, T.; Wolkiewicz, M.; Kowalski, C.T. Convolutional Neural Network-Based Stator Current Data-Driven Incipient Stator Fault Diagnosis of Inverter-Fed Induction Motor. Energies 2020, 13, 1475. [Google Scholar] [CrossRef]
- Piedad, E.J.; Chen, Y.-T.; Chang, H.-C.; Kuo, C.-C. Frequency Occurrence Plot-Based Convolutional Neural Network for Motor Fault Diagnosis. Electronics 2020, 9, 1711. [Google Scholar] [CrossRef]
- Hsueh, Y.-M.; Ittangihal, V.R.; Wu, W.-B.; Chang, H.-C.; Kuo, C.-C. Fault Diagnosis System for Induction Motors by CNN Using Empirical Wavelet Transform. Symmetry 2019, 11, 1212. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Gao, D. Bearing Fault Diagnosis Base on Multi-Scale CNN and LSTM Model. J. Intell. Manuf. 2021, 32, 971–987. [Google Scholar] [CrossRef]
- Peng, D.; Wang, H.; Liu, Z.; Zhang, W.; Zuo, M.J.; Chen, J. Multibranch and Multiscale CNN for Fault Diagnosis of Wheelset Bearings under Strong Noise and Variable Load Condition. IEEE Trans. Ind. Inform. 2020, 16, 4949–4960. [Google Scholar] [CrossRef]
- Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Sensors 2019, 19, 1693. [Google Scholar] [CrossRef]
- Liu, R.; Meng, G.; Yang, B.; Sun, C.; Chen, X. Dislocated Time Series Convolutional Neural Architecture: An Intelligent Fault Diagnosis Approach for Electric Machine. IEEE Trans. Ind. Inform. 2017, 13, 1310–1320. [Google Scholar] [CrossRef]
- Husari, F.; Seshadrinath, J. Incipient Interturn Fault Detection and Severity Evaluation in Electric Drive System Using Hybrid HCNN-SVM Based Model. IEEE Trans. Ind. Inform. 2022, 18, 1823–1832. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H.; Koo, G.; Ban, J.; Kim, S.W. Attention Recurrent Neural Network-Based Severity Estimation Method for Interturn Short-Circuit Fault in Permanent Magnet Synchronous Machines. IEEE Trans. Ind. Electron. 2020, 68, 3445–3453. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, X. A Hybrid LSTM-KLD Approach to Condition Monitoring of Operational Wind Turbines. Renew. Energy 2022, 181, 554–566. [Google Scholar] [CrossRef]
- Alipoor, G.; Mirbagheri, S.J.; Moosavi, S.M.M.; Cruz, S.M. Incipient Detection of Stator Inter-Turn Short-Circuit Faults in a Doubly-Fed Induction Generator Using Deep Learning. IET Electr. Power Appl. 2023, 17, 256–267. [Google Scholar] [CrossRef]
- Husari, F.; Seshadrinath, J. Sensitive Inter-Tum Fault Identifcation in Induction Motors Using Deep Learning Based Methods. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020; pp. 1–6. [Google Scholar]
- Husari, F.; Seshadrinath, J. Early Stator Fault Detection and Condition Identification in Induction Motor Using Novel Deep Network. IEEE Trans. Artif. Intell. 2021, 3, 809–818. [Google Scholar] [CrossRef]
- Raj, K.K.; Joshi, S.; Kumar, R. A LSTM-Based Neural Strategy for Diagnosis of Stator Inter-Turn Faults with Low Severity Level for Induction Motors. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–2 December 2022; pp. 1–6. [Google Scholar]
- Husari, F.; Seshadrinath, J. Stator Turn Fault Diagnosis and Severity Assessment in Converter Fed Induction Motor Using Flat Diagnosis Structure Based on Deep Learning Approach. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 11, 5649–5657. [Google Scholar] [CrossRef]
- Luo, Y.; Qiu, J.; Shi, C. Fault Detection of Permanent Magnet Synchronous Motor Based on Deep Learning Method. In Proceedings of the 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Republic of Korea, 7–10 October 2018; pp. 699–703. [Google Scholar]
- Li, Y.; Wang, Y.; Zhang, Y.; Zhang, J. Diagnosis of Inter-Turn Short Circuit of Permanent Magnet Synchronous Motor Based on Deep Learning and Small Fault Samples. Neurocomputing 2021, 442, 348–358. [Google Scholar] [CrossRef]
- Duan, L.; Hu, J.; Zhao, G.; Chen, K.; Wang, S.X.; He, J. Method of Inter-Turn Fault Detection for next-Generation Smart Transformers Based on Deep Learning Algorithm. High Volt. 2019, 4, 282–291. [Google Scholar] [CrossRef]
- Bao, J.; Wang, S.; Li, S.; Tang, D. Application of Deep Learning in Interturn Short Circuit Fault Diagnosis of PMSM. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; pp. 993–997. [Google Scholar]
Reference | Year | Method | Advantages | Disadvantages |
---|---|---|---|---|
[10,11,12,13,14,15] | 2019, 2022, 2023, 2023, 2023, 2020 | Kalman filter | High sensitivity for fault diagnosis High model robustness | High demands for model parameters Inapplicable to nonlinear systems |
[16] | 2021 | Luenberger observer | Applicable to faults under different working conditions | Complicated calculation |
[17] | 2017 | High order sliding model | Applicable to nonlinear system | System instability caused by friction |
[18] | 2019 | New equivalent model | High efficiency in diagnosis | High sensitivity to noise |
[19] | 2020 | Sliding mode observer | Strong interference suppression capabilities | Complexity in model parameters |
Reference | Year | Method | Advantages | Disadvantages |
---|---|---|---|---|
[21] | 2015 | Incremental inductance calculation | High sensitivity for fault diagnosis | High measurement accuracy required |
[22] | 2014 | Faulty impedance-based model | Effective for early-stage faults | Sensitive to noise |
[23] | 2016 | Equivalent circuit | Superior to fault localization | Complicated calculation |
[24] | 2012 | Winding distributions and leakage flux-based model | High accuracy in fault diagnosis | Sensitive to system faults |
[25] | 2012 | Magnetic permeability network | High accuracy in fault diagnosis with low CPU times | Complications in the diagnosis process |
[26,27] | 2013,2021 | Physics-based BEMF estimator | Applicable to any PMSM with any BEMF waveform | Vulnerable to internal motor faults |
[28] | 2021 | High-frequency signal injection | Accurate identification of ITSF in multiple phases | Prone to the influence of other signals |
Reference | Year | Method | Advantages | Disadvantages |
---|---|---|---|---|
[29] | 2021 | PCA | Dimensionality reduction Reducing redundancy | Information loss Sensitive to outliers |
[30] | 2024 | Peak | Simple and intuitive | Dependence on system models |
[31] | 2021 | RMS | Highlight global information | Limited applicability |
[32] | 2007 | Peak factor | Strong intuitiveness | Difficulty in parameter selection Susceptibility to noise |
[33] | 2022 | Kurtosis | Effective in outlier detection | Poor interpretability |
[34,35,36] | 2021/2010/2017 | MCSA | No additional sensors required Effective for early-stage faults | Dependence on experience Sensitive to external influences |
[37,38] | 2014/2019 | EPVA | Wide applicability Sensitive to signals | Difficulties in data acquisition Possibility of misjudgment |
[39] | 2018 | HOS | Higher signal resolution Nonlinear feature analysis | Difficulty in data processing Limitations in application scope |
[40] | 2020 | Envelope | Accurate identification of low-intensity faults | Low diagnostic accuracy |
[41] | 2011 | Cepstrum | High spectral resolution Strong noise resistance | Complex data processing Challenges in parameter selection |
[42,43,44] | 2022/2016/2021 | STFT | Adjustable time-frequency resolution | Fixed window size Spectral leakage |
[45,46,47,48] | 2012/2020/2023/2010 | CWT | Multiscale analysis | Difficulty for wavelet basis selection |
[49,50,51] | 2017/2017/2016 | DWT | Multiresolution analysis | Difficulty in selecting the mother wavelet |
[52,53,54,55] | 2020/2021/2009/2019 | WVD | Strong anti-interference capability | Cross-term interference Boundary effects |
[56,57] | 2016/2016 | CWD | An effective approach for global time-frequency representation | High computational complexity |
[58,59] | 2015/2011 | HHT | Suitability for nonlinear and non-stationary signals High resolution and accuracy | Mode mixing issue Highly affected by noise |
Reference | Year | Learning Method | Advantages | Accuracy |
---|---|---|---|---|
[114] | 2018 | 1D-CNN | Features are not manually selected instead the models learn features through training. | 99% |
[115] | 2020 | 2D-CNN | The classification of ITSF level is performed with higher accuracy and shorter training. | 97.75% |
[116] | 2020 | CNN-1,2 | It has the ability to detect even individual shorted turns (incipient faults). | 99.3% |
[117] | 2020 | FOP-CNN | FOP-CNN can predict all motor fault conditions satisfactorily. | 92.37% |
[118] | 2019 | EWT-CNN | The model learns the position and scale of different structures in the image data. | 97.37% |
[119] | 2021 | MCNN | The network accepts raw data input, which can detect roller bearing status in real time. | 98.46% |
[120] | 2020 | MBSCNN | The MBSCNN can fuse rich and complementary features from the multiple signal components and time scales. | 93.97% |
[121] | 2019 | CNN-SVM | The CNN-SVM can effectively reduce the CNN’s model parameter quantity and diagnosis time. | 98.97% |
[122] | 2017 | DTS-CNN | It solves the inapplicability of CNN for mechanical periodic signal. | 99.9% |
[123] | 2022 | HCNN-SVM | This methodology combines diagnosis and severity evaluation in one single framework. | 99.88% |
Reference | Year | Learning Method | Advantages | Accuracy |
---|---|---|---|---|
[124] | 2020 | AB-RNN | The AB-RNN diagnoses the fault even under untrained operating points and fault conditions. | Displayed by fault indicator |
[125] | 2022 | LSTM-KLD | It can analyze operating conditions automatically and detect both alarms and faults simultaneously. | 94% |
[126] | 2023 | EMD-LSTM | A new method can effectively detect the ITSF in its incipient stages. | 94.59% |
[127] | 2020 | CNN-LSTM | The network can learn the features automatically under different load variations, voltage imbalances. | 98% |
[128] | 2021 | LSTM&GRU | This model can effectively diagnose, isolate, and identify early ITSF. | 99.89% |
[129] | 2022 | ULSTM | The model is sensitive to finding faults of very low severity. | 99.08% |
[130] | 2022 | LSTM&GRU | It is effective and robust for early ITSF detection and its severity. | 96.9% |
[131] | 2018 | LSTM | The predicted error is not affected by torque fluctuations. | Displayed by fault indicator |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Ji, B.; Zhang, J.; Yan, J.; Li, W. An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles. World Electr. Veh. J. 2024, 15, 165. https://doi.org/10.3390/wevj15040165
Jiang Y, Ji B, Zhang J, Yan J, Li W. An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles. World Electric Vehicle Journal. 2024; 15(4):165. https://doi.org/10.3390/wevj15040165
Chicago/Turabian StyleJiang, Yutao, Baojian Ji, Jin Zhang, Jianhu Yan, and Wenlong Li. 2024. "An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles" World Electric Vehicle Journal 15, no. 4: 165. https://doi.org/10.3390/wevj15040165
APA StyleJiang, Y., Ji, B., Zhang, J., Yan, J., & Li, W. (2024). An Overview of Diagnosis Methods of Stator Winding Inter-Turn Short Faults in Permanent-Magnet Synchronous Motors for Electric Vehicles. World Electric Vehicle Journal, 15(4), 165. https://doi.org/10.3390/wevj15040165