Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
3. Results
3.1. Characteristics of Epoxy, Silicone, and Fluorosilicone Resins
3.2. Thermal and Mechanical Properties of Unimodal Adhesives
3.3. Thermal and Mechanical Properties of Bimodal Adhesives
3.4. Thermal and Mechanical Properties of Trimodal Adhesives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yim, M.J.; Paik, K.W. Review of Electrically Conductive Adhesive Technologies for Electronic Packaging. Electron. Mater. Lett. 2006, 2, 183–194. [Google Scholar]
- Huang, X.; Jiang, P.; Tanaka, T. A Review of Dielectric Polymer Composites with High Thermal Conductivity. IEEE Electr. Insul. Mag. 2011, 27, 8–16. [Google Scholar] [CrossRef]
- Procter, P.; Solc, J. Improved thermal conductivity in microelectronic encapsulants. IEEE Trans. Compon. Hybrids Manuf. Technol. 1991, 14, 708–713. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lim, Y.W.; Lee, D.W.; Kim, Y.H.; Bae, B.S. A highly adhesive siloxane LED encapsulant optimized for high themal stability and optical efficiency. J. Mater. Chem. C 2016, 4, 10791–10796. [Google Scholar]
- Wägli, P.; Homsy, A.; de Rooij, N.F. Norland optical adhesive (NOA81) microchannels with adjustable wetting behavior and high chemical resistance against a range of mid-infrared-transparent organic solvents. Sens. Actuators B Chem. 2011, 156, 994–1001. [Google Scholar]
- Marques, E.A.S.; da Silva, L.F.M.; Banea, M.D.; Carbas, R.J.C. Adhesive Joints for Low- and High-Temperature Use: An Overview. J. Adhes. 2015, 91, 556–585. [Google Scholar] [CrossRef]
- Jojibabu, P.; Zhang, Y.X.; Gangadhara Prusty, B. A review of research advances in epoxy-based nanocomposites as adhesive materials. Int. J. Adhes. Adhes. 2020, 96, 102454. [Google Scholar] [CrossRef]
- Ahmadi, Z. Nanostructured epoxy adhesives: A review. Prog. Org. Coat. 2019, 135, 449–453. [Google Scholar] [CrossRef]
- Jin, F.L.; Li, X.; Park, S.J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Ramos, J.A.; Pagani, N.; Riccardi, C.C.; Borrajo, J.; Goyanes, S.N.; Mondragon, I. Cure kinetics and shrinkage model for epoxy-amine systems. Polymer 2005, 46, 3323–3328. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Kinloch, A.J.; Masania, K.; Lee, J.S.; Taylor, A.C.; Sprenger, S. The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 2010, 45, 1193–1210. [Google Scholar] [CrossRef]
- Kumar, S.A.; Balakrishnan, T.; Alagar, M.; Denchev, Z. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings. Prog. Org. Coat. 2006, 55, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Ben Saleh, A.B.; Mohd Ishak, Z.A.; Hashim, A.S.; Kamil, W.A.; Ishiaku, U.S. Synthesis and characterization of liquid natural rubber as impact modifier for epoxy resin. Phys. Procedia 2014, 55, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Kuffel, K.; Scott, D.K.; Constantinescu, G.; Chung, H.J.; Rieger, J. Silicone-based adhesives for long-term skin application: Cleaning protocols and their effect on peel strength. Biomed. Phys. Eng. Express 2018, 4, 015004. [Google Scholar] [CrossRef] [Green Version]
- Staudt, Y.; Odenbreit, C.; Schneider, J. Failure behaviour of silicone adhesive in bonded connections with simple geometry. Int. J. Adhes. Adhes. 2018, 82, 126–138. [Google Scholar] [CrossRef]
- Li, Z.; Le, T.; Wu, Z.; Yao, Y.; Li, L.; Tentzeris, M.; Moon, K.S.; Wong, C.P. Rational Design of a Printable, Highly Conductive Silicone-based Electrically Conductive Adhesive for Stretchable Radio-Frequency Antennas. Adv. Funct. Mater. 2015, 25, 464–470. [Google Scholar] [CrossRef]
- Cornelius, D.J.; Monroe, C.M. The Unique Properties of Silicone and Fluorosilicone Elastomers. Polym. Eng. Sci. 1985, 25, 467–473. [Google Scholar] [CrossRef]
- Zheng, X.; Pang, A.; Wang, Y.; Wang, W.; Bai, Y. Fabrication of UV-curable fluorosilicone coatings with impressive hydrphobicity and solvent resistance. Prog. Org. Coat. 2020, 144, 105633. [Google Scholar] [CrossRef]
- Bernstein, R.; Gillen, K.T. Predicting the lifetime of fluorosilicone o-rings. Polym. Degrad. Stab. 2009, 94, 2107–2113. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Kim, J.M.; Kim, L.S.; Jang, J.Y.; Kim, M.S.; Jeong, S.Y.; Cho, J.Y.; Yi, G.R.; Choi, Y.S.; Lee, G.H. Epoxy-based thermally conductive adhesives with effective alumina and boron nitride for superconducting magnet. Compos. Sci. Technol. 2020, 200, 108456. [Google Scholar] [CrossRef]
- Cui, H.W.; Li, D.S.; Fan, Q. Using Nano Hexagonal Boron Nitride Particles and Nano Cubic Silicon Carbide Particles to Improve the Thermal Conductivity of Electrically Conductive Adhesives. Electron. Mater. Lett. 2013, 9, 1–5. [Google Scholar] [CrossRef]
- Mai, V.D.; Lee, D.I.; Park, J.H.; Lee, D.S. Rheological Properties and Thermal Conductivity of Epoxy Resins Filled with a Mixture of Alumina and Boron Nitride. Polymers 2019, 11, 597. [Google Scholar] [CrossRef] [Green Version]
- Yetgin, H.; Veziroglu, S.; Aktas, O.C.; Yalçinkaya, T. Enhancing thermal conductivity of epoxy with a binary filler system of h-BN platelets and Al2O3 nanoparticles. Int. J. Adhes. Adhes. 2020, 98, 102540. [Google Scholar] [CrossRef]
- Bian, W.; Yao, T.; Chen, M.; Zhang, C.; Shao, T.; Yang, Y. The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin. Compos. Sci. Technol. 2018, 168, 420–428. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos. Part B 2013, 51, 140–147. [Google Scholar] [CrossRef]
- Hong, J.P.; Yoon, S.W.; Hwang, T.S.; Oh, J.S.; Hong, S.C.; Lee, Y.K.; Nam, J.D. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers. Thermochim. Acta 2012, 537, 70–75. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, M.J.; Kim, J.H. Thermal and mechanical properties of epoxy composites with a binary particle filler system consisting of aggregated and whisker type boron nitride particles. Compos. Sci. Technol. 2014, 103, 72–77. [Google Scholar] [CrossRef]
- Wereszczak, A.A.; Morrissey, T.G.; Volante, C.N. Thermally Conductive MgO-Filled Epoxy Molding Compounds. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1994–2005. [Google Scholar] [CrossRef]
- Mohammad, W.A.; Kim, J.S.; Muddassir, A.M.; Muhammad, Y.K.; Muhammad, M.B. Surface modification of magnesium oxide/epoxy composites with significantly improved mechanical and thermal properties. J. Mater. Sci. Mater. Electron. 2021, 32, 15307–15316. [Google Scholar]
- Donnay, M.; Tzavalas, S.; Logakis, E. Boron nitride filled epoxy with improved thermal conductivity and dielectric breakdown strength. Compos. Sci. Technol. 2015, 110, 152–158. [Google Scholar] [CrossRef]
- Xie, B.H.; Huang, X.; Zhang, G.J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Raghavan, S.; Moon, K.S.; Sitaraman, S.K.; Wong, C.P. Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl. Mater. Interfaces 2013, 5, 7633–7640. [Google Scholar] [CrossRef] [PubMed]
- Kochetov, R.; Korobko, A.V.; Andritsch, T.; Morshuis, P.H.F.; Picken, S.J. Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phys. D Appl. Phys. 2011, 44, 395401. [Google Scholar] [CrossRef]
- Liu, C.; Chen, M.; Zhou, D.; Wu, D.; Yu, W. Effect of Filler Shape on the Thermal Conductivity of Thermal Functional Composites. J. Nanomater. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhai, Z.; Drummer, D. Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry. Polymers 2018, 10, 457. [Google Scholar] [CrossRef] [Green Version]
Ceramic Filler | Mohs Hardness, 20 °C (Hv) | Thermal Conductivity, 20 °C (W/mK) | Specific Gravity | Coefficient of Thermal Expansion, 0~1000 °C (× 106/°C) | Dielectric Constant, 20 °C, 1 MHz | Estimated Cost, 2021 ($/kg) |
---|---|---|---|---|---|---|
Aluminum Oxide (Al2O3) | 9 | 32 | 3.9 | 8 | 8.9 | 20–30 |
Aluminum Nitride (AlN) | 8 | 320 | 3.3 | 5.6 | 8.8 | 100–150 |
Hexagoal Boron Nitride (h-BN) | 2 | 275 | 2.3 | 2.8 | 4.5 | 100–150 |
Silicon Carbide (SiC) | 10 | 190 | 3.2 | 4.5 | 11 | 100–150 |
Silicon Nitride (Si3N4) | 9 | 26 | 3.2 | 3.5 | 8 | 30–40 |
Magnesium Oxide (MgO) | 5 | 60 | 3.6 | 11 | 12 | 30–40 |
Fused Silicon Dioxide (SiO2) | 3.5 | 1 | 2.6 | 0.5 | 3.8 | 5–10 |
Composition | MgO (vol%) | BN (vol%) | |||||||
---|---|---|---|---|---|---|---|---|---|
120 μm (Sphere) | 90 μm (Sphere) | 50 μm (Sphere) | 6 μm (Amorp) | 0.6 μm (Amorp) | 5 μm (Plate) | 4 μm (Plate) | 12 μm (Aggreg) | 280 μm (Flake) | |
Bi-MgO-1 | 45 | 15 | / | / | / | / | / | / | / |
Bi-MgO-2 | 45 | / | 15 | / | / | / | / | / | / |
Bi-MgO-3 | 45 | / | 15 | / | / | / | / | / | |
Bi-MgO-4 | 45 | / | 15 | / | / | / | / | ||
Bi-MgO/BN-1 | 45 | / | / | / | / | 15 | / | / | / |
Bi-MgO/BN-2 | 45 | / | / | / | / | / | 15 | / | / |
Bi-MgO/BN-3 | 45 | / | / | / | / | / | / | 15 | / |
Bi-MgO/BN-4 | 45 | / | / | / | / | / | / | / | 15 |
Tri-MgO-1 | 40 | 13.3 | 6.7 | / | / | / | / | / | / |
Tri-MgO-2 | 40 | 13.3 | / | 6.7 | / | / | / | / | / |
Tri-MgO-3 | 40 | 13.3 | / | / | 6.7 | / | / | / | / |
Tri-MgO2/BN1-1 | 40 | 13.3 | / | / | / | 6.7 | / | / | / |
Tri-MgO2/BN1-2 | 40 | 13.3 | / | / | / | / | 6.7 | / | / |
Tri-MgO2/BN1-3 | 40 | 13.3 | / | / | / | / | / | 6.7 | / |
Tri-MgO2/BN1-4 | 40 | 13.3 | / | / | / | / | / | / | 6.7 |
Tri-MgO1/BN2-1 | 40 | / | / | / | / | 6.7 | / | / | 13.3 |
Tri-MgO1/BN2-2 | 40 | / | / | / | / | / | 6.7 | / | 13.3 |
Tri-MgO1/BN2-3 | 40 | / | / | / | / | / | / | 6.7 | 13.3 |
Resin | Swelling Ratio (%) with Immersion Time (h) in Solvent | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n-Hexane | Toluene | Tetrahydrofuran | Acetone | |||||||||||||
24 | 48 | 72 | 168 | 24 | 48 | 72 | 168 | 24 | 48 | 72 | 168 | 24 | 48 | 72 | 168 | |
Epoxy | 1.2 | 2.9 | 3.3 | 4.8 | 0.0 | 0.8 | 0.4 | 3.5 | 6.2 | 7.5 | 22.5 | 30.4 | 0.9 | 7.0 | 10.8 | 15.2 |
Silicone | 54.5 | 56.0 | 58.4 | 59.9 | 44.9 | 46.2 | 49.3 | 52.6 | 55.3 | 56.6 | 49.3 | 57.4 | 11.8 | 18.2 | 19.3 | 24.9 |
Fluorosilicone | 8.5 | 12.3 | 13.6 | 15.0 | 15.6 | 15.7 | 15.4 | 18.1 | 24.9 | 27.0 | 27.4 | 29.4 | 25.3 | 23.6 | 24.1 | 26.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, K.-S.; Kim, S.-Y.; Oh, M.-K.; Kim, N. Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes. Polymers 2022, 14, 258. https://doi.org/10.3390/polym14020258
Sung K-S, Kim S-Y, Oh M-K, Kim N. Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes. Polymers. 2022; 14(2):258. https://doi.org/10.3390/polym14020258
Chicago/Turabian StyleSung, Kyung-Soo, So-Yeon Kim, Min-Keun Oh, and Namil Kim. 2022. "Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes" Polymers 14, no. 2: 258. https://doi.org/10.3390/polym14020258
APA StyleSung, K. -S., Kim, S. -Y., Oh, M. -K., & Kim, N. (2022). Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes. Polymers, 14(2), 258. https://doi.org/10.3390/polym14020258