Revisiting the Role of Day 14 Bone Marrow Biopsy in Acute Myeloid Leukemia
Simple Summary
Abstract
1. Introduction
2. Bone Marrow Aspirate and Biopsy
3. Mid-Induction Bone Marrow Analysis
4. Can Day 14 Biopsy Results Predict Remission?
5. Sensitivity of Day 14 Biopsy
6. Specificity of D14 Biopsy
7. Pooled Sensitivity and Specificity Analysis
8. Alternative Options to Day 14 Biopsies
9. Genomics and Day 14 Biopsy
10. Day 14 Biopsy with Other AML Therapies
10.1. CPX-351
10.2. HMA+VEN
11. Limitation of Current Data
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vakiti, A.; Reynolds, S.B.; Mewawalla, P. Acute Myeloid Leukemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019, 36, 70–87. [Google Scholar] [CrossRef]
- SEER. SEER Cancer Statistics Review, 1975–2016. Available online: https://seer.cancer.gov/csr/1975_2016/index.html (accessed on 21 September 2024).
- Hahn, A.W.; Jamy, O.; Nunnery, S.; Yaghmour, G.; Giri, S.; Pathak, R.; Martin, M.G. How Center Volumes Affect Early Outcomes in Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2015, 15, 646–654. [Google Scholar] [CrossRef]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M.; Ravandi, F. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Long, N.; Saultz, J.; Gandhi, A.; Newell, L.F.; Hayes-Lattin, B.; Maziarz, R.T.; Leonard, J.; Bottomly, D.; McWeeney, S.; et al. Comparison and validation of the 2022 European LeukemiaNet guidelines in acute myeloid leukemia. Blood Adv. 2023, 7, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Wiedower, E.; Jamy, O.; Martin, M.G. Induction of Acute Myeloid Leukemia with Idarubicin, Cytarabine and Cladribine. Anticancer Res. 2015, 35, 6287–6290. [Google Scholar] [CrossRef]
- Bourne, G.; Diebold, K.; Espinoza-Gutarra, M.; Al-Kadhimi, Z.; Bachiashvili, K.; Rangaraju, S.; Vachhani, P.; Bhatia, R.; Jamy, O. Addition of single dose gemtuzumab ozogamicin to intensive induction chemotherapy in core-binding factor acute myeloid leukemia. Leuk. Res. 2024, 139, 107467. [Google Scholar] [CrossRef]
- Diebold, K.; Bourne, G.; Espinoza-Gutarra, M.; Al-Kadhimi, Z.; Bachiashvili, K.; Rangaraju, S.; Vachhani, P.; Bhatia, R.; Jamy, O. Idarubicin and cytarabine with and without midostaurin for FLT3-mutated acute myeloid leukemia. Leuk. Lymphoma 2024, 65, 1737–1739. [Google Scholar] [CrossRef]
- Erba, H.P.; Montesinos, P.; Kim, H.J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Jamy, O.; Bodine, C.; Sampat, D.; Sarmad, R.; Chadha, A.; Vachhani, P.; Papadantonakis, N.; Di Stasi, A. Observation Versus Immediate Reinduction for Acute Myeloid Leukemia Patients with Indeterminate Day 14 Bone Marrow Results. Clin. Lymphoma Myeloma Leuk. 2020, 20, 31–38. [Google Scholar] [CrossRef]
- Terry, C.M.; Shallis, R.M.; Estey, E.; Lim, S.H. Day 14 bone marrow examination in the management of acute myeloid leukemia. Am. J. Hematol. 2017, 92, 1079–1084. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Altman, J.K.; Assi, R.; Bixby, D.; Fathi, A.T.; Foran, J.M.; Gojo, I.; Hall, A.C.; Jonas, B.A.; Kishtagari, A.; et al. Acute Myeloid Leukemia, Version 3.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 503–513. [Google Scholar] [CrossRef]
- Liso, V.; Albano, F.; Pastore, D.; Carluccio, P.; Mele, G.; Lamacchia, M.; Mestice, A.; Specchia, G. Bone marrow aspirate on the 14th day of induction treatment as a prognostic tool in de novo adult acute myeloid leukemia. Haematologica 2000, 85, 1285–1290. [Google Scholar]
- Kern, W.; Haferlach, T.; Schoch, C.; Loffler, H.; Gassmann, W.; Heinecke, A.; Sauerland, M.C.; Berdel, W.; Buchner, T.; Hiddemann, W. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: Data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood 2003, 101, 64–70. [Google Scholar] [CrossRef]
- Hussein, K.; Jahagirdar, B.; Gupta, P.; Burns, L.; Larsen, K.; Weisdorf, D. Day 14 bone marrow biopsy in predicting complete remission and survival in acute myeloid leukemia. Am. J. Hematol. 2008, 83, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Bories, P.; Béné, M.C.; Daliphard, S.; Lioure, B.; Pigneux, A.; Vey, N.; Delaunay, J.; Leymarie, V.; Luquet, I.; et al. Prognostic impact of day 15 blast clearance in risk-adapted remission induction chemotherapy for younger patients with acute myeloid leukemia: Long-term results of the multicenter prospective LAM-2001 trial by the GOELAMS study group. Haematologica 2014, 99, 46–53. [Google Scholar] [CrossRef]
- Griffin, P.T.; Komrokji, R.S.; Sweet, K.; Al Ali, N.H.; Padron, E.; Kubal, T.E.; List, A.F.; Lancet, J.E. Bone marrow cellularity at day 14 is the most important predictive factor for response in patients with AML who require double-induction chemotherapy: Analysis from a large, single institution experience. Am. J. Hematol. 2017, 92, 232–237. [Google Scholar] [CrossRef]
- England, J.T.; Saini, L.; Hogge, D.; Forrest, D.; Narayanan, S.; Power, M.; Nevill, T.; Kuchenbauer, F.; Hudoba, M.; Szkotak, A.; et al. Day 14 Bone Marrow Evaluation During Acute Myeloid Leukemia Induction in a Real-world Canadian Cohort. Clin. Lymphoma Myeloma Leuk. 2020, 20, e427–e436. [Google Scholar] [CrossRef] [PubMed]
- Nair, C.; Manuprasad, A.; Raghavan, V.; Shenoy, P.K.; Krishnan, A. The utility of day 14 bone marrow response assessment in patients undergoing acute myeloid leukemia induction: A single institution retrospective experience. Cancer Res. Stat. Treat. 2021, 4, 628–633. [Google Scholar]
- Lemos, M.; Costa, F.; Gaspar, C.L.; Fevereiro, M.; Almeida, N.; Sarmento, L.; Monteiro, L.P.; Tome, A.; Sousa, A.B. Prognostic Value of Day 14 Bone Marrow Biopsy (d14BM) in Acute Myeloid Leukemia (AML). Blood 2017, 130, 3865. [Google Scholar]
- Yanada, M.; Borthakur, G.; Ravandi, F.; Bueso-Ramos, C.; Kantarjian, H.; Estey, E. Kinetics of bone marrow blasts during induction and achievement of complete remission in acute myeloid leukemia. Haematologica 2008, 93, 1263–1265. [Google Scholar] [CrossRef]
- Morris, T.A.; DeCastro, C.M.; Diehl, L.F.; Gockerman, J.P.; Lagoo, A.S.; Li, Z.; Moore, J.O.; Rizzieri, D.A.; Rao, A.V. Re-induction therapy decisions based on day 14 bone marrow biopsy in acute myeloid leukemia. Leuk. Res. 2013, 37, 28–31. [Google Scholar] [CrossRef]
- Deutsch, Y.E.; Campuzano-Zuluaga, G.; Salzberg, M.P.; Arteaga, A.G.; Watts, J.; Chapman, J.R.; Ikpatt, O.F.; Vega, F.; Swords, R.T. Clinical Utility of Morphological Evaluation of Day 14 Bone Marrow Biopsies in Acute Myeloid Leukemia Patients Undergoing Standard Induction Chemotherapy: Time to Change Practice? Blood 2014, 124, 1004. [Google Scholar] [CrossRef]
- Yezefski, T.; Xie, H.; Walter, R.; Pagel, J.; Becker, P.S.; Hendrie, P.; Sandhu, V.; Shannon-Dorcy, K.; Abkowitz, J.; Appelbaum, F.R.; et al. Value of routine ‘day 14’ marrow exam in newly diagnosed AML. Leukemia 2015, 29, 247–249. [Google Scholar] [CrossRef]
- Norkin, M.; Chang, M.; An, Q.; Leather, H.; Katragadda, L.; Li, Y.; Moreb, J.S.; May, W.S.; Brown, R.A.; Hsu, J.W.; et al. A new model to predict remission status in AML patients based on day 14 bone marrow biopsy. Leuk. Res. 2016, 46, 69–73. [Google Scholar] [CrossRef]
- Alsaleh, K.; Aleem, A.; Almomen, A.; Anjum, F.; Alotaibi, G.S. Impact of Day 14 Bone Marrow Biopsy on Re-Induction Decisions and Prediction of a Complete Response in Acute Myeloid Leukemia Cases. Asian Pac. J. Cancer Prev. 2018, 19, 421–425. [Google Scholar] [CrossRef]
- Al-Mawali, A.; Gillis, D.; Hissaria, P.; Lewis, I. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am. J. Clin. Pathol. 2008, 129, 934–945. [Google Scholar] [CrossRef]
- Li, W. Flow Cytometry in the Diagnosis of Leukemias. In Leukemia; Li, W., Ed.; Exon Publications: Brisbane, AU, Australia, 2022. [Google Scholar]
- Coleman, J.F.; Theil, K.S.; Tubbs, R.R.; Cook, J.R. Diagnostic Yield of Bone Marrow and Peripheral Blood FISH Panel Testing in Clinically Suspected Myelodysplastic Syndromes and/or Acute Myeloid Leukemia: A Prospective Analysis of 433 Cases. Am. J. Clin. Pathol. 2011, 135, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Dai, J.; Chien, S.; Martins, T.J.; Loera, B.; Nguyen, Q.H.; Oakes, M.L.; Tercan, B.; Aguilar, B.; Hagen, L.; et al. Mutation Patterns Predict Drug Sensitivity in Acute Myeloid Leukemia. Clin. Cancer Res. 2024, 30, 2659–2671. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Cappelli, L.V.; De Simone, G.; De Marinis, E.; Gentile, M.; Gasperi, T.; Pulsoni, A.; Ascenzi, P.; Nervi, C. Biomarkers in acute myeloid leukemia: From state of the art in risk classification to future challenges of RNA editing as disease predictor and therapy target. Asp. Mol. Med. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Jansko-Gadermeir, B.; Leisch, M.; Gassner, F.J.; Zaborsky, N.; Dillinger, T.; Hutter, S.; Risch, A.; Melchardt, T.; Egle, A.; Drost, M.; et al. Myeloid NGS Analyses of Paired Samples from Bone Marrow and Peripheral Blood Yield Concordant Results: A Prospective Cohort Analysis of the AGMT Study Group. Cancers 2023, 15, 2305. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.K.; Lamberg, J.D. Diagnosis of acute leukemia. Variability of morphologic criteria. Am. J. Clin. Pathol. 1977, 68, 440–448. [Google Scholar] [CrossRef]
- Matsuda, A.; Kawabata, H.; Tohyama, K.; Maeda, T.; Araseki, K.; Hata, T.; Suzuki, T.; Kayano, H.; Shimbo, K.; Usuki, K.; et al. Interobserver concordance of assessments of dysplasia and blast counts for the diagnosis of patients with cytopenia: From the Japanese central review study. Leuk. Res. 2018, 74, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Kramer, M.; Schliemann, C.; Mikesch, J.-H.; Steffen, B.; Krämer, A.; Noppeney, R.; Schäfer-Eckart, K.; Krause, S.W.; Hänel, M.; et al. Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 2020, 136, 823–830. [Google Scholar] [CrossRef]
- Othus, M.; Mukherjee, S.; Sekeres, M.A.; Godwin, J.; Petersdorf, S.; Appelbaum, F.R.; Erba, H.; Estey, E. Prediction of CR following a second course of ‘7+3’ in patients with newly diagnosed acute myeloid leukemia not in CR after a first course. Leukemia 2016, 30, 1779–1780. [Google Scholar] [CrossRef]
- Ollila, T.A.; Reagan, J.L.; Castillo, J.J.; Butera, J.N.; Winer, E.S.; Cardin, M.S. The Role of Day 14 Bone Marrow Analysis in Determining Leukemia Free Survival and Overall Survival. Blood 2015, 126, 4974. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.; Scholten, R.J.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 2005, 58, 982–990. [Google Scholar] [CrossRef]
- Ofran, Y.; Leiba, R.; Ganzel, C.; Saban, R.; Gatt, M.; Ram, R.; Arad, A.; Bulvik, S.; Hellmann, I.; Gino-Moor, S.; et al. Prospective comparison of early bone marrow evaluation on day 5 versus day 14 of the “3 + 7” induction regimen for acute myeloid leukemia. Am. J. Hematol. 2015, 90, 1159–1164. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.N.; Röllig, C.; Metzeler, K.; Kramer, M.; Stasik, S.; Georgi, J.A.; Heisig, P.; Spiekermann, K.; Krug, U.; Braess, J.; et al. Prediction of complete remission and survival in acute myeloid leukemia using supervised machine learning. Haematologica 2023, 108, 690–704. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, F.; Arnoulet, C.; Maynadié, M.; Lippert, E.; Luquet, I.; Pigneux, A.; Vey, N.; Casasnovas, O.; Witz, F.; Béné, M.C. Early clearance of peripheral blasts measured by flow cytometry during the first week of AML induction therapy as a new independent prognostic factor: A GOELAMS study. Leukemia 2009, 23, 350–357. [Google Scholar] [CrossRef]
- Gao, S.; Tan, Y.; Liu, X.; Su, L.; Yu, P.; Han, W.; Cui, J.; Li, W. The percentage of peripheral blood blasts on day 7 of induction chemotherapy predicts response to therapy and survival in patients with acute myeloid leukemia. Chin. Med. J. 2014, 127, 290–293. [Google Scholar] [CrossRef] [PubMed]
- Arellano, M.; Pakkala, S.; Langston, A.; Tighiouart, M.; Pan, L.; Chen, Z.; Heffner, L.T.; Lonial, S.; Winton, E.; Khoury, H.J. Early clearance of peripheral blood blasts predicts response to induction chemotherapy in acute myeloid leukemia. Cancer 2012, 118, 5278–5282. [Google Scholar] [CrossRef]
- Jamy, O.; Diebold, K.; Davis, K.; Bachiashvili, K.; Rangaraju, S.; Vachhani, P.; Godby, K.N.; Salzman, D.; Bhatia, R. Impact of induction intensity and transplantation on outcomes of patients with complex karyotype and TP53-mutated acute myeloid leukemia. Bone Marrow Transpl. 2023, 58, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Sastow, D.; Levavi, H.; Wagner, N.; Pratz, K.; Tremblay, D. Ven the dose matters: Venetoclax dosing in the frontline treatment of AML. Blood Rev. 2024, 68, 101238. [Google Scholar] [CrossRef]
- Short, N.J.; Daver, N.; Dinardo, C.D.; Kadia, T.; Nasr, L.F.; Macaron, W.; Yilmaz, M.; Borthakur, G.; Montalban-Bravo, G.; Garcia-Manero, G.; et al. Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed and Relapsed or Refractory FLT3-Mutated AML. J. Clin. Oncol. 2024, 42, 1499–1508. [Google Scholar] [CrossRef]
- Yilmaz, M.; Muftuoglu, M.; DiNardo, C.D.; Kadia, T.M.; Konopleva, M.Y.; Borthakur, G.; Pemmaraju, N.; Short, N.J.; Alvarado Valero, Y.; Maiti, A.; et al. Phase I/II Study of Quizartinib, Venetoclax, and Decitabine Triple Combination in FLT3-ITD Mutated AML. Blood 2023, 142, 158. [Google Scholar] [CrossRef]
Study | N | Key Findings |
---|---|---|
Liso et al. (Retrospective) Ref. [18] | 198 | Risk stratification: Unavailable Treatment: 7+3, ICE, MEC Patients < 60 y: ≤22% blasts resulted in 79% achieving CR while >22% blasts resulted in 81% non-responders (p < 0.0001) Patients ≥ 60 y: Blast percentage ≤ 15% blasts resulted in 67% achieving CR while >15% blasts resulted in 81% non-responders (p = 0.0001) |
Kern et al. (Prospective) Ref. [19] | 449 | Risk stratification: Fav CG = 10%, Int CG = 48.3%, Adv CG = 28.5% Treatment: TAD, HAM <10% blasts resulted in 83.75% CR while ≥10% blasts resulted in 53.61% CR (p < 0.0001) |
Hussein et al. (Retrospective) Ref. [20] | 194 | Risk stratification: Fav CG = 5.6%, Int CG = 27.3%, Adv CG = 31.4% Treatment: 7+3 +/− etoposide ≤5% blasts was strongly predictive of CR with 90% sensitivity and 79% positive predictive value |
Bertoli et al. (Prospective) Ref. [21] | 823 | Risk stratification: Fav CG = 15%, Int CG = 57.6%, Adv CG = 20.8% Treatment: 7+3 (or 5 days of idarubicin) <5% blasts resulted in 91.7% CR while ≥5% blasts resulted in 69.2% CR (p < 0.0001) |
Griffin et al. (Retrospective) Ref. [22] | 176 | Risk stratification: Fav CG = 1.1%, Int CG = 58.5%, Adv CG = 38.1% Treatment: 7+3 ≥50% blast reduction resulted in 68.4% CR/CRi while <50% blast reduction resulted in 48.6% CR/Cri (p = 0.03) Hypocellular marrow resulted in 72.4% CR/CRi while hypercellular marrow resulted in 42.6% CR/CRi (p < 0.001) |
England et al. (Retrospective) Ref. [23] | 486 | Risk stratification: Fav CG = 13.8%, Int CG = 65.8%, Adv CG = 16.5% Treatment: 7+3 <5% blasts resulted in 87% CR/CRi while ≥5% blasts resulted in 56% CR/CRi (p < 0.001) |
Manuprasad et al. (Retrospective) Ref. [24] | 96 | Risk stratification: Fav CG = 17%, Int CG = 66%, Adv CG = 17% Treatment: 7+3 <5% blasts resulted in 98% CR while ≥5% blasts resulted in 88% CR (p = 0.04) |
Lemos et al. (Retrospective) Ref. [25] | 374 | Risk stratification: Unavailable Treatment: 7+3 <10% blasts resulted in 62% CR while ≥10% blasts resulted in 23% CR (p < 0.001) |
Yanada et al. (Retrospective) Ref [26] | 586 | Risk stratification: Fav CG = 6%, Int CG = 61%, Adv CG = 33% Treatment: High-dose cytarabine + idarubicin +/− fludarabine/topotecan 37 of the 72 patients (51%) with 20–59% blasts on D14 had <20% blasts on day 21, and 23 of the 37 (62%) entered CR without further therapy |
Morris et al. (Retrospective) Ref. [27] | 74 | Risk stratification: Fav CG = 2.7%, Int CG = 50%, Adv CG = 20.3% Treatment: 7+3 11/13 patients with suboptimal D14 response who were observed without therapy attained a morphologic CR |
Deutsch et al. (Retrospective) Ref. [28] | 98 | Risk stratification: Unavailable Treatment: Unavailable Achieving an optimal response at D14 was predictive of achieving CR at recovery (sensitivity = 95.3%, PPV = 97.6%). However, not achieving an optimal response at D14 had low specificity (50%) and NPV (33.3%) for achieving CR (p = 0.021) |
Yezefski et al. (Retrospective) Ref. [29] | 154 | Risk stratification: Fav CG = 19.4%, Int CG/Adv CG = 80.6% Treatment: 7+3, high dose cytarabine 21 of the 26 patients never received reinduction despite having >5% blasts in the D14 marrow, but 16 of the 21 entered CR |
Norkin et al. (Retrospective) Ref. [30] | 183 | Risk stratification: Fav CG/Int CG = 35.9%, Adv CG = 64.1% Treatment: 7+3 Of the 89 patients with leukemia-positive D14 biopsy who did not receive reinduction, 32 (36%) subsequently achieved CR/CRi |
Alsaleh et al. (Retrospective) Ref. [31] | 84 | Risk stratification: Fav CG/Int CG = 38%, Adv CG = 35% Treatment: 7+3 Failure to show complete remission on D14 biopsy had only 60% specificity in predicting the failure of CR on D28 biopsy |
Jamy et al. (Retrospective) Ref. [15] | 50 | Risk stratification: Fav CG/Int CG = 52%, Adv CG = 48% Treatment: 7+3 In patients with indeterminate D14 biopsies, CR/CRi rates were similar between patients treated with reinduction vs. observation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamy, O.; Bourne, G.; Mudd, T.W.; Thigpen, H.; Bhatia, R. Revisiting the Role of Day 14 Bone Marrow Biopsy in Acute Myeloid Leukemia. Cancers 2025, 17, 900. https://doi.org/10.3390/cancers17050900
Jamy O, Bourne G, Mudd TW, Thigpen H, Bhatia R. Revisiting the Role of Day 14 Bone Marrow Biopsy in Acute Myeloid Leukemia. Cancers. 2025; 17(5):900. https://doi.org/10.3390/cancers17050900
Chicago/Turabian StyleJamy, Omer, Garrett Bourne, Todd William Mudd, Haley Thigpen, and Ravi Bhatia. 2025. "Revisiting the Role of Day 14 Bone Marrow Biopsy in Acute Myeloid Leukemia" Cancers 17, no. 5: 900. https://doi.org/10.3390/cancers17050900
APA StyleJamy, O., Bourne, G., Mudd, T. W., Thigpen, H., & Bhatia, R. (2025). Revisiting the Role of Day 14 Bone Marrow Biopsy in Acute Myeloid Leukemia. Cancers, 17(5), 900. https://doi.org/10.3390/cancers17050900