First Experiences with the Landsat-8 Aquatic Reflectance Product: Evaluation of the Regional and Ocean Color Algorithms in a Coastal Environment
Abstract
:1. Introduction
2. Study Area and Data Used
2.1. Study Area
2.2. Satellite Data
2.3. In-Situ Chlorophyll-a (Chl-a) Concentration Data
3. Methodology
3.1. Match-up Procedure
3.2. Development of a Regional Chl-a Estimation Algorithm
3.3. Evaluation of Ocean Color (OCx) and Other Regional Chl-a Algorithms
3.4. Validation Metrics
4. Results and Discussion
4.1. Potential of L8PAR for Chl-a Estimation
4.2. Evaluation of Different Chl-a Estimation Algorithms
4.3. Synoptic Mapping of Chl-a Concentration
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Werdell, P.J.; Bailey, S.W. An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean color measurements with the Operational Land Imager on Landsat-8: Implementation and evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Shahzad, M.I.; Meraj, M.; Nazeer, M.; Zia, I.; Inam, A.; Mehmood, K.; Zafar, H. Empirical estimation of suspended solids concentration in the Indus Delta Region using Landsat-7 ETM+ imagery. J. Environ. Manag. 2018, 209, 254–261. [Google Scholar] [CrossRef]
- Nazeer, M.; Wong, M.S.; Nichol, J.E. A new approach for the estimation of phytoplankton cell counts associated with algal blooms. Sci. Total Environ. 2017, 590–591, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, M.; Nichol, J.E. Improved water quality retrieval by identifying optically unique water classes. J. Hydrol. 2016, 541, 1119–1132. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E. Development and application of a remote sensing-based Chlorophyll-a concentration prediction model for complex coastal waters of Hong Kong. J. Hydrol. 2016, 532, 80–89. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.; Ho, H.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Nazeer, M.; Nichol, J.E. Combining Landsat TM/ETM+ and HJ-1 A/B CCD Sensors for Monitoring Coastal Water Quality in Hong Kong. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1898–1902. [Google Scholar] [CrossRef]
- Loveland, T.R.; Irons, J.R. Landsat 8: The plans, the reality, and the legacy. Remote Sens. Environ. 2016, 185, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Concha, J.A.; Schott, J.R. Retrieval of color producing agents in Case 2 waters using Landsat 8. Remote Sens. Environ. 2016, 185, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Hong Kong Environmental Protection Department. Marine water quality in Hong Kong in 2018; 2020. Available online: http://wqrc.epd.gov.hk/pdf/water-quality/annual-report/MarineReport2015eng.pdf (accessed on 23 April 2020).
- U.S Geological Survey. Landsat Provisional Aquatic Reflectance Product Guide (version 1.0); 2020. Available online: https://www.usgs.gov/media/files/landsat-provisional-aquatic-reflectance-product-guide (accessed on 1 April 2020).
- Park, K.-A.; Chae, H.-J.; Park, J.-E. Characteristics of satellite chlorophyll- a concentration speckles and a removal method in a composite process in the East/Japan Sea. Int. J. Remote Sens. 2013, 34, 4610–4635. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Chlorophyll a (chlor_a); 2020. Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2 (accessed on 12 April 2020).
- Nazeer, M.; Bilal, M.; Alsahli, M.; Shahzad, M.; Waqas, A. Evaluation of Empirical and Machine Learning Algorithms for Estimation of Coastal Water Quality Parameters. ISPRS Int. J. Geo-Inf. 2017, 6, 360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.; Zhang, M.; Xu, J. A novel MODIS algorithm to estimate chlorophyll a concentration in eutrophic turbid lakes. Ecol. Indic. 2016, 69, 138–151. [Google Scholar] [CrossRef]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric correction of SeaWiFS imagery over turbid coastal waters: A practical method. Remote Sens. Environ. 2000, 74, 195–206. [Google Scholar] [CrossRef]
- Vermote, E.; Saleous, N. El Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J. Geophys. Res. 1997, 102, 131–141. [Google Scholar] [CrossRef] [Green Version]
Algorithm | r | Slope | Intercept | RMSE | Bias | Mean Ratio | Average |
---|---|---|---|---|---|---|---|
RTA20 | 0.96 | 0.77 | 0.27 | 0.92 | −0.26 | 1.29 | 2.02 |
OC2 | 0.84 | 6.87 | −8.44 | 16.12 | 4.96 | 2.89 | 7.24 |
OC3 | 0.80 | 562.80 | −958.80 | 1460.13 | 323.22 | 39.53 | 325.50 |
RTA16 | 0.76 | 6.80 | −7.21 | 16.53 | 6.04 | 3.85 | 8.32 |
RTA17 | 0.76 | 5.49 | −5.58 | 12.96 | 4.67 | 3.32 | 6.95 |
RTA19 | 0.76 | 176.10 | −121.20 | 524.12 | 278.26 | 158.87 | 280.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazeer, M.; Bilal, M.; Nichol, J.E.; Wu, W.; Alsahli, M.M.M.; Shahzad, M.I.; Gayen, B.K. First Experiences with the Landsat-8 Aquatic Reflectance Product: Evaluation of the Regional and Ocean Color Algorithms in a Coastal Environment. Remote Sens. 2020, 12, 1938. https://doi.org/10.3390/rs12121938
Nazeer M, Bilal M, Nichol JE, Wu W, Alsahli MMM, Shahzad MI, Gayen BK. First Experiences with the Landsat-8 Aquatic Reflectance Product: Evaluation of the Regional and Ocean Color Algorithms in a Coastal Environment. Remote Sensing. 2020; 12(12):1938. https://doi.org/10.3390/rs12121938
Chicago/Turabian StyleNazeer, Majid, Muhammad Bilal, Janet Elizabeth Nichol, Weicheng Wu, Mohammad M. M. Alsahli, Muhammad Imran Shahzad, and Bijoy Krishna Gayen. 2020. "First Experiences with the Landsat-8 Aquatic Reflectance Product: Evaluation of the Regional and Ocean Color Algorithms in a Coastal Environment" Remote Sensing 12, no. 12: 1938. https://doi.org/10.3390/rs12121938
APA StyleNazeer, M., Bilal, M., Nichol, J. E., Wu, W., Alsahli, M. M. M., Shahzad, M. I., & Gayen, B. K. (2020). First Experiences with the Landsat-8 Aquatic Reflectance Product: Evaluation of the Regional and Ocean Color Algorithms in a Coastal Environment. Remote Sensing, 12(12), 1938. https://doi.org/10.3390/rs12121938