Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming
Abstract
:1. Introduction
2. Methods
2.1. Calculation Method of Subgrade Thawing Settlement
2.2. Prediction Methods for GMAT and ALT under Climate Warming
3. Results
3.1. Prediction of Permafrost Thawing Settlement after 20 and 50 Years
3.1.1. Distribution of Subgrade Thawing Depth after 20 and 50 Years
3.1.2. Distribution of Subgrade Thawing Settlement after 20 and 50 Years
3.2. Risk Zoning of Permafrost Subgrade Thawing Settlement after 20 and 50 Years
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, B.; Zhang, T.J.; Wu, Q.B.; Sheng, Y.; Zhao, L.; Zou, D.F. Permafrost zonation index map and statistics over the Qinghai-Tibet Plateau based on field evidence. Permafr. Periglac. Process. J. 2019, 30, 178–194. [Google Scholar] [CrossRef]
- Chen, J.; Dang, H.M.; Mei, Q.H. Settlement disease of pile foundation of dry bridge in perennial permafrost area of Qinghai-Tibet Railway and its management revelation. J. Glaciol. Geocryol. 2023, 45, 1327–1334. [Google Scholar]
- Wang, Z.; Zhang, H.J.; Peng, H. Engineering capacity analysis and ease of construction zoning evaluation of Qinghai-Tibet engineering corridor. Highway 2023, 68, 304–312. [Google Scholar]
- Cui, F.Q.; Zhu, Y.; Liu, X.N. Characteristics and Influence Rules of Roadside Ponding along the Qinghai–Tibet Highway. Water 2024, 16, 954. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Niu, F.J.; Wang, J.C. Evaluation of Damage Probability of Railway Embankments in Permafrost Regions in Qinghai-Tibet Plateau. Eng. Geol. 2021, 284, 106027. [Google Scholar] [CrossRef]
- Gao, X.J.; Shi, Y.; Zhang, D.F.; Giorgi, F. Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin. Sci. Bull. 2012, 57, 1188–1195. [Google Scholar] [CrossRef]
- Cheng, G.D.; He, P. Linear engineering construction in permafrost areas. J. Glaciol. Geocryol. 2001, 23, 213–217. [Google Scholar]
- Wang, Z.J. Permafrost Engineering Problems in the Construction of the Qinghai-Tibet Railway. Chin. Railw. 2002, 10, 31–37. [Google Scholar] [CrossRef]
- O’Neill, H.B.; Smith, S.L.; Burn, C.R. Widespread permafrost degradation and thaw subsidence in northwest Canada. J. Geophys. Res. Earth Surf. 2023, 128, e2023JF007262. [Google Scholar] [CrossRef]
- Deng, X.; Pan, S.; Wang, Z. Application of the Darcy-Stefan model to investigate the thawing subsidence around the wellbore in the permafrost region. Appl. Therm. Eng. 2019, 156, 392–401. [Google Scholar] [CrossRef]
- Chen, W.X.; Guo, J.L. Field monitoring of railroad foundation settlement in permafrost zone. Subgrade Eng. 2022, 40, 24–58. [Google Scholar] [CrossRef]
- Guo, J.L. A prediction model of subgrade settlement of Qinghai-Tibet Railway based on gray BP neural network. Chin. Railw. 2022, 30, 63–68. [Google Scholar] [CrossRef]
- Wang, S.L. Characteristics of Permafrost Degradation and Settlement Prediction of the Foundation of Beihei Highway. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Zaretskii, Y.K. Scientific Legacy of NA Tsytovich. Soil Mech. Found. Eng. 2000, 37, 131–139. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, L.; Hu, G.J. Numerical Simulation of Thaw Settlement and Permafrost Changes at Three Sites Along the Qinghai-Tibet Engineering Corridor in a Warming Climate. Geophys. Res. Lett. 2022, 49, e2021GL097334. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.H.; Zhu, X.F. Risk Assessment of Potential Thaw Settlement Hazard in the Permafrost Regions of Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 776, 145855. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.J.; Riseborough, W.D. Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Glob. Planet. Chang. 2007, 60, 443–456. [Google Scholar] [CrossRef]
- Alexander, N.F. A route to understanding the variability in permafrost distribution under climate change. Adv. Clim. Chang. Res. 2023, 14, 164–165. [Google Scholar]
- Huang, S.; Ding, Q.; Chen, K.Z. Changes in Near Surface Permafrost Temperature and Active Layer Thickness in Northeast China in 1961—2020 Based on GIPL Model. Cold Reg. Sci. Technol. 2023, 206, 103709. [Google Scholar] [CrossRef]
- Hong, E.; Perkins, R.; Trainor, S. Thaw Settlement Hazard of Permafrost Related to Climate Warming in Alaska. Arctic 2014, 67, 93–103. [Google Scholar] [CrossRef]
- Ruan, G.F.; Zhang, J.M.; Chai, M.T. Study on the risk zoning of thaw and subsidence disaster in the Qinghai-Tibet engineering corridor under climate change scenario. J. Glaciol. Geocryol. 2014, 36, 811–817. [Google Scholar]
- Zhao, Y. Assessment of Thawing Infiltration and Ground Subsidence of High-Temperature Permafrost under Long-Term Climate Change. Master’s Thesis, Heilongjiang University, Harbin, China, 2021. [Google Scholar] [CrossRef]
- Rodenhizer, H.; Ledman, J.; Mauritz, M. Carbon thaw rate doubles when accounting for subsidence in a permafrost warming experiment. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005528. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wu, Q.B. Predicted changes in active permafrost layer thickness on the Tibetan Plateau under climate change scenarios. J. Glaciol. Geocryol. 2012, 34, 505–511. [Google Scholar]
- Xu, X.M.; Wu, Q.B. Characterization of changes in the thickness of the active layer of permafrost at the source of the Sanjiang River. J. Glaciol. Geocryol. 2024, 46, 1–15. [Google Scholar]
- Nan, Z.T.; Li, S.X.; Cheng, G.D. Scenarios of permafrost changes on the Qinghai-Tibetan Plateau in the next 50 and 100 years. Sci. China (Ser. D Earth Sci.) 2004, 34, 528–534. [Google Scholar]
- Wei, D.; Zhao, T.H.; Mu, Y.H. Study on the geothermal process of perennial permafrost and thaw zone in the Tuotuohe Basin under the background of climate warming. J. Glaciol. Geocryol. 2022, 44, 427–436. [Google Scholar]
- Bai, R.Q.; Lai, Y.M.; Zhang, M.Y. Investigating the thermo-hydro-mechanical behavior of loess subjected to freeze–thaw cycles. Acta Geotech. 2024, 19, 1–14. [Google Scholar] [CrossRef]
- Bai, R.Q.; Lai, Y.M.; Pei, W.S. Study on the frost heave behavior of the freezing unsaturated silty clay. Cold Reg. Sci. Technol. 2022, 197, 103525. [Google Scholar] [CrossRef]
- Zhang, J.M. Research on the Stability of Frozen Soil Subgrades in the Qinghai Tibet Plateau and the Classification of Permafrost in Highway Engineering. Doctoral Thesis, Institute of Environment and Engineering in Cold and Dry Regions, Chinese Academy of Sciences, Beijing, China, 2004. [Google Scholar]
- Liu, Z.Y.; Zhu, Y.; Chen, J.B.; Cui, F.Q. Risk Zoning of Permafrost Thaw Settlement in the Qinghai–Tibet Engineering Corridor. Remote Sens. 2023, 15, 3913. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Cui, F.Q.; Chen, J.B. Study on the permafrost heat transfer mechanism and reasonable interval of separate embankment for the Qinghai-Tibet expressway. Cold Reg. Sci. Technol. 2019, 170, 102952. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; He, Z.H.; Luo, F. Evaluating the performance of a novel ventilated embankment structure in warm permafrost regions by numerical simulation. Cold Reg. Sci. Technol. 2023, 209, 103805. [Google Scholar] [CrossRef]
- Taylor, G.S.; Luthin, J.N. A model for Coupled Heat and Moisture Transfer during Soil Freezing. Can. Geotech. J. 1978, 15, 548–555. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Chen, J.B.; Jin, L.; Zhang, Y.J.; Lei, C. Roadbed temperature study based on earth-atmosphere coupled system in permafrost regions of the Qinghai-Tibet Plateau. Cold Reg. Sci. Technol. 2013, 86, 167–176. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wang, S.W.; Jiang, Z.Y.; Dong, Y.H.; Chen, J.B.; Cui, F.Q. Study on the coupling thermal effect of thermokarst lake and high sunny slope on permafrost embankment. Transp. Geotech. 2023, 41, 101024. [Google Scholar] [CrossRef]
Ice Content | Ice-Poor | Icy Soil | Ice-Rich | Ice-Saturated | Ice Layer with Soil Inclusions |
---|---|---|---|---|---|
Thaw settlement coefficient | 0.01 | 0.03 | 0.065 | 0.175 | 0.25 |
T0/°C | −0.5 | −1.0 | −1.5 | −2.0 | −2.5 | −3.0 | −3.5 | −4.5 | −5.5 |
---|---|---|---|---|---|---|---|---|---|
20 years/m | 0.76 | 0.54 | 0.44 | 0.35 | 0.31 | 0.24 | 0.18 | 0.13 | 0.09 |
50 years/m | 1.60 | 1.35 | 1.13 | 0.92 | 0.81 | 0.69 | 0.58 | 0.48 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Liu, X.; Chen, J.; Zhai, Y.; Zhu, Y.; Cui, F. Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming. Atmosphere 2024, 15, 730. https://doi.org/10.3390/atmos15060730
Liu J, Liu X, Chen J, Zhai Y, Zhu Y, Cui F. Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming. Atmosphere. 2024; 15(6):730. https://doi.org/10.3390/atmos15060730
Chicago/Turabian StyleLiu, Jine, Xiaona Liu, Jianbing Chen, Yue Zhai, Yu Zhu, and Fuqing Cui. 2024. "Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming" Atmosphere 15, no. 6: 730. https://doi.org/10.3390/atmos15060730
APA StyleLiu, J., Liu, X., Chen, J., Zhai, Y., Zhu, Y., & Cui, F. (2024). Prediction of Permafrost Subgrade Thawing Settlement in the Qinghai–Tibet Engineering Corridor under Climate Warming. Atmosphere, 15(6), 730. https://doi.org/10.3390/atmos15060730