Previous Issue
Volume 14, June
 
 

Catalysts, Volume 14, Issue 7 (July 2024) – 14 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
3 pages, 522 KiB  
Editorial
Exclusive Papers of the Editorial Board Members and Topical Advisory Panel Members of Catalysts in Section “Catalysis in Organic and Polymer Chemistry”
by Kotohiro Nomura, Raffaella Mancuso, Zhengguo Cai, Samuel Dagorne, Moris S. Eisen, Luca Gonsalvi, Martin Kotora, Bun Yeoul Lee, Shaofeng Liu, Luísa Margarida Martins, Takeshi Ohkuma, Armando Pombeiro, Fabio Ragaini, Carl Redshaw, Marc Visseaux, Zongquan Wu, Hiroto Yoshida and Masamichi Ogasawara
Catalysts 2024, 14(7), 407; https://doi.org/10.3390/catal14070407 (registering DOI) - 27 Jun 2024
Abstract
Herein, I would like to provide an overview of this Special Issue, published in the Organic and Polymer Chemistry Section of Catalysis, comprising contributions from 18 of the journal’s Editorial Board Members [...] Full article
14 pages, 986 KiB  
Article
Study on Novel SCR Catalysts for Denitration of High Concentrated Nitrogen Oxides and Their Reaction Mechanisms
by Bo Yu, Xingyu Liu, Shufeng Wu, Heng Yang, Shuran Zhou, Li Yang and Fang Liu
Catalysts 2024, 14(7), 406; https://doi.org/10.3390/catal14070406 (registering DOI) - 27 Jun 2024
Viewed by 66
Abstract
With the rapid development of industrialization, the emission of nitrogen oxides (NOx) has become a global environmental issue. Uranium is the primary fuel used in nuclear power generation. However, the production of uranium, typically based on the uranyl nitrate method, usually [...] Read more.
With the rapid development of industrialization, the emission of nitrogen oxides (NOx) has become a global environmental issue. Uranium is the primary fuel used in nuclear power generation. However, the production of uranium, typically based on the uranyl nitrate method, usually generates large amounts of nitrogen oxides, particularly NO2, with concentrations in the exhaust gas exceeding 10,000 ppm. High concentrations of nitrogen dioxide are also produced during silver electrolysis processing and the treatment of waste electrolyte solutions. Traditional V-W/TiO2 NH3-SCR catalysts typically exhibit high catalytic activity at temperatures ranging from 300 to 400 °C, under conditions of low NOx concentrations and high gas hourly space velocity. However, their performance is not satisfying when reducing high concentrations of NO2. This study aims to optimize the traditional V-W/TiO2 catalysts to enhance their catalytic activity under conditions of high NO2 concentrations (10,000 ppm) and a wide temperature range (200–400 °C). On the basis of 3 wt% Mo/TiO2, various loadings of V2O5 were selected, and their catalytic activities were tested. Subsequently, the optimal ratios of active component vanadium and additive molybdenum were explored. Simultaneously, doping with WO3 for modification was selected in the V-Mo/TiO2 catalyst, followed by activity testing under the same conditions. The results show that: the NOx conversion rates of all five catalysts increase with temperature at range of 200–400 °C. Excessive loading of MoO3 decreased the catalytic performance, with 5 wt% being the optimal loading. The addition of WO3 significantly enhanced the low-temperature activity of the catalysts. When the loadings of WO3 and MoO3 were both 3 wt%, the catalyst exhibited the best denitrification performance, achieving a NOx conversion rate of 98.8% at 250 °C. This catalyst demonstrates excellent catalytic activity in reducing very high concentration (10,000 ppm) NO2, at a wider temperature range, expanding the temperature range by 50% compared to conventional SCR catalysts. Characterization techniques including BET, XRD, XPS, H2-TPR, and NH3-TPD were employed to further study the evolution of the catalyst, and the promotional mechanisms are explored. The results revealed that the proportion of chemisorbed oxygen (Oα) increased in the WO3-modified catalyst, exhibiting lower V reduction temperatures, which are favorable for low-temperature denitrification activity. NH3-TPD experiments showed that compared to MoOx species, surface WOx species could provide more acidic sites, resulting in stronger surface acidity of the catalyst. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

17 pages, 422 KiB  
Article
Impact of Co-Fed Hydrogen on High Conversion Propylene Aromatization on H-ZSM-5 and Ga/H-ZSM-5
by Christopher K. Russell, Josiah L. Rockey, Rebecca N. Hanna and Jeffrey T. Miller
Catalysts 2024, 14(7), 405; https://doi.org/10.3390/catal14070405 (registering DOI) - 27 Jun 2024
Viewed by 67
Abstract
The expanded production of shale gas has increased the desire for developing methods for converting light alkanes, especially propane and ethane, into aromatic compounds (i.e., benzene, toluene, and xylene) for petrochemicals and fuels. The Cyclar process is one example of an industrial process [...] Read more.
The expanded production of shale gas has increased the desire for developing methods for converting light alkanes, especially propane and ethane, into aromatic compounds (i.e., benzene, toluene, and xylene) for petrochemicals and fuels. The Cyclar process is one example of an industrial process that has been demonstrated for the conversion of butane to aromatics; however, the conversion of lower molecular weight alkanes remains elusive. A multi-step process for the conversion of light alkanes to aromatics may be developed, where the first stage converts light alkanes into olefins and hydrogen, and the second stage converts olefins into aromatics. However, to determine the viability of this process, a better understanding of the performance of olefin aromatization in the presence of equimolar hydrogen is necessary. Herein, H-ZSM-5 and Ga-modified H-ZSM-5 are compared for propylene aromatization in the presence and absence of equimolar hydrogen at 1.9 kPa and 50 kPa partial pressures. The presence of H2 has no impact on the product distribution with H-ZSM-5 at either pressure. At 1.9 kPa with Ga/H-ZSM-5, similar product distributions are observed regardless of the presence or absence of H2 since Ga is not sufficiently active for hydrogenation to inhibit aromatics formation. However, at 50 kPa of H2 with Ga/H-ZSM-5, there is an increased selectivity to C4 products and a decrease in toluene and xylene selectivities at high conversions (i.e., χ > 80%), suggesting that aromatic dehydrogenation of cyclic hydrocarbons has been suppressed. Full article
(This article belongs to the Special Issue Research Advances in Zeolites and Zeolite-Based Catalysts)
12 pages, 676 KiB  
Article
Hydroprocessing of Gasoline on Modified Alumina Catalysts
by Balga Tuktin, Galymzhan Saidilda, Saule Nurzhanova and Yerdos Ongarbayev
Catalysts 2024, 14(7), 404; https://doi.org/10.3390/catal14070404 - 26 Jun 2024
Viewed by 175
Abstract
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special [...] Read more.
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special catalytic properties. This article discusses topical issues of petrochemistry, namely the creation of catalysts with improved characteristics for the production of high-octane gasoline with low sulfur content. New catalytic systems based on alumina and other carriers modified with transition metals, lanthanum and phosphorus were synthesized. Вy physico-chemical methods of analysis TPD of ammonia, TEM and XRD, we studied the acid–base and structural characteristics of the developed catalysts. The activity of the developed catalysts in the studied process of hydrotreating gasoline fractions depends on the structure and condition of the active centers. The process of hydrotreating straight-run gasoline in the presence of synthesized catalysts was carried out on a laboratory flow unit. It was shown that, during the hydrotreating of straight-run gasoline on the NiO-MoO3-La-P-HZSM-HY-Al2O3 catalyst, the octane number in the final product increased to 88.6, and the sulfur content decreased from 0.0088 to 0.001%. It was found that the minimum sulfur content in the gasoline hydrotreating product of 0.0005% was achieved on the catalyst CoO-WO3-La-P-HZSM-HY-Al2O3, which is significantly lower than for other studied catalytic systems. The obtained results of the sulfur content in the hydrotreating products fully comply with the Euro-5 standard. Thus, the efficiency of hydrotreating the gasoline fractions studied in this work was mainly determined by the nature of the carriers and modifiers used for the synthesis of catalysts and the technological parameters of the process. The synthesized catalysts showed high activity and selectivity, resulting in high-octane gasoline with a low sulfur content that meets international quality standards. Full article
(This article belongs to the Special Issue Catalysis for Bitumen/Heavy Oil Upgrading and Petroleum Refining)
16 pages, 4008 KiB  
Article
Enhanced Photodegradation of Acetaminophen Using Efficient ZnO-NiO Nanofibers
by Hassan E. Gomaa, Heba H. El-Maghrabi, Fatma A. Gomaa, Patrice Raynaud and Amr A. Nada
Catalysts 2024, 14(7), 403; https://doi.org/10.3390/catal14070403 - 26 Jun 2024
Viewed by 171
Abstract
The increasing presence of pharmaceutical pollutants, such as acetaminophen, in water bodies poses a significant environmental challenge due to their persistence and potential toxicity. This study investigated the enhanced photodegradation of acetaminophen using ZnO-NiO nanofibers as superior photocatalysts. The nanofibers synthesized with varying [...] Read more.
The increasing presence of pharmaceutical pollutants, such as acetaminophen, in water bodies poses a significant environmental challenge due to their persistence and potential toxicity. This study investigated the enhanced photodegradation of acetaminophen using ZnO-NiO nanofibers as superior photocatalysts. The nanofibers synthesized with varying NiO contents (designated as ZN0.5, ZN1, ZN1.5, and ZN2), were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, FTIR, Brunauer–Emmett–Teller (BET) analysis, and diffuse reflectance spectroscopy (DRS) to elucidate their structural, morphological, and optical properties. Thermogravimetric analysis (TGA) indicated that the nanofibers exhibit high thermal stability, with major weight loss attributed to the decomposition of the polymer matrix and residual organics. The BET analysis revealed that the specific surface area remains stable after increasing the NiO content up to a certain ratio. This stability correlates with the enhanced photocatalytic performance due to increased light absorption and improved charge separation. The diffuse reflectance spectra and Kubelka–Munk plots demonstrated a reduction in bandgap energy with higher NiO content, facilitating greater visible light absorption. Photocatalytic experiments under visible light irradiation, in the presence of peroxymonosulfate (PMS), showed that the ZN1.5 nanofibers achieved the highest acetaminophen degradation rate, i.e., 92%, within 3 h. Mechanistic studies, supported by radical trapping experiments, revealed that the improved photocatalytic efficiency is due to the synergistic effects of ZnO and NiO heterojunctions, which enhance charge separation and reactive oxygen species (ROS) generation. This research highlights the potential of ZnO-NiO nanofibers as effective photocatalysts for the degradation of pharmaceutical pollutants. The findings demonstrate that optimizing the composition and structure of nanofibers can significantly improve their environmental remediation capabilities, providing a promising solution for sustainable water treatment. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Figure 1

11 pages, 2493 KiB  
Article
A Bio-Based Tackifier Synthesized by Room-Temperature Cationic Copolymerization of Isobutene and β-Pinene
by Oluwaseyi Aderemi Ajala, Yuushou Nakayama, Takeshi Shiono and Ryo Tanaka
Catalysts 2024, 14(7), 402; https://doi.org/10.3390/catal14070402 - 26 Jun 2024
Viewed by 152
Abstract
Whereas the cationic homopolymerization of β-pinene and isobutene (IB) have been extensively studied, their copolymerization is still very scarce, and the conditions under which copolymerization can occur are limited to extremely low temperatures. Moreover, the application of the copolymer has not been reported. [...] Read more.
Whereas the cationic homopolymerization of β-pinene and isobutene (IB) have been extensively studied, their copolymerization is still very scarce, and the conditions under which copolymerization can occur are limited to extremely low temperatures. Moreover, the application of the copolymer has not been reported. Here, a series of room-temperature copolymerizations of β-pinene and IB, using group 13 compounds as catalysts, were conducted. The copolymerizations yielded a low molecular weight (Mn ~ 103) and a narrow molecular weight distribution (Mw/Mn < 2.0) copolymer, with a satisfactory yield at various comonomer feeds, and their glass transition temperature was predictable from the comonomer composition. Furthermore, the tackifying property of the obtained copolymer was investigated using a 180° peel adhesion test. A blend polymer of the copolymer and a styrene-isoprene triblock copolymer showed a high peeling force (0.58 ± 0.14 N/10 mm) and a glass transition temperature low enough for its application as a pressure-sensitive adhesive. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Graphical abstract

15 pages, 792 KiB  
Article
Palladium-Catalyzed Synthesis of 6-aryl Dopamine Derivatives
by Andrea Calcaterra, Santiago Fernández García, Federico Marrone, Roberta Bernini, Giancarlo Fabrizi, Antonella Goggiamani and Antonia Iazzetti
Catalysts 2024, 14(7), 401; https://doi.org/10.3390/catal14070401 - 25 Jun 2024
Viewed by 170
Abstract
Dopamine is a key neurotransmitter involved in a series of biologically relevant processes and its derivatives have sparked significant interest as intriguing synthetic targets. This class of compounds is indeed not only considerable for the potential biological activities but is also promising for [...] Read more.
Dopamine is a key neurotransmitter involved in a series of biologically relevant processes and its derivatives have sparked significant interest as intriguing synthetic targets. This class of compounds is indeed not only considerable for the potential biological activities but is also promising for diverse applications in material science. In light of this, our research was focused on the synthesis of 6-aryldopamine derivatives starting from 4-(2-aminoethyl)phenol through a sequential protocol, whose main steps are hydroxylation, halogenation, and Suzuki cross-coupling. Our method demonstrated versatility, efficiency, and compatibility with various functional groups, including aldehydes, ketones, esters, ethers, and fluorine. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

19 pages, 1284 KiB  
Article
Ni-Ag Catalysts for Hydrogen Production through Dry Reforming of Methane: Characterization and Performance Evaluation
by Hayat Henni, Rafik Benrabaa, Pascal Roussel and Axel Löfberg
Catalysts 2024, 14(7), 400; https://doi.org/10.3390/catal14070400 - 25 Jun 2024
Viewed by 215
Abstract
To investigate the influence of Ag and the loading of Ni species, Ni-Ag type catalysts were synthesized with varying Ni/Ag ratios (1, 1.5 and 2) using the coprecipitation method. The catalysts were extensively characterized using various techniques such as TG-DSC-SM, XRD, ICP, BET, [...] Read more.
To investigate the influence of Ag and the loading of Ni species, Ni-Ag type catalysts were synthesized with varying Ni/Ag ratios (1, 1.5 and 2) using the coprecipitation method. The catalysts were extensively characterized using various techniques such as TG-DSC-SM, XRD, ICP, BET, SEM-EDX and TPR and subsequently tested in the CH4/CO2 reaction without any pretreatment. Regardless of the ratio employed, a phase mixture containing NiO and Ag was observed after calcination under air between 600 °C and 1200 °C. SEM analysis confirmed the presence of a close interface between Ag and NiO. The specific surface area was found to be significantly higher for the catalyst with lower Ni content (R = 1). TPR analysis demonstrated that the inclusion of Ag facilitated the reduction of Ni at lower temperatures. XRD analyses of the spent catalyst confirmed catalyst reduction during the reaction. Among the samples, a catalyst with Ni/Ag = 1 exhibited superior catalytic activity without any pretreatment under a reduction atmosphere, in which case the conversions of methane and CO2 at 650 °C amounted to 38 and 45 mol%, respectively, with H2/CO = 0.7 and 71 mol% of H2. The presence of Ag species enhances the stability of the Ni catalyst and improves catalytic performance in the dry reforming of methane. Full article
17 pages, 5088 KiB  
Article
Structural Characterization of Enzymatic Interactions with Functional Nicotinamide Cofactor Biomimetics
by Raquel A. Rocha, Liam A. Wilson, Brett D. Schwartz, Andrew C. Warden, Luke W. Guddat, Robert E. Speight, Lara Malins, Gerhard Schenk and Colin Scott
Catalysts 2024, 14(7), 399; https://doi.org/10.3390/catal14070399 - 24 Jun 2024
Viewed by 339
Abstract
Synthetic nicotinamide biomimetics (NCBs) have emerged as alternatives to the use of natural cofactors. The relatively low cost and ease of manufacture of NCBs may enable the scaling of biocatalytic reactions to produce bulk chemicals (e.g., biofuels and plastics). NCBs are also recognized [...] Read more.
Synthetic nicotinamide biomimetics (NCBs) have emerged as alternatives to the use of natural cofactors. The relatively low cost and ease of manufacture of NCBs may enable the scaling of biocatalytic reactions to produce bulk chemicals (e.g., biofuels and plastics). NCBs are also recognized by only a subset of NAD(P)/NAD(P)H-dependent enzymes, which potentially allows access to orthogonal redox cascades that can be run simultaneously within a single reactor. In the work presented here, a series of NCBs was prepared and tested for activity with alcohol dehydrogenases and ene-reductases. While the NCBs did not support enzymatic activity with the alcohol dehydrogenases, the observed rate of the ene-reductases with NCBs was greater than when incubated with the natural cofactor (consistent with previous observations). We obtained the structures of an ene-reductase and an alcohol dehydrogenase with an NCB bound in their active sites. While the NCB bound to the ene-reductases in a productive position and orientation for hydride transfer to the isoalloxazine ring of the flavin cofactor, the NCB failed to adopt a catalytically competent binding mode in the alcohol dehydrogenase. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

4 pages, 455 KiB  
Editorial
New Trends in Catalytic Reaction for High-Temperature and Low-Emission Combustion Technologies
by Baiqian Dai, Xiaojiang Wu and Lian Zhang
Catalysts 2024, 14(7), 398; https://doi.org/10.3390/catal14070398 - 24 Jun 2024
Viewed by 241
Abstract
With the continuous rise in global energy demand and the increasing awareness of environmental protection, high-temperature low-emission combustion technology has become a research hotspot in the field of combustion science [...] Full article
Show Figures

Figure 1

18 pages, 4680 KiB  
Article
In Situ Growth of Mn-Co3O4 on Mesoporous ZSM-5 Zeolite for Boosting Lean Methane Catalytic Oxidation
by Yuxuan Zhang, Ruibo Wei, Lin Yang, Jinming Ge, Feiyang Hu, Tingting Zhang, Fangyin Lu, Haiwang Wang and Jian Qi
Catalysts 2024, 14(7), 397; https://doi.org/10.3390/catal14070397 - 23 Jun 2024
Viewed by 315
Abstract
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal [...] Read more.
The low-temperature oxidation of methane gas in coal mine exhaust gas is important for reducing the greenhouse effect and protecting the environment. Unfortunately, the carbon–hydrogen bonds in methane molecules are highly stable, requiring higher reaction temperatures to achieve effective catalytic oxidation. However, metal oxide-based catalysts face the problem of easy sintering and the deactivation of active components at high temperatures, which is an important challenge that catalysts need to overcome in practical applications. In this work, a series of Mn-Co3O4 active components were grown in situ on ZSM-5 zeolite with mesoporous pore structures treated with an alkaline solution via a hydrothermal synthesis method. Due to the presence of polyethylene glycol as a structure-directing agent, manganese can be uniformly doped into the Co3O4 lattice. The large specific surface area of ZSM-5 zeolite allows the active component Mn-Co3O4 to be uniformly dispersed, effectively preventing the sintering and growth of active component particles during the catalytic reaction process. It is worth mentioning that the Mn-Co3O4/meso-ZSM-5-6.67 catalyst has a methane conversion rate of up to 90% at a space velocity of 36,000 mL·g−1·h−1 and a reaction temperature of 363 °C. This is mainly due to the mesoporous ZSM-5 carrier with a high specific surface area, which is conducive to the adsorption and mass transfer of reaction molecules. The active component has an abundance of oxygen vacancies, which is conducive to the activation of reaction molecules and enhances its catalytic activity, which is even higher than that of noble metal-based catalysts. The new ideas for the preparation of metal oxide-based low-temperature methane oxidation catalysts proposed in this work are expected to provide new solutions for low-temperature methane oxidation reactions and promote technological progress in related fields. Full article
(This article belongs to the Special Issue Feature Papers in "Industrial Catalysis" Section)
7 pages, 408 KiB  
Editorial
Theme Issue in Memory to Professor Jiro Tsuji (1927–2022)
by Ewa Kowalska and Shuaizhi Zheng
Catalysts 2024, 14(7), 396; https://doi.org/10.3390/catal14070396 - 21 Jun 2024
Viewed by 292
Abstract
The importance of catalysis is obvious and unquestionable, especially bearing in mind that about 90% of all commercially produced chemical products involve catalysts at some step of their manufacture [...] Full article
(This article belongs to the Special Issue Theme Issue in Memory to Prof. Jiro Tsuji (1927–2022))
13 pages, 3630 KiB  
Article
Conservatively Perturbed Equilibrium (CPE)—Phenomenon as a Tool for Intensifying the Catalytic Process: The Case of Methane Reforming Processes
by Mykhailo O. Vilboi, Vitaliy R. Trishch and Gregory S. Yablonsky
Catalysts 2024, 14(7), 395; https://doi.org/10.3390/catal14070395 - 21 Jun 2024
Viewed by 224
Abstract
The phenomenon of conservatively perturbed equilibrium (CPE) was applied to the processes of methane reforming (dry and steam reforming) and analyzed using kinetic computer simulations. This phenomenon was studied for two products, CO and H2, at different temperatures. “Unperturbed” species with [...] Read more.
The phenomenon of conservatively perturbed equilibrium (CPE) was applied to the processes of methane reforming (dry and steam reforming) and analyzed using kinetic computer simulations. This phenomenon was studied for two products, CO and H2, at different temperatures. “Unperturbed” species with inlet concentrations equal to the outlet equilibrium concentration experienced unavoidable passing through the temporary extremum (the CPE point), in this case, the maximum. Application of the CPE phenomenon to the complex catalytic methane reforming processes demonstrate two improvements: 1. Achieving the over-equilibrium product concentration. 2. This concentration is achieved at the reactor length that is much shorter than the length corresponding to the vicinity of the complete equilibrium. Full article
(This article belongs to the Section Catalytic Reaction Engineering)
Show Figures

Figure 1

13 pages, 4379 KiB  
Article
Expediting Corrosion Engineering for Sulfur-Doped, Self-Supporting Ni-Fe Layered Dihydroxide in Efficient Aqueous Oxygen Evolution
by Yingjun Ma, Jie Wang, Hangning Liu, Lin Wang, Changhui Sun, Liangyu Gong, Xiaogang Zhang and Jiefang Zhu
Catalysts 2024, 14(7), 394; https://doi.org/10.3390/catal14070394 - 21 Jun 2024
Viewed by 238
Abstract
Electrochemical water-splitting is widely acknowledged as a renewable strategy for hydrogen production, but it is primarily constrained by the sluggish reaction kinetics of the anode oxygen evolution reaction (OER). In our study, we employ a fast room-temperature corrosion engineering strategy for the construction [...] Read more.
Electrochemical water-splitting is widely acknowledged as a renewable strategy for hydrogen production, but it is primarily constrained by the sluggish reaction kinetics of the anode oxygen evolution reaction (OER). In our study, we employ a fast room-temperature corrosion engineering strategy for the construction of a sulfur-doped Ni-Fe layered dihydroxide catalyst (S-NiFe LDH). With the assistance of a sulfur source, microsphere morphology with an ultra-thin lamellar surface cross-arrangement can be rapidly grown on the surface of an iron foam substrate, ensuring a substantial electrochemical interface. The composition of Ni species in the catalysts can be regulated by simply adjusting the amount of Ni2+ and reaction time. Functioning as an OER catalyst, the S-NiFe LDH demonstrates high activity and reaction kinetics, featuring a minimal overpotential of 120.0 mV to deliver a current density of 10 mA cm−2, a small Tafel slope of 39.5 mV dec−1 and a notable electrical double-layer capacitance (Cdl) of 31.3 mF cm−2. The remarkable electrocatalytic performance can be attributed to its distinctive three-dimensional (3D) structure and sulfur dopants, which effectively regulate the electrochemical interface and electronic structure of NiFe LDH. This work provides valuable insights for expeditious materials design. Full article
(This article belongs to the Special Issue Electrocatalysis for Hydrogen/Oxygen Evolution Reactions)
Show Figures

Figure 1

Previous Issue
Back to TopTop