Relation of Chemical Composition and Colour of Spruce Wood
Abstract
:1. Introduction
2. Material and Methods
2.1. Determination of Moisture Content and Colour
2.2. Determination of Extractives, Holocellulose, Cellulose, Hemicelluloses, and Lignin
2.3. Modelling of Wood Colour
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eaton, R.A.; Hale, D.C. Wood: Decay, Pests and Protection, 1st ed.; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Kurjatko, S.; Čunderlík, I.; Dananajová, J.; Dibdiaková, J.; Dudas, J.; Gáborík, J.; Gaff, M.; Hrčka, R.; Hudec, J.; Kačík, F.; et al. Parametre Kvality Dreva Určujúce Jeho Finálne Použitie [Wood Quality Parameters Determining Its End Use]; Technická univerzita vo Zvolene: Zvolen, Slovakia, 2010; p. 352. [Google Scholar]
- Vienonen, P.; Asikainen, A.; Eronen, J. Color grading of beech parquet blocks by using spectral data. For. Prod. J. 2002, 52, 49–53. [Google Scholar]
- Sedliačiková, M.; Moresová, M. Are Consumers Interested in Colored Beech Wood and Furniture Products? Forests 2022, 13, 1470. [Google Scholar] [CrossRef]
- Kannar, A.; Tolvaj, L.; Magoss, E. Colour change of photodegraded spruce wood by water leaching. Wood Res. 2018, 63, 935–946. [Google Scholar]
- Hirata, S.; Hayashi, S.; Ohta, M. Color measurements according to three sections of wood. J. Wood Sci. 2020, 66, 1–13. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1985. [Google Scholar]
- Csanády, E.; Magoss, E.; Tolvaj, L. Quality of Machined Wood Surfaces; Springer International Publishing: Cham, Switzerland, 2015; pp. 109–181. [Google Scholar]
- Conte, A.M.; Pulci, O.; Knapik, A.; Bagniuk, J.; Del Sole, R.; Lojewska, J.; Missori, M. Role of Cellulose Oxidation in the Yellowing of Ancient Paper. Phys Rev Lett. 2012, 108, 158301. [Google Scholar] [CrossRef] [PubMed]
- Violante, C.; Teodonio, L.; Mosca Conte, A.; Pulci, O.; Kupchak, I.; Missori, M. An Abinitio Approach to Cultural Heritage: The Case of Ancient Paper Degradation. Phys. Status Solidi B 2014, 252, 112–117. [Google Scholar] [CrossRef]
- Beyer, M.; Koch, H.; Fischer, K. Role of Hemicelluloses in the Formation of Chromophores During Heat Treatment of Bleached Chemical Pulps. Macromol. Symp. 2006, 232, 98–106. [Google Scholar] [CrossRef]
- González-Peña, M.M.; Hale, M.D. Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: Colour evolution and colour changes. Holzforschung 2009, 63, 385–393. [Google Scholar]
- Falkehag, I.S.; Marton, J.; Adler, A. Chromophores in Kraft Lignin. In Lignin Structure and Reactions; Marton, J., Ed.; American Chemical Society: Washington, DC, USA, 1966; pp. 75–89. [Google Scholar]
- George, B.; Suttie, E.; Merlin, A.; Deglise, X. Photodegradation and photostabilisation of wood. Polym. Degrad. Stab. 2005, 88, 268–274. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood degradation under UV irradiation: A lignin characterization. J. Photochem. Photobiol. B: Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef]
- Tolvaj, L.; Faix, O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- Xie, Y.; Krause, A.; Mai, C.; Militz, H.; Richter, K.; Urban, K.; Evans, P.D. Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5- dihydroxyethyleneurea. Polym. Degrad. Stab. 2005, 89, 189–199. [Google Scholar] [CrossRef]
- Tribulová, T.; Kačík, F.; Evtuguin, D.; Čabalová, I. Assessment of chromophores in chemically treated and aged wood by UV-VIS diffuse reflectance spectroscopy. Cellul. Chem. Technol 2016, 50, 659–667. [Google Scholar]
- Umezawa, T. Chemistry of extractives. In Wood and Cellulosic Chemistry; Hon, D.N.S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 2001; pp. 213–241. [Google Scholar]
- Fan, Y.; Gao, J.; Chen, Y. Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Sci. Technol. 2010, 44, 667–678. [Google Scholar] [CrossRef]
- Baar, J.; Paschová, Z.; Čermák, P.; Wimmer, R. Color changes of various wood species in response to moisture. Wood Fiber Sci. 2019, 51, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Yeo, H.; Smith, W.B.; Hanna, R. B Determination of surface moisture content of wood utilizing a colorimetric technique. Wood Fiber Sci. 2002, 34, 419–424. [Google Scholar]
- Schnabel, T.; Zimmer, B.; Petutschnigg, A.J. On the modelling of colour changes of wood surfaces. Eur. J. Wood Prod. 2009, 67, 141–149. [Google Scholar] [CrossRef]
- STN EN ISO 11664-4; Kolorimetria. Časť 4: Farebný priestor CIE 1976 L*a*b*. Slovenská Technická Norma: Bratislava, Slovakia, 2020. (In Slovak)
- STN EN ISO 11664-3; Kolorimetria. Časť 3: Trichromatické zložky CIE. Slovenská Technická Norma: Bratislava, Slovakia, 2020. (In Slovak)
- STN EN 490103; Drevo. Zisťovanie Vlhkosti pri Fyzikálnych a Mechanických Skúškach. Slovenská Technická Norma: Bratislava, Slovakia, 1979. (In Slovak)
- STN EN 490108; Drevo. Zisťovanie Hustoty pri Fyzikálnych a Mechanických Skúškach. Slovenská Technická Norma: Bratislava, Slovakia, 1979. (In Slovak)
- ASTM D1107-96; Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2007.
- Wise, L.E.; Murphy, M.; D’Addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946, 122, 34–35. [Google Scholar]
- Seifert, V.K. About a new method for rapid determination of pure cellulose (in German). Das Pap. 1956, 10, 301–306. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass-Laboratory Analytical Procedure (LAP); Technical Report NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Oberhofnerová, E.; Pánek, M.; García-Cimarras, A. The effect of natural weathering on untreated wood surface. Maderas. Cienc. Tecnol. 2017, 19, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Torniainen, P.; Jones, D.; Sandberg, D. Colour as a quality indicator for industrially manufactured ThermoWood®. Wood Mater. Sci. Eng. 2021, 16, 287–289. [Google Scholar] [CrossRef]
- Geffertová, J.; Geffert, A.; Výbohová, E. The effect of uv irradiation on the colour change of the spruce wood. Acta Fac. Xylol. Zvolen 2018, 60, 41–50. [Google Scholar]
- Humar, M.; Repič, R.; Kržišnik, D.; Lesar, B.; Cerc Korošec, R.; Brischke, C.; Emmerich, L.; Rep, G. Quality Control of Thermally Modified Timber Using Dynamic Vapor Sorption (DVS) Analysis. Forests 2020, 11, 666. [Google Scholar] [CrossRef]
Density (kg·m−3) | L* (Std. Dev.) | a* (Std. Dev.) | b* (Std. Dev.) | |
---|---|---|---|---|
Oberhofnerová et al. [32] | 533 (-) | 84.16 (0.16) | 3.72 (0.08) | 19.54 (0.20) |
Torniainen et al. [33] | - | 82 (1.2) | 4 (0.9) | 19 (1.7) |
Geffertová et al. [34] | - | 82 (-) | 2.6 (0.5) | 17.3 (0.7) |
Humar et al. [35] | 432 (10) | 83.8 (1.3) | 6.5 (0.4) | 10.4 (0.4) |
w | Y | x | y | L* | a* | b* | |||
---|---|---|---|---|---|---|---|---|---|
Cross section | December | Average | 0.642 | 40.94 | 0.3863 | 0.3796 | 69.83 | 8.71 | 24.86 |
Std. Dev. | 0.425 | 6.89 | 0.0080 | 0.0022 | 5.14 | 1.52 | 1.03 | ||
February | Average | 0.622 | 42.68 | 0.3808 | 0.3771 | 70.85 | 7.68 | 23.32 | |
Std. Dev. | 0.580 | 9.69 | 0.0156 | 0.0064 | 6.66 | 2.09 | 2.43 | ||
April | Average | 0.647 | 44.03 | 0.3753 | 0.3764 | 72.03 | 6.33 | 22.64 | |
Std. Dev. | 0.517 | 6.95 | 0.0091 | 0.0037 | 4.45 | 1.44 | 1.42 | ||
June | Average | 0.390 | 41.20 | 0.3795 | 0.3775 | 70.25 | 7.31 | 23.28 | |
Std. Dev. | 0.226 | 3.73 | 0.0060 | 0.0034 | 2.48 | 0.71 | 1.47 | ||
Tangential section | December | Average | 0.642 | 63.43 | 0.3577 | 0.3688 | 83.60 | 3.25 | 19.91 |
Std. Dev. | 0.425 | 4.82 | 0.0015 | 0.0018 | 2.64 | 0.53 | 1.20 | ||
February | Average | 0.622 | 60.21 | 0.3621 | 0.3712 | 81.53 | 3.86 | 20.89 | |
Std. Dev. | 0.580 | 12.04 | 0.0102 | 0.0050 | 6.55 | 1.53 | 1.80 | ||
April | Average | 0.647 | 60.68 | 0.3591 | 0.3691 | 82.12 | 3.64 | 19.95 | |
Std. Dev. | 0.517 | 5.74 | 0.0042 | 0.0031 | 2.97 | 0.53 | 1.83 | ||
June | Average | 0.390 | 64.19 | 0.3572 | 0.3672 | 84.06 | 3.66 | 19.24 | |
Std. Dev. | 0.226 | 4.24 | 0.0055 | 0.0040 | 2.06 | 0.60 | 1.89 | ||
Radial section | December | Average | 0.642 | 61.26 | 0.3626 | 0.3713 | 82.24 | 4.07 | 21.27 |
Std. Dev. | 0.425 | 8.87 | 0.0070 | 0.0028 | 5.07 | 1.66 | 1.76 | ||
February | Average | 0.622 | 57.47 | 0.3703 | 0.3761 | 79.87 | 4.91 | 23.36 | |
Std. Dev. | 0.580 | 13.75 | 0.0186 | 0.0100 | 7.57 | 2.58 | 4.37 | ||
April | Average | 0.647 | 56.02 | 0.3662 | 0.3730 | 79.16 | 4.65 | 21.78 | |
Std. Dev. | 0.517 | 12.51 | 0.0100 | 0.0057 | 6.77 | 1.63 | 2.89 | ||
June | Average | 0.390 | 61.74 | 0.3590 | 0.3681 | 82.72 | 4.02 | 19.74 | |
Std. Dev. | 0.226 | 4.85 | 0.0048 | 0.0030 | 2.41 | 0.88 | 1.85 |
p (%) | December | February | April | June | |
---|---|---|---|---|---|
Holocellulose | Average | 79.22 | 79.13 | 78.16 | 77.17 |
Std. Dev. | 1.25 | 0.44 | 2.04 | 0.58 | |
Cellulose | Average | 44.05 | 44.18 | 44.07 | 43.69 |
Std. Dev. | 0.98 | 0.51 | 0.40 | 1.97 | |
Hemicelluloses | Average | 35.17 | 34.95 | 34.09 | 33.48 |
Std. Dev. | 0.6 | 0.95 | 2.43 | 2.55 | |
Lignin | Average | 25.42 | 24.83 | 24.73 | 24.25 |
Std. Dev. | 0.57 | 0.10 | 0.30 | 0.02 | |
Extractives | Average | 1.34 | 1.25 | 1.22 | 1.38 |
Std. Dev. | 0.08 | 0.03 | 0.05 | 0.05 |
x | y | Y | L* | a* | b* | ||
---|---|---|---|---|---|---|---|
Holocellulose | Average | 0.342 | 0.363 | 51.41 | 76.889 | −1.015 | 14.211 |
Std. Dev. | 0.005 | 0.005 | 3.23 | 1.936 | 0.303 | 2.324 | |
Cellulose | Average | 0.352 | 0.364 | 43.84 | 72.062 | 2.576 | 15.304 |
Std. Dev. | 0.014 | 0.009 | 3.76 | 2.504 | 1.906 | 4.439 | |
Lignin | Average | 0.429 | 0.388 | 6.28 | 30.103 | 10.423 | 19.003 |
Std. Dev. | 0.002 | 0.001 | 0.23 | 0.584 | 0.225 | 0.524 | |
Extractives * | Average | 0.327 | 0.349 | 88.96 | 95.56 | −1.58 | 9.05 |
Std. Dev. | 0.006 | 0.007 | 1.67 | 0.70 | 0.44 | 3.72 | |
Water | Average | 0.3137 | 0.3312 | 92.35 | 96.96 | −0.14 | 0.04 |
Cross and Radial Sections | Tangential Section | |
---|---|---|
Y | Y | |
Holocellulose | 70.6 | 51.4 |
Lignin | 6.30 | 6.21 |
Water | 13.1 | 23.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučerová, V.; Hrčka, R.; Hýrošová, T. Relation of Chemical Composition and Colour of Spruce Wood. Polymers 2022, 14, 5333. https://doi.org/10.3390/polym14235333
Kučerová V, Hrčka R, Hýrošová T. Relation of Chemical Composition and Colour of Spruce Wood. Polymers. 2022; 14(23):5333. https://doi.org/10.3390/polym14235333
Chicago/Turabian StyleKučerová, Viera, Richard Hrčka, and Tatiana Hýrošová. 2022. "Relation of Chemical Composition and Colour of Spruce Wood" Polymers 14, no. 23: 5333. https://doi.org/10.3390/polym14235333
APA StyleKučerová, V., Hrčka, R., & Hýrošová, T. (2022). Relation of Chemical Composition and Colour of Spruce Wood. Polymers, 14(23), 5333. https://doi.org/10.3390/polym14235333