Brassinosteroids: Relevant Evidence Related to Mitigation of Abiotic and Biotic Stresses in Plants
Abstract
:1. Introduction
2. Brassinosteroids
3. Abiotic Stresses
3.1. Thermal Stress
3.2. Drought
3.3. Salt Stress
3.4. Potentially Toxic Elements
3.5. Abiotic Disorders
3.6. Crosstalk between Brassinosteroids and Other Plant Growth Regulators
4. Biotic Stresses
4.1. Oomycetes, Bacteria, Fungi and Virus
4.2. Nematodes
4.3. Pests
5. Commercial Products of BRs
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Went, F.W.; Went, F.W.; Thimann, K.V. Phytohormones; The Macmillan Company: New York, NY, USA, 1937. [Google Scholar]
- Gray, W.M. Hormonal Regulation of Plant Growth and Development. PLoS Biol. 2004, 2, e311. [Google Scholar] [CrossRef] [PubMed]
- Alcantara-Cortes, J.S.; Acero Godoy, J.; Alcántara Cortés, J.D.; Sánchez Mora, R.M. Principales Reguladores Hormonales y Sus Interacciones En El Crecimiento Vegetal. Nova 2019, 109–129. [Google Scholar] [CrossRef]
- Bücker-Neto, L.; Paiva, A.L.S.; Machado, R.D.; Arenhart, R.A.; Margis-Pinheiro, M. Interactions between Plant Hormones and Heavy Metals Responses. Genet. Mol. Biol. 2017, 40, 373–386. [Google Scholar] [CrossRef]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef] [PubMed]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The Role of Gibberellin Signalling in Plant Responses to Abiotic Stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef]
- Miao, R.; Li, C.; Liu, Z.; Zhou, X.; Chen, S.; Zhang, D.; Luo, J.; Tang, W.; Wang, C.; Wu, J.; et al. The Role of Endogenous Brassinosteroids in the Mechanisms Regulating Plant Reactions to Various Abiotic Stresses. Agronomy 2024, 14, 356. [Google Scholar] [CrossRef]
- Yao, T.; Xie, R.; Zhou, C.; Wu, X.; Li, D. Roles of Brossinosteroids Signaling in Biotic and Abiotic Stresses. J. Agric. Food Chem. 2023, 71, 7947–7960. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.W.; Mandava, N.; Worley, J.F.; Plimmer, J.R.; Smith, M.V. Brassins-a New Family of Plant Hormones from Rape Pollen. Nature 1970, 225, 1065–1066. [Google Scholar] [CrossRef] [PubMed]
- Grove, M.D.; Spencer, G.F.; Rohwedder, W.K.; Mandava, N.; Worley, J.F.; Warthen, J.D.; Steffens, G.L.; Flippen-Anderson, J.L.; Cook, J.C. Brassinolide, a Plant Growth-Promoting Steroid Isolated from Brassica Napus Pollen. Nature 1979, 281, 216–217. [Google Scholar] [CrossRef]
- Friedrichsen, D.M.; Joazeiro, C.A.P.; Li, J.; Hunter, T.; Chory, J. Brassinosteroid-Insensitive-1 Is a Ubiquitously Expressed Leucine-Rich Repeat Receptor Serine/Threonine Kinase. Plant Physiol. 2000, 123, 1247–1256. [Google Scholar] [CrossRef]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A. Brassinosteroids – Occurence and Chemical Structures in Plants. In Brassinosteroids: A Class of Plant Hormone; Springer: Dordrecht, The Netherlands, 2011; pp. 1–27. [Google Scholar]
- Liu, J.; Zhang, D.; Sun, X.; Ding, T.; Lei, B.; Zhang, C. Structure-Activity Relationship of Brassinosteroids and Their Agricultural Practical Usages. Steroids 2017, 124, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A.; Tretyn, A. The Chemical Characteristic and Distribution of Brassinosteroids in Plants. Phytochemistry 2003, 62, 1027–1046. [Google Scholar] [CrossRef] [PubMed]
- Sadura, I.; Janeczko, A. Physiological and Molecular Mechanisms of Brassinosteroid-Induced Tolerance to High and Low Temperature in Plants. Biol. Plant 2018, 62, 601–616. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A.; Fariduddin, Q. Brassinosteroids: A Regulator of 21st Century. In Brassinosteroids; Springer: Dordrecht, The Netherlands, 2003; pp. 231–246. [Google Scholar]
- Fujioka, S.; Yokota, T. Biosynthesis and Metabolism of Brassinosteroids. Annu. Rev. Plant Biol. 2003, 54, 137–164. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A.; Chmur, M.; Gruszka, D. Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections. Front. Plant Sci. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bajguz, A.; Hayat, S. Effects of Brassinosteroids on the Plant Responses to Environmental Stresses. Plant Physiol. Biochem. 2009, 47, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gapper, C.; Dolan, L. Control of Plant Development by Reactive Oxygen Species. Plant Physiol. 2006, 141, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; van Staden, J. Effects of Plant Growth Regulators on Drought Resistance of Two Maize Cultivars. South. Afr. J. Bot. 1998, 64, 116–120. [Google Scholar] [CrossRef]
- Núñes, M.; Mazzafera, P.; Mazorra, L.M.; Siqueira, W.J.; Zullo, M.A.T. Influence of a Brassinosteroid Analogue on Antioxidant Enzymes in Rice Grown in Culture Medium with NaCl. Biol. Plant 2003, 1, 67–70. [Google Scholar] [CrossRef]
- Özdemir, F.; Bor, M.; Demiral, T.; Türkan, İ. Effects of 24-Epibrassinolide on Seed Germination, Seedling Growth, Lipid Peroxidation, Proline Content and Antioxidative System of Rice (Oryza sativa L.) under Salinity Stress. Plant Growth Regul. 2004, 42, 203–211. [Google Scholar] [CrossRef]
- Vardhini, B.V.; Seeta, S.; Rao, R. Amelioration of Osmotic Stress by Brassinosteroids on Seed Germination and Seedling Growth of Three Varieties of Sorghum. Plant Growth Regul. 2003, 25–31. [Google Scholar] [CrossRef]
- Riboldi, L.B.; Gaziola, S.A.; Azevedo, R.A.; de Freitas, S.T.; de Camargo e Castro, P.R. 24-Epibrassinolide Mechanisms Regulating Blossom-End Rot Development in Tomato Fruit. J. Plant Growth Regul. 2019, 38, 812–823. [Google Scholar] [CrossRef]
- Ali, B.; Hasan, S.A.; Hayat, S.; Hayat, Q.; Yadav, S.; Fariduddin, Q.; Ahmad, A. A Role for Brassinosteroids in the Amelioration of Aluminium Stress through Antioxidant System in Mung Bean (Vigna Radiata L. Wilczek). Environ. Exp. Bot. 2008, 62, 153–159. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Z.-Y.; Yang, Y.-J. Effects of Exogenous Brassinosteroid on Cd Tolerance in Solanum Nigrum Seedlings. Chin. J. Eco-Agric. 2013, 21, 872–876. [Google Scholar] [CrossRef]
- Hayat, S.; Hasan, S.A.; Hayat, Q.; Ahmad, A. Brassinosteroids Protect Lycopersicon esculentum from Cadmium Toxicity Applied as Shotgun Approach. Protoplasma 2010, 239, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.A.; Hayat, S.; Ahmad, A. Brassinosteroids Protect Photosynthetic Machinery against the Cadmium Induced Oxidative Stress in Two Tomato Cultivars. Chemosphere 2011, 84, 1446–1451. [Google Scholar] [CrossRef] [PubMed]
- Sharma, I.; Pati, P.K.; Bhardwaj, R. Regulation of Growth and Antioxidant Enzyme Activities by 28-Homobrassinolide in Seedlings of Raphanus sativus L. under Cadmium Stress. Indian. J. Biochem. Biophys. 2010, 47, 172–177. [Google Scholar] [PubMed]
- Janeczko, A.; Koscielniak, J.; Pilipowicz, M.; Szarek-Lukaszewska, G.; Skoczowski, A. Protection of Winter Rape Photosystem 2 by 24-Epibrassinolide under Cadmium Stress. Photosynthetica 2005, 43, 293–298. [Google Scholar] [CrossRef]
- Sun, J.Y.; Guo, R.; Jiang, Q.; Chen, C.Z.; Gao, Y.Q.; Jiang, M.M.; Shen, R.F.; Zhu, X.F.; Huang, J. Brassinosteroid Decreases Cadmium Accumulation via Regulating Gibberellic Acid Accumulation and Cd Fixation Capacity of Root Cell Wall in Rice (Oryza sativa). J. Hazard. Mater. 2024, 469, 133862. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Yusuf, M.; Hayat, S.; Ahmad, A. Effect of 28-Homobrassinolide on Antioxidant Capacity and Photosynthesis in Brassica juncea Plants Exposed to Different Levels of Copper. Environ. Exp. Bot. 2009, 66, 418–424. [Google Scholar] [CrossRef]
- Fariduddin, Q.; Khalil, R.R.A.E.; Mir, B.A.; Yusuf, M.; Ahmad, A. 24-Epibrassinolide Regulates Photosynthesis, Antioxidant Enzyme Activities and Proline Content of Cucumis sativus under Salt and/or Copper Stress. Environ. Monit. Assess. 2013, 185, 7845–7856. [Google Scholar] [CrossRef] [PubMed]
- Tadaiesky, L.B.A.; da Silva, B.R.S.; Batista, B.L.; Lobato, A.K. da S. Brassinosteroids Trigger Tolerance to Iron Toxicity in Rice. Physiol. Plant 2021, 171, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, Y.; Li, J.; Bian, Z. Effects of Brassinosteroids on Photosynthetic Performance and Nitrogen Metabolism in Pepper Seedlings under Chilling Stress. Agronomy 2019, 9, 839. [Google Scholar] [CrossRef]
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Hasan, S.A.; Ahmad, A. Protective Response of 28-Homobrassinolide in Cultivars of Triticum aestivum with Different Levels of Nickel. Arch. Environ. Contam. Toxicol. 2011, 60, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Guedes, F.R.C.M.; Maia, C.F.; da Silva, B.R.S.; Batista, B.L.; Alyemeni, M.N.; Ahmad, P.; da Silva Lobato, A.K. Exogenous 24-Epibrassinolide Stimulates Root Protection, and Leaf Antioxidant Enzymes in Lead Stressed Rice Plants: Central Roles to Minimize Pb Content and Oxidative Stress. Environ. Pollut. 2021, 280, 116992. [Google Scholar] [CrossRef] [PubMed]
- Soares, T.F.S.N.; dos Dias, D.C.F.S.; Oliveira, A.M.S.; Ribeiro, D.M.; dos Dias, L.A.S. Exogenous Brassinosteroids Increase Lead Stress Tolerance in Seed Germination and Seedling Growth of Brassica juncea L. Ecotoxicol. Environ. Saf. 2020, 193, 110296. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Bhardwaj, R.; Kanwar, M.K. 24-Epibrassinolide Regulated Diminution of Cr Metal Toxicity in Brassica juncea L. Plants. Braz. J. Plant Physiol. 2010, 22, 159–165. [Google Scholar] [CrossRef]
- Ramakrishna, B.; Rao, S.S.R. Foliar Application of Brassinosteroids Alleviates Adverse Effects of Zinc Toxicity in Radish (Raphanus sativus L.) Plants. Protoplasma 2015, 252, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, K.; Balaraju, P.; Ramakrishna, B.; Ram Rao, S.S. Effect of Brassinosteroids on Germination and Seedling Growth of Radish (Raphanus sativus L.) under PEG-6000 Induced Water Stress. Am. J. Plant Sci. 2013, 04, 2305–2313. [Google Scholar] [CrossRef]
- Upreti, K.K.; Murti, G.S.R. Effects of Brassmosteroids on Growth, Nodulation, Phytohormone Content and Nitrogenase Activity in French Bean Under Water Stress. Biol. Plant 2004, 48, 407–411. [Google Scholar] [CrossRef]
- Hu, W.; Yan, X.; Xiao, Y.; Zeng, J.; Qi, H.; Ogweno, J.O. 24-Epibrassinosteroid Alleviate Drought-Induced Inhibition of Photosynthesis in Capsicum Annuum. Sci. Hortic. 2013, 150, 232–237. [Google Scholar] [CrossRef]
- Kang, Y.-Y.; Guo, S.-R.; Li, J.; Duan, J.-J. Effect of Root Applied 24-Epibrassinolide on Carbohydrate Status and Fermentative Enzyme Activities in Cucumber (Cucumis sativus L.) Seedlings under Hypoxia. Plant Growth Regul. 2009, 57, 259–269. [Google Scholar] [CrossRef]
- Behnamnia, M.; Kalantari, K.M.; Ziaie, J. The Effects of Brassinosteroid on the Induction of Biochemical Changes in Lycopersicon esculentum under Drought Stress. Turk. J. Bot. 2009, 33, 417–428. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Wijaya, L.; Ahmad, P. The Putative Role of Endogenous Nitric Oxide in Brassinosteroid-Induced Antioxidant Defence System in Pepper (Capsicum Annuum L.) Plants under Water Stress. Plant Physiol. Biochem. 2019, 143, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Zafari, M.; Ebadi, A.; Sedghi, M.; Jahanbakhsh, S. Alleviating Effect of 24- Epibrassinolide on Seed Oil Content and Fatty Acid Composition under Drought Stress in Safflower. J. Food Compos. Anal. 2020, 92, 103544. [Google Scholar] [CrossRef]
- Dos Santos Ribeiro, D.G.; da Silva, B.R.S.; da Silva Lobato, A.K. Brassinosteroids Induce Tolerance to Water Deficit in Soybean Seedlings: Contributions Linked to Root Anatomy and Antioxidant Enzymes. Acta Physiol. Plant 2019, 41, 82. [Google Scholar] [CrossRef]
- Avalbaev, A.; Bezrukova, M.; Allagulova, C.; Lubyanova, A.; Kudoyarova, G.; Fedorova, K.; Maslennikova, D.; Yuldashev, R.; Shakirova, F. Wheat Germ Agglutinin Is Involved in the Protective Action of 24-Epibrassinolide on the Roots of Wheat Seedlings under Drought Conditions. Plant Physiol. Biochem. 2020, 146, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-T.; Chen, Z.-Y.; Jiang, Y.; Duan, B.-B.; Xi, Z.-M. Involvement of ABA and Antioxidant System in Brassinosteroid-Induced Water Stress Tolerance of Grapevine (Vitis Vinifera L.). Sci. Hortic. 2019, 256, 108596. [Google Scholar] [CrossRef]
- Savaliya, D.D.; Mandavia, C.K.; Mandavia, M.K. Role of Brassinolide on Enzyme Activities in Groundnut under Water Deficit Stress. Indian. J. Agric. Biochem. 2013, 26, 92–96. [Google Scholar]
- Zhang, M.; Zhai, Z.; Tian, X.; Duan, L.; Li, Z. Brassinolide Alleviated the Adverse Effect of Water Deficits on Photosynthesis and the Antioxidant of Soybean (Glycine Max L.). Plant Growth Regul. 2008, 56, 257–264. [Google Scholar] [CrossRef]
- Li, K.R.; Wang, H.H.; Han, G.; Wang, Q.J.; Fan, J. Effects of Brassinolide on the Survival, Growth and Drought Resistance of Robinia Pseudoacacia Seedlings under Water-Stress. New For. 2008, 35, 255–266. [Google Scholar] [CrossRef]
- Li, K.R.; Feng, C.H. Effects of Brassinolide on Drought Resistance of Xanthoceras Sorbifolia Seedlings under Water Stress. Acta Physiol. Plant 2011, 33, 1293–1300. [Google Scholar] [CrossRef]
- Gomes, M.d.M.d.A.; Torres Netto, A.; Campostrini, E.; Bressan-Smith, R.; Zullo, M.A.T.; Ferraz, T.M.; Siqueira, L.d.N.; Leal, N.R.; Núñez-Vázquez, M. Brassinosteroid Analogue Affects the Senescence in Two Papaya Genotypes Submitted to Drought Stress. Theor. Exp. Plant Physiol. 2013, 25, 186–195. [Google Scholar] [CrossRef]
- Jiménez-Bohórquez, E.F.; Díaz-Arias, M.A.; Balaguera-López, H.E. Exogenous Brassinosteroids Application in Purple Passion Fruit Plants Grafted onto a Sweet Calabash Passion Fruit Rootstock and under Water Stress. Rev. Colomb. De Cienc. Hortícolas 2024, 18, e16514. [Google Scholar]
- Salah, A.; Nwafor, C.C.; Han, Y.; Liu, L.; Rashid, M.; Batool, M.; El-Badri, A.M.; Cao, C.; Zhan, M. Spermidine and Brassinosteroid Regulate Root Anatomical Structure, Photosynthetic Traits and Antioxidant Defense Systems to Alleviate Waterlogging Stress in Maize Seedlings. South. Afr. J. Bot. 2022, 144, 389–402. [Google Scholar] [CrossRef]
- Li, X.; Wei, J.-P.; Ahammed, G.J.; Zhang, L.; Li, Y.; Yan, P.; Zhang, L.-P.; Han, W.-Y. Brassinosteroids Attenuate Moderate High Temperature-Caused Decline in Tea Quality by Enhancing Theanine Biosynthesis in Camellia sinensis L. Front. Plant Sci. 2018, 9, 1016. [Google Scholar] [CrossRef] [PubMed]
- Kurepin, L.V.; Qaderi, M.M.; Back, T.G.; Reid, D.M.; Pharis, R.P. A Rapid Effect of Applied Brassinolide on Abscisic Acid Concentrations in Brassica Napus Leaf Tissue Subjected to Short-Term Heat Stress. Plant Growth Regul. 2008, 55, 165–167. [Google Scholar] [CrossRef]
- Ogweno, J.O.; Song, X.S.; Shi, K.; Hu, W.H.; Mao, W.H.; Zhou, Y.H.; Yu, J.Q.; Nogués, S. Brassinosteroids Alleviate Heat-Induced Inhibition of Photosynthesis by Increasing Carboxylation Efficiency and Enhancing Antioxidant Systems in Lycopersicon esculentum. J. Plant Growth Regul. 2008, 27, 49–57. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Mohammadkhani, N. Enhancement of Chilling Stress Tolerance of Tomato Fruit by Postharvest Brassinolide Treatment. Food Bioproc Tech. 2014, 7, 909–914. [Google Scholar] [CrossRef]
- Jiang, Y.-P.; Huang, L.-F.; Cheng, F.; Zhou, Y.-H.; Xia, X.-J.; Mao, W.-H.; Shi, K.; Yu, J.-Q. Brassinosteroids Accelerate Recovery of Photosynthetic Apparatus from Cold Stress by Balancing the Electron Partitioning, Carboxylation and Redox Homeostasis in Cucumber. Physiol. Plant 2013, 148, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Chu, C.-H.; Chen, S.-L.; Juan, H.-F.; Chen, Y.-M. A Proteomics Study of the Mung Bean Epicotyl Regulated by Brassinosteroids under Conditions of Chilling Stress. Cell Mol. Biol. Lett. 2006, 11, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, A.; Gullner, G.; Skoczowski, A.; Dubert, F.; Barna, B. Effects of Brassinosteroid Infiltration Prior to Cold Treatment on Ion Leakage and Pigment Contents in Rape Leaves. Biol. Plant 2007, 51, 355–358. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Q.; Wang, X.; Xi, Z. Brassinosteroid Stimulates Hydrogen Peroxide Biosynthesis and Reduces the Effect of Cold Stress. J. Plant Growth Regul. 2022, 42, 3757–3769. [Google Scholar] [CrossRef]
- Qing-mao, S. Exogenous Brassinosteroid Induced the Salt Resistance of Cucumber (Cucumis sativus L.) Seedlings. Zhongguo Nong Ye Ke Xue = Zhongguo Nongye Kexue 2006, 39, 1872–1877. [Google Scholar]
- Daur, I.; Tatar, O. Effects of Gypsum and Brassinolide on Soil Properties, and Berseem (Trifolium Alexandrinum L.) Growth, Yield and Chemical Composition Grown on Saline Soil. Legume Res. 2013, 36, 306–311. [Google Scholar]
- Sharma, I.; Bhardwaj, R.; Pati, P.K. Stress Modulation Response of 24-Epibrassinolide against Imidacloprid in an Elite Indica Rice Variety Pusa Basmati-1. Pestic. Biochem. Physiol. 2013, 105, 144–153. [Google Scholar] [CrossRef]
- Abbas, S.; Latif, H.H.; Elsherbiny, E.A. Effect of 24-Epibrassinolide on the Physiological and Genetic Changes on Two Varieties of Pepper under Salt Stress Conditions. Pak. J. Bot. 2013, 45, 1273–1284. [Google Scholar]
- Ali, B.; Hayat, S.; Hasan, S.A.; Ahmad, A. Effect of Root Applied 28-Homobrassinolide on the Performance of Lycopersicon esculentum. Sci. Hortic. 2006, 110, 267–273. [Google Scholar] [CrossRef]
- Çoban, Ö.; Göktürk Baydar, N. Brassinosteroid Effects on Some Physical and Biochemical Properties and Secondary Metabolite Accumulation in Peppermint (Mentha Piperita L.) under Salt Stress. Ind. Crops Prod. 2016, 86, 251–258. [Google Scholar] [CrossRef]
- De Oliveira, V.P.; Lima, M.D.R.; da Silva, B.R.S.; Batista, B.L.; da Silva Lobato, A.K. Brassinosteroids Confer Tolerance to Salt Stress in Eucalyptus Urophylla Plants Enhancing Homeostasis, Antioxidant Metabolism and Leaf Anatomy. J. Plant Growth Regul. 2019, 38, 557–573. [Google Scholar] [CrossRef]
- Tabur, S.; Demir, K. Cytogenetic Response of 24-Epibrassinolide on the Root Meristem Cells of Barley Seeds under Salinity. Plant Growth Regul. 2009, 58, 119–123. [Google Scholar] [CrossRef]
- Ekinci, M.; Yildirim, E.; Dursun, A.; Turan, M. Mitigation of Salt Stress in Lettuce (Lactuca Sativa L. Var. Crispa) by Seed and Foliar 24-Epibrassinolide Treatments. HortScience 2012, 47, 631–636. [Google Scholar] [CrossRef]
- Rattan, A.; Kapoor, D.; Kapoor, N.; Bhardwaj, R.; Sharma, A. Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. J. Plant Growth Regul. 2020, 39, 1465–1475. [Google Scholar] [CrossRef]
- El-Khallal, S.M.; Hathout, T.A.; Ahsour, A.E.R.A.; Kerrit, A.A.A. Brassinolide and Salicylic Acid Induced Antioxidant Enzymes, Hormonal Balance and Protein Profile of Maize Plants Grown under Salt Stress. Res. J. Agric. Biol. Sci. 2009, 5, 391–402. [Google Scholar]
- Soliman, M.; Elkelish, A.; Souad, T.; Alhaithloul, H.; Farooq, M. Brassinosteroid Seed Priming with Nitrogen Supplementation Improves Salt Tolerance in Soybean. Physiol. Mol. Biol. Plants 2020, 26, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Hu, J.; Zhang, Y.; Xie, X.J.; Knapp, A. Seed Priming with Brassinolide Improves Lucerne (Medicago Sativa L.) Seed Germination and Seedling Growth in Relation to Physiological Changes under Salinity Stress. Aust. J. Agric. Res. 2007, 58, 811. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ashraf, M.; Athar, H.-R. Does Exogenous Application of 24-Epibrassinolide Ameliorate Salt Induced Growth Inhibition in Wheat (Triticum aestivum L.)? Plant Growth Regul. 2008, 55, 51–64. [Google Scholar] [CrossRef]
- Avalbaev, A.M.; Yuldashev, R.A.; Fatkhutdinova, R.A.; Urusov, F.A.; Safutdinova, Y.V.; Shakirova, F.M. The Influence of 24-Epibrassidinolide on the Hormonal Status of Wheat Plants under Sodium Chloride. Appl. Biochem. Microbiol. 2010, 46, 99–102. [Google Scholar] [CrossRef]
- Song, S.; Liu, W.; Guo, S.; Shang, Q.; Zhang, Z. Salt Resistance and Its Mechanism of Cucumber under Effects of Exogenous Chemical Activators. Chin. J. Appl. Ecol. 2006, 17, 1871–1876. [Google Scholar]
- Wang, B.; Zhang, J.; Xia, X.; Zhang, W.-H. Ameliorative Effect of Brassinosteroid and Ethylene on Germination of Cucumber Seeds in the Presence of Sodium Chloride. Plant Growth Regul. 2011, 65, 407–413. [Google Scholar] [CrossRef]
- Arora, N.; Bhardwaj, R.; Sharma, P.; Arora, H.K. Effects of 28-Homobrassinolide on Growth, Lipid Peroxidation and Antioxidative Enzyme Activities in Seedlings of Zea Mays L. under Salinity Stress. Acta Physiol. Plant 2008, 30, 833–839. [Google Scholar] [CrossRef]
- El-Mashad, A.A.A.; Mohamed, H.I. Brassinolide Alleviates Salt Stress and Increases Antioxidant Activity of Cowpea Plants (Vigna Sinensis). Protoplasma 2012, 249, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Karlidag, H.; Yildirim, E.; Turan, M. Role of 24-Epibrassinolide in Mitigating the Adverse Effects of Salt Stress on Stomatal Conductance, Membrane Permeability, and Leaf Water Content, Ionic Composition in Salt Stressed Strawberry (Fragaria×ananassa). Sci. Hortic. 2011, 130, 133–140. [Google Scholar] [CrossRef]
- Dalio, R.J.D.; Pinheiro, H.P.; Sodek, L.; Haddad, C.R.B. 24-Epibrassinolide Restores Nitrogen Metabolism of Pigeon Pea under Saline Stress. Bot. Stud. 2013, 54, 9. [Google Scholar] [CrossRef] [PubMed]
- Alyemeni, M.N.; Hayat, S.; Wijaya, L.; Anaji, A. Foliar Application of 28-Homobrassinolide Mitigates Salinity Stress by Increasing the Efficiency of Photosynthesis in Brassica juncea. Acta Bot. Bras. 2013, 27, 502–505. [Google Scholar] [CrossRef]
- Fedina, E.O. Effect of 24-Epibrassinolide on Pea Protein Tyrosine Phosphorylation after Salinity Action. Russ. J. Plant Physiol. 2013, 60, 351–358. [Google Scholar] [CrossRef]
- Ding, H.D.; Zhu, X.-H.; Zhu, Z.W.; Yang, S.J.; Zha, D.S.; Wu, X.X. Amelioration of Salt-Induced Oxidative Stress in Eggplant by Application of 24-Epibrassinolide. Biol. Plant 2012, 56, 767–770. [Google Scholar] [CrossRef]
- Talaat, N.B.; Shawky, B.T. 24-Epibrassinolide Alleviates Salt-Induced Inhibition of Productivity by Increasing Nutrients and Compatible Solutes Accumulation and Enhancing Antioxidant System in Wheat (Triticum aestivum L.). Acta Physiol. Plant 2013, 35, 729–740. [Google Scholar] [CrossRef]
- Zeng, L.L.; Song, L.Y.; Wu, X.; Ma, D.N.; Song, S.W.; Wang, X.X.; Zheng, H.L. Brassinosteroid Enhances Salt Tolerance via S-Nitrosoglutathione Reductase and Nitric Oxide Signaling Pathway in Mangrove Kandelia Obovata. Plant Cell Environ. 2024, 47, 511–526. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P.; Prasad, B.D.; Rahman, T. Brassinosteroid Action in Plant Abiotic Stress Tolerance. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2017; Volume 1564, pp. 193–202. [Google Scholar]
- Fang, P.; Yan, M.; Chi, C.; Wang, M.; Zhou, Y.; Zhou, J.; Shi, K.; Xia, X.; Foyer, C.H.; Yu, J. Brassinosteroids Act as a Positive Regulator of Photoprotection in Response to Chilling Stress. Plant Physiol. 2019, 180, 2061–2076. [Google Scholar] [CrossRef] [PubMed]
- Gururani, M.A.; Venkatesh, J.; Tran, L.S.P. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. Mol. Plant 2015, 8, 1304–1320. [Google Scholar] [CrossRef] [PubMed]
- Müssig, C.; Fischer, S.; Altmann, T. Brassinosteroid-Regulated Gene Expression. Plant Physiol. 2002, 129, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Dhaubhadel, S.; Chaudhary, S.; Dobinson, K.F.; Krishna, P. Treatment with 24-Epibrassinolide, a Brassinosteroid, Increases the Basic Thermotolerance of Brassica Napus and Tomato Seedlings. Plant Mol. Biol. 1999, 40, 333–342. [Google Scholar] [CrossRef]
- Shevela, D.; Kern, J.F.; Govindjee, G.; Messinger, J. Solar Energy Conversion by Photosystem II: Principles and Structures. Photosynth. Res. 2023, 156, 279–307. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xu, Q.; Cao, Y.; Qian, K.; An, K.; Zhu, Y.; Binzeng, H.; Zhao, H.; Kuai, B. Loss-of-Function Mutations in DET2 Gene Lead to an Enhanced Resistance to Oxidative Stress in Arabidopsis. Physiol. Plant 2005, 123, 57–66. [Google Scholar] [CrossRef]
- Choe, S. Brassinosteroid Biosynthesis and Inactivation. Physiol. Plant 2006, 126, 539–548. [Google Scholar] [CrossRef]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Kang, L.; Liu, Q.; Cheng, N.; Wang, B.; Cao, W. Effect of 24-Epibrassinolide Treatment on the Metabolism of Eggplant Fruits in Relation to Development of Pulp Browning under Chilling Stress. J. Food Sci. Technol. 2014, 52, 3394–3401. [Google Scholar] [CrossRef] [PubMed]
- Dhaubhadel, S.; Browning, K.S.; Gallie, D.R.; Krishna, P. Brassinosteroid Functions to Protect the Translational Machinery and Heat-shock Protein Synthesis Following Thermal Stress. Plant J. 2002, 29, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Divi, U.K.; Rahman, T.; Krishna, P. Gene Expression and Functional Analyses in Brassinosteroid-Mediated Stress Tolerance. Plant Biotechnol. J. 2016, 14, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Wilen, R.W.; Sacco, M.; Gusta, L.V.; Krishna, P. Effects of 24-Epibrassinolide on Freezing and Thermotolerance of Bromegrass (Bromus Inermis) Cell Cultures. Physiol. Plant 1995, 95, 195–202. [Google Scholar] [CrossRef]
- Mazorra, L.M.; Núñez, M.; Hechavarria, M.; Coll, F.; Sánchez-Blanco, M.J. Influence of Brassinosteroids on Antioxidant Enzymes Activity in Tomato Under Different Temperatures. Biol. Plant 2002, 45, 593–596. [Google Scholar] [CrossRef]
- Fujii, S.; Saka, H. The Promotive Effect of Brassinolide on Lamina Joint-Cell Elongation, Germination and Seedling Growth under Low-Temperature Stress in Rice (Oryza sativa L.). Plant Prod. Sci. 2001, 4, 210–214. [Google Scholar] [CrossRef]
- Hotta, Y.; Tanaka, T.; Luo, B.; Takeuchi, Y.; Konnai, M. Improvement of Cold Resistance in Rice Seedlings by 5-Aminolevulinic Acid. J. Pestic. Sci. 1998, 23, 29–33. [Google Scholar] [CrossRef]
- He, R.; Wang, G.; Wang, X. Effects of Brassinolide on Growth and Chilling Resistance of Maize Seedlings. In Brassinosteroids; American Chemical Society: Washington, DC, USA, 1991; pp. 220–230. [Google Scholar]
- Khripach, V. Twenty Years of Brassinosteroids: Steroidal Plant Hormones Warrant Better Crops for the XXI Century. Ann. Bot. 2000, 86, 441–447. [Google Scholar] [CrossRef]
- Gonzalez Olmedo, J.L.; Cordova, A.; Aragon, C.E.; Pina, D.; Rivas, M.; Rodriguez, R. Effect of an Analogue of Brassinosteroid on FHIA-18 Plantlets Exposed to Thermal Stress. Infomusa 2005, 14, 18–20. [Google Scholar]
- Pimentel, C. A Relação da Planta Com a Água, 1st ed.; Edur: Seropédica, Brazil, 2004; pp. 171–191. ISBN 85-85720-45-X. [Google Scholar]
- Janeczko, A.; Gruszka, D.; Pociecha, E.; Dziurka, M.; Filek, M.; Jurczyk, B.; Kalaji, H.M.; Kocurek, M.; Waligórski, P. Physiological and Biochemical Characterisation of Watered and Drought-Stressed Barley Mutants in the HvDWARF Gene Encoding C6-Oxidase Involved in Brassinosteroid Biosynthesis. Plant Physiol. Biochem. 2016, 99, 126–141. [Google Scholar] [CrossRef]
- Ramonell, K.M.; Kuang, A.; Porterfield, D.M.; Crispi, M.L.; Xiao, Y.; Mcclure, G.; Musgrave, M.E. Influence of Atmospheric Oxygen on Leaf Structure and Starch Deposition in Arabidopsis Thaliana. Plant Cell Environ. 2001, 24, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Ludazi, M.; Lambrou, Y.; Shaw, J.; Monsieur, C. Gender and Sustainable Development in Drylands: An Analysis of Field Experiences; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- Srivastava, P.; Wu, Q.-S.; Giri, B. Salinity: An Overview. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Cham, Switzerland, 2019; pp. 3–18. [Google Scholar]
- Wei, L.-J.; Deng, X.-G.; Zhu, T.; Zheng, T.; Li, P.-X.; Wu, J.-Q.; Zhang, D.-W.; Lin, H.-H. Ethylene Is Involved in Brassinosteroids Induced Alternative Respiratory Pathway in Cucumber (Cucumis sativus L.) Seedlings Response to Abiotic Stress. Front. Plant Sci. 2015, 6, 982. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Deng, X.G.; Tan, W.R.; Zhou, X.; Luo, S.S.; Han, X.Y.; Zhang, D.W.; Lin, H.H. Nitric Oxide Is Involved in Brassinosteroid-Induced Alternative Respiratory Pathway in Nicotiana Benthamiana Seedlings’ Response to Salt Stress. Physiol. Plant 2016, 156, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa, P.R.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A Review on Bioremediation Approach for Heavy Metal Detoxification and Accumulation in Plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Anuradha, S.; Rao, S.S.R. The Effect of Brassinosteroids on Radish (Raphanus sativus L.) Seedlings Growing under Cadmium Stress. Plant Soil. Environ. 2008, 53, 465–472. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Cohen, J.D.; Meudt, W.J. Investigations on the Mechanism of the Brassinosteroid Response. Plant Physiol. 1983, 72, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Katsumi, M. Physiological Modes of Brassinolide Action in Cucumber Hypocotyl Growth. In Brassinosteroids. Chemistry, Bioactivity and Applications; Cutler, H.G., Yokota, T., Adam, G., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1991; Volume 474, pp. 246–254. ISBN 9780841221260. [Google Scholar]
- Xu, H.; Shida, A.; Futatsuya, F.; Kumura, A. Effects of Epibrassinolide and Abscisic Acid on Sorghum Plants Growing under Soil Water Deficit. I. Effects on Growth and Survival. Jpn. J. Crop Sci. 1994, 63, 671–675. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Youn, J.-H.; Roh, J.; Kim, J.-M.; Kim, S.-K.; Kim, T.-W. Brassinosteroids Enhance Salicylic Acid-Mediated Immune Responses by Inhibiting BIN2 Phosphorylation of Clade I TGA Transcription Factors in Arabidopsis. Mol. Plant 2022, 15, 991–1007. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, L.; Höfte, M.; de Vleesschauwer, D. Connecting Growth and Defense: The Emerging Roles of Brassinosteroids and Gibberellins in Plant Innate Immunity. Mol. Plant 2014, 7, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Michereff, S.J. Fundamentos de Fitopatologia; UFRPE: Recife, Brazil, 2001; pp. 1–145. [Google Scholar]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal, 5th ed.; Artemed: Porto Alegre, Brazil, 2013. [Google Scholar]
- Agrios, G. Plant Pathology: Fifth Edition; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–922. [Google Scholar] [CrossRef]
- Liu, J.-Z.; Lam, H.-M. Signal Transduction Pathways in Plants for Resistance against Pathogens. Int. J. Mol. Sci. 2019, 20, 2335. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.-W.; Ma, W. Phytohormone Pathways as Targets of Pathogens to Facilitate Infection. Plant Mol. Biol. 2016, 91, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, T.; Thon, M.R.; Strauss, J. The Role of Plant Hormones in the Interaction of Colletotrichum Species with Their Host Plants. Int. J. Mol. Sci. 2021, 22, 12454. [Google Scholar] [CrossRef] [PubMed]
- Bari, R.; Jones, J.D.G. Role of Plant Hormones in Plant Defence Responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Sudheeran, P.K.; Sela, N.; Carmeli-Weissberg, M.; Ovadia, R.; Panda, S.; Feygenberg, O.; Maurer, D.; Oren-Shamir, M.; Aharoni, A.; Alkan, N. Induced Defense Response in Red Mango Fruit against Colletotrichum Gloeosporioides. Hortic. Res. 2021, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Krishna, P. Brassinosteroid-Mediated Stress Responses. J. Plant Growth Regul. 2003, 22, 289–297. [Google Scholar] [CrossRef] [PubMed]
- De Vleesschauwer, D.; Van Buyten, E.; Satoh, K.; Balidion, J.; Mauleon, R.; Choi, I.-R.; Vera-Cruz, C.; Kikuchi, S.; Höfte, M. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice. Plant Physiol. 2012, 158, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
- Furio, R.N.; Albornoz, P.L.; Coll, Y.; Martínez Zamora, G.M.; Salazar, S.M.; Martos, G.G.; Díaz Ricci, J.C. Effect of Natural and Synthetic Brassinosteroids on Strawberry Immune Response against Colletotrichum Acutatum. Eur. J. Plant Pathol. 2019, 153, 167–181. [Google Scholar] [CrossRef]
- Liu, Q.; Xi, Z.; Gao, J.; Meng, Y.; Lin, S.; Zhang, Z. Effects of Exogenous 24-Epibrassinolide to Control Grey Mould and Maintain Postharvest Quality of Table Grapes. Int. J. Food Sci. Technol. 2016, 51, 1236–1243. [Google Scholar] [CrossRef]
- Naeemi, M.H.; Kalateh Jari, S.; Zarinnia, V.; Fatehi, F. Changes in Physio-Biochemical Status of Cut of Rose (Rosa Hybrida L. Cv. Samurai) Flowers under Methyl Jasmonate, Brassinosteroid, and Fungal Elicitor to Control Gray Mold. Sci. Hortic. 2022, 306, 111402. [Google Scholar] [CrossRef]
- Zhang, L.; Ahammed, G.J.; Li, X.; Wei, J.P.; Li, Y.; Yan, P.; Zhang, L.P.; Han, W.Y. Exogenous Brassinosteroid Enhances Plant Defense Against Colletotrichum Gloeosporioides by Activating Phenylpropanoid Pathway in Camellia sinensis L. J. Plant Growth Regul. 2018, 37, 1235–1243. [Google Scholar] [CrossRef]
- Li, X.; Ahammed, G.J.; Li, Z.; Tang, M.; Yan, P.; Han, W. Decreased Biosynthesis of Jasmonic Acid via Lipoxygenase Pathway Compromised Caffeine-Induced Resistance to Colletotrichum Gloeosporioides Under Elevated CO2 in Tea Seedlings. Phytopathology 2016, 106, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Hu, C.; Xue, Y.; Gu, J.; He, J.; Ren, Y. 24-Epibrassinolide Enhances Mango Resistance to Colletotrichum Gloeosporioides via Activating Multiple Defense Response. Sci. Hortic. 2022, 303, 111249. [Google Scholar] [CrossRef]
- Manzhalesava, N.; Litvinovskaya, R.P.; Poljanskaja, S.N.; Khripach, V.A. The Effect of Phytohormonal Steroids in Combination with Succinic Acid on the Resistance of Hordeum Vulgare L. to Helminthosporium Teres Sacc. Open Agric. J. 2022, 16, e187433152207130. [Google Scholar] [CrossRef]
- Nahar, K.; Kyndt, T.; Hause, B.; Höfte, M.; Gheysen, G. Brassinosteroids Suppress Rice Defense against Root-Knot Nematodes through Antagonism with the Jasmonate Pathway. Mol. Plant-Microbe Interact. 2013, 26, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Xu, X.; Wang, F.; Wang, Y.; Xia, X.; Shi, K.; Zhou, Y.; Zhou, J.; Yu, J. Brassinosteroids Act as a Positive Regulator for Resistance against Root-Knot Nematode Involving Respiratory Burst Oxidase Homolog-Dependent Activation of MAPKs in Tomato. Plant Cell Environ. 2018, 41, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Prasad, B.D.; Liu, Q.; Grbic, V.; Sharpe, A.; Singh, S.P.; Krishna, P. Overexpression of the Brassinosteroid Biosynthetic Gene DWF4 in Brassica Napus Simultaneously Increases Seed Yield and Stress Tolerance. Sci. Rep. 2016, 6, 28298. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.L.; de Almeida, M.; Rossi, M.L.; Martinelli, A.P.; Litholdo Junior, C.G.; Figueira, A.; Rampelotti-Ferreira, F.T.; Vendramim, J.D.; Benedito, V.A.; Pereira Peres, L.E. Brassinosteroids Interact Negatively with Jasmonates in the Formation of Anti-Herbivory Traits in Tomato. J. Exp. Bot. 2009, 60, 4347–4361. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Liu, Y.; Ji, L.; Zhang, X.; He, J.; Huang, J.; Qiu, Z.; Liu, D.; Sun, Z.; Xu, T.; et al. Brassinosteroids Mediate Susceptibility to Brown Planthopper by Integrating with the Salicylic Acid and Jasmonic Acid Pathways in Rice. J. Exp. Bot. 2018, 69, 4433–4442. [Google Scholar] [CrossRef] [PubMed]
- Abe, H. Advances in Brassinosteroid Research and Prospects for Its Agricultural Application. J. Pestic. Sci. 1989, 55, 10–14. [Google Scholar]
- Fujita, F. Prospects for Brassinolide Utilization in Agriculture. Chem. Biol. 1985, 23, 715–725. [Google Scholar]
- Takeuchi, T. Application of Brassinosteroids in Agriculture in Japan. In Proceedings of the 19th Annual Meeting of Plant Growth Regulator Society of America, Washington, DC, USA, 6–7 August 1992; pp. 343–352. [Google Scholar]
- Bhanu, A.N. Brassinosteroids: Relevance in Biological Activities of Plants and Agriculture. J. Plant Sci. Res. 2019, 35, 1–15. [Google Scholar] [CrossRef]
- Garciglia, R.S.; Rodríguez, M.A.C.; del Río, R.E. Uso de Brasinoesteroides y Sus Análogos En La Agricultura. Biológicas 2008, 18–27. [Google Scholar]
- Vargas-Vázquez, M.L.P.; Irizar-Garza, M.B.G. Efecto Del Brasinoesteroide y Densidad de Población En La Acumulación de Biomasa y Rendimiento de Ayocote (Phaseolus Coccineus L.). Rev. Chapingo Ser. Hortic. 2005, XI, 269–272. [Google Scholar] [CrossRef]
- Torres-Ruiz, B.L.; Espinosa-Calderón, A.; Mendoza-Rodríguez, M.; de la Rodríguez, O.J.L.; Irizar Garza, M.B.; Sahagún-Castellanos Ruiz, J. Efecto de Brasinoesteroides En Híbridos de Maíz Androestériles y Fértiles. Agron. Mesoam. 2006, 18, 155. [Google Scholar] [CrossRef]
- Serna, M.; Hernández, F.; Coll, F.; Amorós, A. Brassinosteroid Analogues Effect on Yield and Quality Parameters of Field-Grown Lettuce (Lactuca Sativa L.). Sci. Hortic. 2012, 143, 29–37. [Google Scholar] [CrossRef]
- He, Y.; Li, J.; Ban, Q.; Han, S.; Rao, J. Role of Brassinosteroids in Persimmon (Diospyros Kaki L.) Fruit Ripening. J. Agric. Food Chem. 2018, 66, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
- Babalık, Z.; Demirci, T.; Aşcı, Ö.A.; Baydar, N.G. Brassinosteroids Modify Yield, Quality, and Antioxidant Components in Grapes (Vitis Vinifera Cv. Alphonse Lavallée). J. Plant Growth Regul. 2020, 39, 147–156. [Google Scholar] [CrossRef]
- Perez-Borroto, L.S.; Guzzo, M.C.; Posada, G.; Peña Malavera, A.N.; Castagnaro, A.P.; Gonzalez-Olmedo, J.L.; Coll-García, Y.; Pardo, E.M. A Brassinosteroid Functional Analogue Increases Soybean Drought Resilience. Sci. Rep. 2022, 12, 11294. [Google Scholar] [CrossRef] [PubMed]
- Zahedipour-Sheshglani, P.; Asghari, M. Impact of Foliar Spray with 24-Epibrassinolide on Yield, Quality, Ripening Physiology and Productivity of the Strawberry. Sci. Hortic. 2020, 268, 109376. [Google Scholar] [CrossRef]
- Choudhary, S.P.; Yu, J.-Q.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Benefits of Brassinosteroid Crosstalk. Trends Plant Sci. 2012, 17, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Khripach, V.A.; Zhabinskii, V.N.; Khripach, N.B. New Practical Aspects of Brassinosteroids and Results of Their Ten-Year Agricultural Use in Russia and Belarus. In Brassinosteroids; Springer: Dordrecht, The Netherlands, 2003; pp. 189–230. [Google Scholar]
- Zhu, T.; Tan, W.-R.; Deng, X.-G.; Zheng, T.; Zhang, D.-W.; Lin, H.-H. Effects of Brassinosteroids on Quality Attributes and Ethylene Synthesis in Postharvest Tomato Fruit. Postharvest Biol. Technol. 2015, 100, 196–204. [Google Scholar] [CrossRef]
- Chai, Y.M.; Zhang, Q.; Tian, L.; Li, C.L.; Xing, Y.; Qin, L.; Shen, Y.Y. Brassinosteroid Is Involved in Strawberry Fruit Ripening. Plant Growth Regul. 2013, 69, 63–69. [Google Scholar] [CrossRef]
Stress Conditions | Brassinosteroids and Concentration | Plant Species | BRs Application | Benefits Induced by BRs |
---|---|---|---|---|
Al [0–10 mM] | 24-epiBL/28-homoBL [10−8 M] | Vigna radiata | Leaf | Biochemical [27] |
Cd | EpiBL | Solanum nigrum | Biochemical [28] | |
Cd [0–12 mg.kg−1] | 24-epiBL/28-homoBL [10−8 M] | Lycopersicon esculentum | Leaf | Physiological and biochemical [29] |
Cd [1.0 mM] | 24-epiBL [5 µM] | Phaseolus vulgaris | Leaf | Morphological and biochemical [30] |
Cd [1.0 mM] | 24-epiBL/28-homoBL [3.0 µM] | Raphanus sativus | Seed | Biochemical [31] |
Cd [300 µM] | 24-epiBL [100 nM] | Brassica Napus | Culture medium | Physiological [32] |
Cd [1.0 μM] | BRs [0.01–10 μM] | Oryza sativa | Nutrient solution | Molecular [33] |
Cu [100 mg.kg−1] | 24-epiBL [0.01 μM] | Cucumis sativus | Leaf | Morphological, physiological and biochemical [34] |
Cu [50–150 mg.kg−1] | 28-HomoBL [10−10–10−6 M] | Brassica juncea | Seed | Morphological, physiological and biochemical [35] |
Fe [250–6250 μM] | 24-epiBL [0–10 nM] | Oryza sativa | Root | Physiological [36] |
Ni [0.0–0.6 mM] | 24-epiBL [10−11–10−7 M] | Brassica juncea | Leaf | Biochemical [37] |
Ni [50–100 μM] | 28-homoBL [0.01 µM] | Triticum aestivum | Leaf | Morphological, physiological and biochemical [38] |
Pb [0–200 μM] | 24-epiBL [0–100 nM] | Oryza sativa | Leaf | Anatomical and biochemical [39] |
Pb [3 mM] | 24-epiBL [10−10–10−6 M] | Brassica juncea | Seed | Biochemical [40] |
Zn [0.0–2.0 mM] | 24-epiBL [10−10–10−6 M] | Brassica juncea | Seed | Morphological and biochemical [41] |
Zn [1–10 mM] | 28-homoBL [0.5–2 μM] | Raphanus sativus | Seed | Biochemical [42,43] |
Drought | EpiBL/HomoBL [1–5 µM] | Phaseolus vulgaris | Leaf | Morpho-agronomical [44] |
Drought | 24-epiBL [0.01 mg.L−1] | Capsicum annuum | Leaf | Physiological [45] |
Drought | 24-epiBL [1 μg.L−1] | Cucumis sativus | Root | Physiological and biochemical [46] |
Drought | 24-epiBL [0.01–1 µM] | Lycopersicon esculentum | Leaf | Biochemical [47] |
Drought | 24-epiBL/28-homoBL [0.5–2 µM] | Raphanus sativus | Seed | Biochemical [43] |
Drought | 24-epiBL [1.0 μM] | Capsicum annum | Leaf | Physiological and biochemical [48] |
Drought | 24-epiBL [0.1 μM] | Carthamus tinctorius | Leaf | Biochemical [49] |
Drought | 24-epiBL [0–100 nM] | Glycine max | Seed | Morphological and biochemical [50] |
Drought | 24-epiBL [0.4 μM] | Triticum aestivum | Seed | Biochemical, hormonal and anatomical [51] |
Drought | 24-epiBL [0.10 μM] | Vitis vinifera | Leaf | Hormonal and biochemical [52] |
Drought | 28-homoBL [0.01 μM] | Brassica juncea | Leaf | Biochemical [34] |
Drought | BL [1 mg.L−1] | Arachis hypogaea | Seed | Biochemical [53] |
Drought | BL [0.1 mg.L−1] | Glycine max | Leaf | Biochemical and physiological [54] |
Drought | BL [0–0.4 mg.L−1] | Robinia pseudoacacia | Leaf | Morphological and biochemical [55] |
Drought | BL [0–0.4mg.L−1] | Xanthoceras sorbifolia | Root | Morphological [56] |
Drought | Biobras16™ [16–0.1 mg. L−1] | Carica papaya | Leaf | Morphological and biochemical [57] |
Drought | BR analogue [10% w/v] | Passiflora edulis f. edulis | Substrate | Morphological [58] |
Flooding | BL [1.0 mM] | Zea mays | Leaf | Biochemical and physiological [59] |
High temperature | 24-epiBL [0.2 mg.L−1] | Camellia sinensis | Leaf | Biochemical [60] |
High temperature | BL [10–6 M] | Brassica Napus | Leaf | Hormonal [61] |
High temperature | 24-epiBL [0.01–1.0 mg.L−1] | Lycopersicon esculentum | Leaf | Physiological and biochemical [62] |
Low temperature | BL [1–9 μM] | Solanum lycopersicum | Fruit | Biochemical [63] |
Low temperature | 24-epiBL [0.1 μM] | Cucumis sativus | Leaf | Biochemical, physiological and morphological [64] |
Low temperature | 28-homoBL [10–8–10–6 μM] | Cucumis sativus | Leaf | Biochemical, physiological and morphological [35] |
Low temperature | 24-epiBL [10 μM] | Vigna radiata | Leaf | Biochemical and anatomical [65] |
Low temperature | 24-epiBL [1.00 μM] | Brassica Napus | Leaf | Biochemical [66] |
Low temperature | 24-epiBL [0.1 μM] | Capsicum annuum | Leaf | Biochemical, physiological and nutritional [37] |
Low temperature | 24-epiBL [0.5 μM] | Vitis vinifera | Seedling | Biochemical, physiological and molecular [67] |
NaCl | BRs [0–0.2 mg.L−1] | Cucumis sativus | Root and leaf | Biochemical [68] |
CaSO4 [5 t.ha−1] | BL [0–0.3 mg.L−1] | Trifolium alexandrinum | Leaf | Biochemical and morpho-agronomical [69] |
Imidacloprid [0.01–0.02%] | 24-epiBL [10−11–10−7 M] | Oryza sativa | Seed | Biochemical [70,71] |
NaCl | 24-epiBL | Capsicum annuum | Biochemical and nutritional [71] | |
NaCl [0–150mM] | 24-epiBL [0–0.2 mg.L−1] | Lycopersicon esculentum | Biochemical [72] | |
NaCl [0–150 mM] | 24-epiBL [0–2.5 mg.L−1] | Mentha piperita | Leaf | Biochemical and morphological [73] |
NaCl [0–250mM] | 24-epiBL [0–50 nM] | Eucalyptus urophylla | Leaf | Physiological and nutritional [74] |
NaCl [0.3–0.4 M] | 24-epiBL [3 μM] | Hordeum vulgare | Seed | Anatomical and genetics [75] |
NaCl [0–100 mM] | 24-epiBL [0–3 μM] | Lactuca sativa | Seed and leaf | Morphological, anatomical and nutritional [76] |
NaCl [0–100 mM] | 24-epiBL [10−4−1 µM]; 28-homoBL [10−4–1 µM] | Zea mays | Seed | Biochemical and nutritional [77] |
NaCl [0–100 mM] | BL [0.25 mg.L−1] | Zea mays | Seed and leaf | Biochemical [78] |
NaCl [100 mM] | 24-epiBL [0–100 mM] | Glycine max | Seed | Nutritional [79] |
NaCl [13.6 dS/m] | BL [5 µM] | Medicago sativa | Seed | Morphological and biochemical [80] |
NaCl [150 mM] | 24-epiBL [0.01 μM] | Cucumis sativus | Leaf | Morphological, physiological and biochemical [35] |
NaCl [150 mM] | 24-epiBL [0.013–0.038 mg.L−1] | Triticum aestivum | Leaf | Morphological, physiological and biochemical [81] |
NaCl [2%] | 24-epiBL [0.4 µM] | Triticum aestivum | Seed | Hormonal [82] |
NaCl [200 mM] | BL [0.005–0.05 mg.L−1] | Cucumis sativus | Root and leaf | Biochemical, physiological and morphological [83] |
NaCl [250 mM] | 24-epiBL [0–10 µM] | Cucumis sativus | Seed | Biochemical and molecular [84] |
NaCl [25–100 mM] | 28-homoBL [10−11–10−7 M] | Zea mays | Seed | Morphological and biochemical [85] |
NaCl [25–150 mM] | BL [0.05 mg.L−1] | Vigna unguiculata | Leaf | Biochemical [86] |
NaCl [35 mM] | 24-epiBL [0–1 μM] | Fragaria x ananassa | Leaf | Nutritional, physiological and biochemical [87] |
NaCl [400 mM] | 24-epiBL [10−7–0.5×10−9 M] | Cajanus cajan | Substrate | Biochemical, physiological, anatomical and nutritional [88] |
NaCl [50–150 mM] | 28-HomoBL [10−10–10−6 M] | Brassica juncea | Leaf | Morpho-agronomical [89] |
NaCl [75–150 mM] | 24-epiBL [1–100 nM] | Pisum sativum | Morphological and biochemical [90] | |
NaCl [90 mM] | 24-epiBL [0–0.2 mg.L−1] | Solanum melongena | Leaf | Morphological, biochemical and nutritional [91] |
NaCl, CaCl2, MgSO4 [4.7–9.4 dS/m] | 24-epiBL [0–0.1 mg.L−1] | Triticum aestivum | Leaf | Nutritional and biochemical [92] |
NaCl [500 mM] | 24-epiBL [0–2.0 μM] | Kandelia obovata | Root | Biochemical [93] |
Commercial Name | Brassinosteroids/ Analogue | Concentration | Effects |
---|---|---|---|
1 Brassinolide | Brassinolide | 0.5–1.0 mg L−1 | Higher rice yield (10%) |
2 Biobras-16® | Spirostanic analogue of castasterone | 0.4 mg L−1 | Increased seed yield (68%) |
3 CIDEF-4 | (80% steroid compound) | 0.3 mg L−1 | Higher yield in fertile maize hybrids (2.5 times more) |
4 DI-31 (BB16) | Spirostane BR analogues | 30 mg ha−1 | Increase in lettuce production (25.93%) |
4 DI-100 | Spirostane BR analogues | 30 mg ha−1 | Increase in lettuce production (31.08%) |
5 Brassinazole | Triazole compound | 5.0 µM | Increased firmness and cellulose content in persimmon fruits |
6 24-eBL (Phyto Technology Laboratories, US). | 24-epibrassinolide | 0.2 mg L−1 | Increased yield per vine, berry weight, cluster weight and specific gravity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.P.S.d.; Alencar, A.A.d.S.; Sudré, C.P.; Araújo, M.d.S.B.d.; Lobato, A.K.d.S. Brassinosteroids: Relevant Evidence Related to Mitigation of Abiotic and Biotic Stresses in Plants. Agronomy 2024, 14, 840. https://doi.org/10.3390/agronomy14040840
Silva APSd, Alencar AAdS, Sudré CP, Araújo MdSBd, Lobato AKdS. Brassinosteroids: Relevant Evidence Related to Mitigation of Abiotic and Biotic Stresses in Plants. Agronomy. 2024; 14(4):840. https://doi.org/10.3390/agronomy14040840
Chicago/Turabian StyleSilva, Aminthia Pombo Sudré da, Antônio André da Silva Alencar, Cláudia Pombo Sudré, Maria do Socorro Bezerra de Araújo, and Allan Klynger da Silva Lobato. 2024. "Brassinosteroids: Relevant Evidence Related to Mitigation of Abiotic and Biotic Stresses in Plants" Agronomy 14, no. 4: 840. https://doi.org/10.3390/agronomy14040840
APA StyleSilva, A. P. S. d., Alencar, A. A. d. S., Sudré, C. P., Araújo, M. d. S. B. d., & Lobato, A. K. d. S. (2024). Brassinosteroids: Relevant Evidence Related to Mitigation of Abiotic and Biotic Stresses in Plants. Agronomy, 14(4), 840. https://doi.org/10.3390/agronomy14040840