Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model
Abstract
:1. Introduction
2. The HST Model for the Settlement of CFRDs
3. VMD-LSTM-SVR Model for the Settlement Prediction of CFRDs
3.1. Improved VMD Algorithm Based on HHO Algorithm
3.1.1. HHO Algorithm
3.1.2. Improved VMD Algorithm
3.2. HHO-LSTM-SVR Prediction Model for the Settlement of CFRD
3.2.1. LSTM Network
3.2.2. SVR Algorithm
3.2.3. HHO-LSTM-SVR Model
3.3. HHO-VMD-LSTM-SVR Model Considering Factor Mining for Settlement Prediction of CFRD
4. Project Overview
5. Results and Discussion
5.1. Decomposition of Settlement Sequences Based on VMD Method
5.2. Major Factor Mining Based on PLS Method
5.3. Fitting and Prediction Results
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, C.; Gu, C.; Meng, Z.; Hu, Y. Integrating the finite element method with a data-driven approach for dam displacement prediction. Adv. Civ. Eng. 2020, 2020, 4961963. [Google Scholar] [CrossRef]
- Shao, C.; Gu, C.; Yang, M.; Xu, Y.; Su, H. A novel model of dam displacement based on panel data. Struct. Control Health Monit. 2018, 25, e2037. [Google Scholar] [CrossRef]
- Qin, X.; Gu, C.; Shao, C.; Chen, Y.; Luis, V.; Zhao, E. Safety evaluation with observational data and numerical analysis of Langyashan reinforced concrete face rockfill dam. Bull. Eng. Geol. Environ. 2020, 79, 3497–3515. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J. Large-scale Apparatus for Monotonic and Cyclic Soil-Structure Interface Test. Geotech. Test. J. 2006, 29, 401–408. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, Y.; Zheng, S.; Wang, X.; Liu, D.; Zhang, J.; Shao, Y. Abnormal Monitoring Data Detection Based on Matrix Manipulation and the Cuckoo Search Algorithm. Mathematics 2024, 12, 1345. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, D.; Cao, E.; Wu, X.; Chen, Z. Cracking risk analysis of face slabs in concrete face rockfill dams during the operation period. Structures. 2022, 40, 621–632. [Google Scholar] [CrossRef]
- Jia, J.; Xu, Y.; Hao, J.; Zhang, L. Localizing and quantifying leakage through CFRDs. J. Geotech. Geoenviron. Eng. 2016, 142, 06016007. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L. Three-dimensional analysis of water infiltration into the Gouhou rockfill dam using saturated unsaturated seepage theory. Can. Geotech. J. 2006, 43, 449–461. [Google Scholar] [CrossRef]
- Ma, H.; Chi, F. Technical progress on researches for the safety of high concrete-faced rockfill dams. Engineering 2016, 2, 332–339. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Shi, R. Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer. Comput. Geotech. 2004, 31, 559–573. [Google Scholar] [CrossRef]
- Seo, M.; Ha, I.; Kim, Y.; Olson, S. Behavior of concrete-faced rockfill dams during initial impoundment. J. Geotech. Geoenviron. Eng. 2009, 135, 1070–1081. [Google Scholar] [CrossRef]
- Won, M.; Kim, Y. A case study on the post-construction deformation of concrete face rockfill dams. Can. Geotech. J. 2008, 45, 845–852. [Google Scholar] [CrossRef]
- Bodtman, W.; Wyatt, J. Closure to “Design and Performance of Shiroro Rockfill Dam” by William L. Bodtman and John D. Wyatt. J. Geotech. Eng. 1987, 113, 1164–1171. [Google Scholar] [CrossRef]
- Wen, L.; Li, Y.; Zhao, W.; Cao, W.; Zhang, H. Predicting the deformation behaviour of concrete face rockfill dams by combining support vector machine and AdaBoost ensemble algorithm. Comput. Geotech. 2023, 161, 105611. [Google Scholar] [CrossRef]
- Wen, L.; Li, Y.; Chai, J. Multiple nonlinear regression models for predicting deformation behavior of concrete-face rockfill dams. Int. J. Geomech. 2021, 21, 04020253. [Google Scholar] [CrossRef]
- Wang, P.; Song, W. Analysis on the measured settlement and prediction modeling of statistic settlement of Shuibuya CFRD. J. Hydroelectr. Eng. 2009, 28, 81–86. [Google Scholar]
- Chen, Y.; Gu, C.; Shao, C.; Qin, X. Parameter sensitivity and inversion analysis for a concrete face rockfill dam based on CS-BPNN. Adv. Civ. Eng. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Shao, C.; Zheng, S.; Gu, C.; Hu, Y.; Qin, X. A novel outlier detection method for monitoring data in dam engineering. Expert Syst. Appl. 2022, 193, 116476. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, C.; Meng, Z.; Shao, C. Improve the model stability of Dam’s displacement prediction using a numerical-statistical combined model. IEEE Access 2020, 8, 147482–147493. [Google Scholar] [CrossRef]
- Shao, C.; Gu, C.; Meng, Z.; Hu, Y. A Data-Driven Approach Based on Multivariate Copulas for Quantitative Risk Assessment of Concrete Dam. J. Mar. Sci. Eng. 2019, 7, 353. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, C.; Gu, C.; Meng, Z. Concrete Dam Displacement Prediction Based on an ISODATA-GMM Clustering and Random Coefficient Model. Water 2019, 11, 714. [Google Scholar] [CrossRef]
- Behnia, D.; Ahangari, K.; Noorzad, A.; Moeinossadat, S.R. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods. J. Zhejiang Univ.–Sci. A Appl. Phys. Eng. 2013, 14, 58–71. [Google Scholar] [CrossRef]
- Zheng, S.; Gu, C.; Shao, C.; Hu, Y.; Xu, Y.; Huang, X. A Novel Prediction Model for Seawall Deformation Based on CPSO-WNN-LSTM. Mathematics 2023, 11, 3752. [Google Scholar] [CrossRef]
- Su, H.; Chen, J.; Wen, Z.; Wang, F. Wavelet-fractal diagnosis model and its criterion for concrete dam crack status. Trans. Inst. Meas. Control 2018, 40, 1846–1853. [Google Scholar] [CrossRef]
- Kao, C.; Loh, C. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural networkbased approaches. Struct. Control Health Monit. 2011, 20, 282–303. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B. Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model. Comput. Geotech. 2008, 35, 313–322. [Google Scholar] [CrossRef]
- Hamzic, A.; Avdagic, Z. Multilevel prediction of missing time series dam displacements data based on artificial neural networks voting evaluation. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; Volume 2016, pp. 3–6. [Google Scholar]
- Smagulova, K.; James, A. A survey on LSTM memristive neural network architectures and applications. Eur. Phys. J. Spec. Top. 2019, 228, 2313–2324. [Google Scholar] [CrossRef]
- Hu, Y.; Gu, C.; Meng, Z.; Shao, C.; Min, Z. Prediction for the settlement of concrete face rockfill dams using optimized LSTM model via correlated monitoring data. Water 2022, 14, 2157. [Google Scholar] [CrossRef]
- Xu, Y.; Pan, P.; Xing, C. Dam settlement prediction based on random error extraction and multi-input LSTM network. J. Surv. Eng. 2022, 148, 04022006. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Q.; Zhang, Y.; Qiu, W. Prediction of long-term maximum settlement deformation of concrete face rockfill dams using hybrid support vector regression optimized with HHO algorithm. J. Civ. Struct. Health Monit. 2023, 13, 371–386. [Google Scholar] [CrossRef]
- Su, H.; Chen, Z.; Wen, Z. Performance improvement method of support vector machine based model monitoring dam safety. Struct. Control Health Monit. 2016, 23, 252–266. [Google Scholar] [CrossRef]
- Kang, F.; Liu, J.; Li, J.; Li, S. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct. Control Health Monit. 2017, 24, e1997. [Google Scholar] [CrossRef]
- Bui, K.; Bui, D.; Zou, J.; Doan, C.; Revhaug, I. A novel hybrid artificial intelligent approach based on neural fuzzy inference model and particle swarm optimization for horizontal displacement modeling of hydropower dam. Neural Comput. Appl. 2018, 29, 1495–1506. [Google Scholar] [CrossRef]
- Dai, B.; Gu, H.; Zhu, Y.; Chen, S.; Rodriguez, E.F. On the use of an improved artificial fish swarm algorithm-backpropagation neural network for predicting dam deformation behavior. Complexity 2020, 2020, 5463893. [Google Scholar] [CrossRef]
- Dai, B.; Gu, C.; Zhao, E.; Qin, X. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct. Control Health Monit. 2018, 25, e2170. [Google Scholar] [CrossRef]
- Ma, Z.; Zhu, W.; Han, S.; Li, Z. Concrete crack genesis mining based on fuzzy neural network. J. Hydraul. Eng. 2010, 37, 33–35. (In Chinese) [Google Scholar]
- Gu, H.; Yang, M.; Gu, C.; Huang, X. A factor mining model with optimized random forest for concrete dam deformation monitoring. Water Sci. Eng. 2021, 14, 330–336. [Google Scholar] [CrossRef]
- Cao, E.; Bao, T.; Gu, C.; Li, H.; Liu, Y.; Hu, S. A novel hybrid decomposition-ensemble prediction model for dam deformation. Appl. Sci. 2020, 10, 5700. [Google Scholar] [CrossRef]
- Yuan, R.; Su, C.; Cao, E.; Hu, S.; Zhang, H. Exploration of multi-scale reconstruction framework in dam deformation prediction. Appl. Sci. 2021, 11, 7334. [Google Scholar] [CrossRef]
- Huang, L.; Chen, S.; Li, C.; Si, Z.; Zhang, F. Application of Gaussian process regression model based on wavelet denoising in settlement prediction of CFRD. J. Water Resour. Water Eng. 2023, 34, 144–150. (In Chinese) [Google Scholar]
- Heidari, A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Yu, J.; Kim, C.; Rhee, S. The comparison of lately proposed Harris Hawks optimization and Jaya optimization in solving directional overcurrent relays coordination problem. Complexity 2020, 2020, 3807653. [Google Scholar] [CrossRef]
- Huang, Z.; Gu, C.; Peng, J.; Wu, Y.; Gu, H.; Shao, C.; Zheng, S.; Zhu, M. A statistical prediction model for sluice seepage based on MHHO-BiLSTM. Water 2024, 16, 191. [Google Scholar] [CrossRef]
- Wang, S.; Yang, B.; Chen, H.; Fang, W.; Yu, T. LSTM-Based Deformation Prediction Model of the Embankment Dam of the Danjiangkou Hydropower Station. Water 2022, 14, 2464. [Google Scholar] [CrossRef]
- Ranković, V.; Grujović, N.; Divac, D.; Milivojević, N. Development of support vector regression identification model for prediction of dam structural behavior. Struct Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- He, P.; Wu, W. Levy flight-improved grey wolf optimizer algorithm-based support vector regression model for dam deformation prediction. Front. Earth Sci. 2023, 11, 1122937. [Google Scholar] [CrossRef]
- Man, K.; Cao, Z.; Liu, X.; Song, Z.; Liu, R. Predicting TBM tunnelling parameters with HHO-LSTM-SVR model. Railw. Stand. Des. 2024, 69, 1–12. (In Chinese) [Google Scholar]
Decomposition Sequence | Mean Absolute Error | Number of the Optimal Input Influence Factors | Decomposition Sequence | Average Absolute Error | Number of the Optimal Input Influence Factors |
---|---|---|---|---|---|
IMF1 | 0.748 | 3 | IMF6 | 0.051 | 1 |
IMF2 | 0.520 | 4 | IMF7 | 0.059 | 4 |
IMF3 | 0.419 | 3 | IMF8 | 0.063 | 5 |
IMF4 | 0.157 | 5 | IMF9 | 0.061 | 6 |
IMF5 | 0.062 | 1 | - | - | - |
Monitoring Point | SR Model | HHO-LSTM Model | HHO-SVR Model | The Proposed Model |
---|---|---|---|---|
TR4-1 | 0.854 | 0.931 | 0.936 | 0.995 |
TR4-2 | 0.862 | 0.927 | 0.899 | 0.982 |
TR4-3 | 0.801 | 0.894 | 0.887 | 0.981 |
TR4-4 | 0.847 | 0.886 | 0.873 | 0.980 |
TR4-5 | 0.835 | 0.921 | 0.915 | 0.981 |
TR4-6 | 0.829 | 0.907 | 0.924 | 0.982 |
TR4-7 | 0.813 | 0.939 | 0.943 | 0.985 |
TR4-8 | 0.817 | 0.944 | 0.938 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Ren, T.; Lv, F.; Wang, Y.; Zheng, S. Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model. Water 2024, 16, 1643. https://doi.org/10.3390/w16121643
Zheng X, Ren T, Lv F, Wang Y, Zheng S. Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model. Water. 2024; 16(12):1643. https://doi.org/10.3390/w16121643
Chicago/Turabian StyleZheng, Xueqin, Taozhe Ren, Fengying Lv, Yu Wang, and Sen Zheng. 2024. "Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model" Water 16, no. 12: 1643. https://doi.org/10.3390/w16121643
APA StyleZheng, X., Ren, T., Lv, F., Wang, Y., & Zheng, S. (2024). Settlement Prediction for Concrete Face Rockfill Dams Considering Major Factor Mining Based on the HHO-VMD-LSTM-SVR Model. Water, 16(12), 1643. https://doi.org/10.3390/w16121643