Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging
Abstract
:1. Introduction
- (1)
- Neural Networks, especially autoencoders, are potentially superior in denoising CEST images compared to traditional denoising methods.
- (2)
- Given adequate training data, NNs can consistently detect and suppress noise more efficiently than analytical algorithms.
- (3)
- The models trained in this study can be applied effectively to real CEST data.
2. Materials and Methods
2.1. Study Design
2.2. Generation of In Silico Phantoms
2.3. Neural Network Architectural Design
2.4. Training
2.5. Analytical Denoising Techniques
2.6. In Silico Validation
2.7. MRI Validation
2.7.1. In Vitro Study
2.7.2. In Vivo Studies
2.8. Evaluation Metrics
3. Results
3.1. Neural Network Training Assessment
3.2. Digital Phantom (In Silico) Analysis
3.3. In Vitro Phantom Measurement
3.4. In Lumbar IVD Evaluation
4. Discussion
- (1)
- Resolution and Offset Frequency Limitations: Our study’s results were anchored on a resolution of 128 × 128 pixels and 41 offset frequencies. As discussed, the number of offset frequencies is intricately linked to the number of feasible features for PCA. Notably, some studies, such as those cited [51,52], operated with fewer than 30 offset frequencies. This can potentially compromise the denoising performance, especially when utilizing the PCA method. For higher image resolutions, it is expected that the BM3D approach becomes applicable, as shown in previous studies [12], while NN training becomes more time-consuming and requires better GPUs.
- (2)
- Specific Dataset Limitations: Our evaluations were primarily centered on a phantom and an in vivo dataset that was limited to the lumbar IVDs. As discussed, other body regions might present unique artifacts, leading to varied noise distributions that our study did not account for.
- (3)
- Comparative Analysis Limitations: In our evaluations, the PCA method consistently outperformed both the NLM and BM3D techniques. However, it is pivotal to note that our comparative exploration was restricted to these specific denoising methods. As mentioned, other denoising techniques could potentially offer enhanced results. For instance, recent work by Chen et al. showcased a k-means clustering strategy designed to accelerate Lorentzian evaluations while inherently reducing noise [53]. Further, as discussed, methods such as the Image Downsampling Expedited Adaptive Least-squares (IDEAL) [7,54] have been proposed as effective alternatives for reducing noise during Lorentzian analyses.
- (4)
- Noise Model Disparities: As we emphasized in our discussion, the idealized noise models used during our training sessions seemed misaligned with the intricate noise landscapes of in vivo experiments, particularly due to variables like respiratory or intestinal movement-related signal fluctuations.
- (5)
- Potential for Local Artifacts: As discussed, even though strategies like neural networks can effectively denoise a significant portion of the image, they are susceptible to local artifacts, which can hinder their broader clinical applications.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vinogradov, E.; Keupp, J.; Dimitrov, I.E.; Seiler, S.; Pedrosa, I. CEST-MRI for body oncologic imaging: Are we there yet? NMR Biomed. 2023, 36, e4906. [Google Scholar] [CrossRef] [PubMed]
- Lingl, J.P.; Wunderlich, A.; Goerke, S.; Paech, D.; Ladd, M.E.; Liebig, P.; Pala, A.; Kim, S.Y.; Braun, M.; Schmitz, B.L.; et al. The Value of APTw CEST MRI in Routine Clinical Assessment of Human Brain Tumor Patients at 3T. Diagnostics 2022, 12, 490. [Google Scholar] [CrossRef] [PubMed]
- van Zijl, P.C.M.; Yadav, N.N. Chemical exchange saturation transfer (CEST): What is in a name and what isn’t? Magn. Reson. Med. 2011, 65, 927–948. [Google Scholar] [CrossRef]
- Chen, L.; Cao, S.; Koehler, R.C.; van Zijl, P.C.M.; Xu, J. High-sensitivity CEST mapping using a spatiotemporal correlation-enhanced method. Magn. Reson. Med. 2020, 84, 3342–3350. [Google Scholar] [CrossRef]
- Radke, K.L.; Wilms, L.M.; Frenken, M.; Stabinska, J.; Knet, M.; Kamp, B.; Thiel, T.A.; Filler, T.J.; Nebelung, S.; Antoch, G.; et al. Lorentzian-Corrected Apparent Exchange-Dependent Relaxation (LAREX) Ω-Plot Analysis-An Adaptation for qCEST in a Multi-Pool System: Comprehensive In Silico, In Situ, and In Vivo Studies. Int. J. Mol. Sci. 2022, 23, 6920. [Google Scholar] [CrossRef] [PubMed]
- Radke, K.L.; Abrar, D.B.; Frenken, M.; Wilms, L.M.; Kamp, B.; Boschheidgen, M.; Liebig, P.; Ljimani, A.; Filler, T.J.; Antoch, G.; et al. Chemical Exchange Saturation Transfer for Lactate-Weighted Imaging at 3 T MRI: Comprehensive In Silico, In Vitro, In Situ, and In Vivo Evaluations. Tomography 2022, 8, 1277–1292. [Google Scholar] [CrossRef]
- Wittsack, H.-J.; Radke, K.L.; Stabinska, J.; Ljimani, A.; Müller-Lutz, A. calf—Software for CEST Analysis with Lorentzian Fitting. J. Med. Syst. 2023, 47, 39. [Google Scholar] [CrossRef]
- Breitling, J.; Deshmane, A.; Goerke, S.; Korzowski, A.; Herz, K.; Ladd, M.E.; Scheffler, K.; Bachert, P.; Zaiss, M. Adaptive denoising for chemical exchange saturation transfer MR imaging. NMR Biomed. 2019, 32, e4133. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, J.M.; Berthusen, A.J.; Cárdenas-Rodríguez, J.; Pagel, M.D. Differentiation of Myositis-Induced Models of Bacterial Infection and Inflammation with T2-Weighted, CEST, and DCE-MRI. Tomography 2019, 5, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Romdhane, F.; Villano, D.; Irrera, P.; Consolino, L.; Longo, D.L. Evaluation of a similarity anisotropic diffusion denoising approach for improving in vivo CEST-MRI tumor pH imaging. Magn. Reson. Med. 2021, 85, 3479–3496. [Google Scholar] [CrossRef]
- Ma, W.; Xin, Z.; Sun, L.; Zhang, J. Image Speckle Denoising for Securing Internet of Smart Sensors. Secur. Commun. Netw. 2021, 2021, 2610887. [Google Scholar] [CrossRef]
- Thakur, P.; Syamala, N.; Karuna, Y.; Saritha, S. Performance Analysis of IIC techniques for Brain MR-images. In Proceedings of the 2023 10th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 23–24 March 2023; pp. 351–357. [Google Scholar] [CrossRef]
- Radke, K.L.; Wollschläger, L.M.; Nebelung, S.; Abrar, D.B.; Schleich, C.; Boschheidgen, M.; Frenken, M.; Schock, J.; Klee, D.; Frahm, J.; et al. Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease. Diagnostics 2021, 11, 1077. [Google Scholar] [CrossRef]
- Rahman, H.; Bukht, T.F.N.; Imran, A.; Tariq, J.; Tu, S.; Alzahrani, A. A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet. Bioengineering 2022, 9, 368. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Huang, T.-Y.; Liu, Y.-J.; Chung, H.-W.; Juan, C.-J. Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed. 2021, 34, e4408. [Google Scholar] [CrossRef]
- Tian, C.; Fei, L.; Zheng, W.; Xu, Y.; Zuo, W.; Lin, C.-W. Deep learning on image denoising: An overview. Neural Netw. 2020, 131, 251–275. [Google Scholar] [CrossRef]
- Kidoh, M.; Shinoda, K.; Kitajima, M.; Isogawa, K.; Nambu, M.; Uetani, H.; Morita, K.; Nakaura, T.; Tateishi, M.; Yamashita, Y.; et al. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Magn. Reson. Med. Sci. 2020, 19, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Li, Y.; Yang, H.; Bai, L.; Wang, T.; Zhou, F.; Zhang, L.; Wang, Z. Denoising arterial spin labeling perfusion MRI with deep machine learning. Magn. Reson. Imaging 2020, 68, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Hunger, L.; Rajput, J.R.; Klein, K.; Mennecke, A.; Fabian, M.S.; Schmidt, M.; Glang, F.; Herz, K.; Liebig, P.; Nagel, A.M.; et al. DeepCEST 7 T: Fast and homogeneous mapping of 7 T CEST MRI parameters and their uncertainty quantification. Magn. Reson. Med. 2023, 89, 1543–1556. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Li, Z.; Fan, Q.; Polimeni, J.R.; Bilgic, B.; Salat, D.H.; Huang, S.Y. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. Neuroimage 2022, 253, 119033. [Google Scholar] [CrossRef]
- Moreno López, M.; Frederick, J.M.; Ventura, J. Evaluation of MRI Denoising Methods Using Unsupervised Learning. Front. Artif. Intell. 2021, 4, 642731. [Google Scholar] [CrossRef]
- Gurrola-Ramos, J.; Dalmau, O.; Alarcon, T.E. A Residual Dense U-Net Neural Network for Image Denoising. IEEE Access 2021, 9, 31742–31754. [Google Scholar] [CrossRef]
- Li, J.; Zhu, G.; Hua, C.; Feng, M.; Basheer, B.; Li, P.; Lu, X.; Song, J.; Shen, P.; Xu, X.; et al. A Systematic Collection of Medical Image Datasets for Deep Learning. arXiv 2021, arXiv:2106.12864. [Google Scholar] [CrossRef]
- Ben Yedder, H.; Cardoen, B.; Hamarneh, G. Deep learning for biomedical image reconstruction: A survey. Artif. Intell. Rev. 2021, 54, 215–251. [Google Scholar] [CrossRef]
- Roeloffs, V.; Meyer, C.; Bachert, P.; Zaiss, M. Towards quantification of pulsed spinlock and CEST at clinical MR scanners: An analytical interleaved saturation-relaxation (ISAR) approach. NMR Biomed. 2015, 28, 40–53. [Google Scholar] [CrossRef]
- Schmitt, B.; Zaiss, M.; Zhou, J.; Bachert, P. Optimization of pulse train presaturation for CEST imaging in clinical scanners. Magn. Reson. Med. 2011, 65, 1620–1629. [Google Scholar] [CrossRef]
- Wollschläger, L.M.; Nebelung, S.; Schleich, C.; Müller-Lutz, A.; Radke, K.L.; Frenken, M.; Boschheidgen, M.; Prost, M.; Antoch, G.; Konieczny, M.R.; et al. Evaluating Lumbar Intervertebral Disc Degeneration on a Compositional Level Using Chemical Exchange Saturation Transfer: Preliminary Results in Patients with Adolescent Idiopathic Scoliosis. Diagnostics 2021, 11, 934. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar] [CrossRef]
- Lin, T.; Wei, M.; Zhang, Y. Deep Learning for Denoising: An Attempt to Recover the Effective Magnetic Resonance Sounding Signal in the Presence of High Level Noise. IEEE Trans. Geosci. Remote Sensing 2022, 60, 1–13. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Li, J.; Pei, Z.; Zeng, T. From Beginner to Master: A Survey for Deep Learning-based Single-Image Super-Resolution. arXiv 2021. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in neural information processing systems, Vancouver, BC, Canada, 8–14 December 2019. [Google Scholar] [CrossRef]
- Falcon, W.; Borovec, J.; Wälchli, A.; Eggert, N.; Schock, J.; Jordan, J.; Skafte, N.; Bereznyuk, V.; Harris, E.; Murrell, T. PyTorchLightning/Pytorch-Lightning: 0.7.6 Release; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. [Google Scholar] [CrossRef]
- Virtue, P.; Lustig, M. The Empirical Effect of Gaussian Noise in Undersampled MRI Reconstruction. Tomography 2017, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Makinen, Y.; Azzari, L.; Foi, A. Collaborative Filtering of Correlated Noise: Exact Transform-Domain Variance for Improved Shrinkage and Patch Matching. IEEE Trans. Image Process. 2020, 29, 8339–8354. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Pandey, R. An adaptive isotropic search window based NLM algorithm for image denoising. In Proceedings of the 2015 IEEE Power, Communication and Information Technology Conference (PCITC), Jagamara, India, 15–17 October 2015; pp. 312–315. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, J.; Wu, X. Non-local MRI denoising using random sampling. Magn. Reson. Imaging 2016, 34, 990–999. [Google Scholar] [CrossRef]
- Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P. 1 Two dedicated software, voxel-based, anthropomorphic (torso and head) phantoms. In Proceedings of the International Workshop on Voxel Phantom Development held at the National Radiological Protection Board, Chilton, UK, 6–7 July 1995. [Google Scholar]
- Kim, M.; Gillen, J.; Landman, B.A.; Zhou, J.; van Zijl, P.C.M. Water saturation shift referencing (WASSR) for chemical exchange saturation transfer (CEST) experiments. Magn. Reson. Med. 2009, 61, 1441–1450. [Google Scholar] [CrossRef]
- Abrar, D.B.; Schleich, C.; Radke, K.L.; Frenken, M.; Stabinska, J.; Ljimani, A.; Wittsack, H.-J.; Antoch, G.; Bittersohl, B.; Hesper, T.; et al. Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: A feasibility study. Magn. Reson. Mater. Phys. Biol. Med. 2021, 34, 249–260. [Google Scholar] [CrossRef]
- Haneder, S.; Apprich, S.R.; Schmitt, B.; Michaely, H.J.; Schoenberg, S.O.; Friedrich, K.M.; Trattnig, S. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: Preliminary results in patients with low-back pain. Eur. Radiol. 2013, 23, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Tijssen, R.H.N.; Jansen, J.F.A.; Backes, W.H. Assessing and minimizing the effects of noise and motion in clinical DTI at 3 T. Hum. Brain Mapp. 2009, 30, 2641–2655. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.C.W.; Faull, O.K.; Pattinson, K.T.S.; Jenkinson, M. Physiological noise in brainstem FMRI. Front. Hum. Neurosci. 2013, 7, 623. [Google Scholar] [CrossRef]
- Herz, K.; Mueller, S.; Perlman, O.; Zaitsev, M.; Knutsson, L.; Sun, P.Z.; Zhou, J.; van Zijl, P.; Heinecke, K.; Schuenke, P.; et al. Pulseq-CEST: Towards multi-site multi-vendor compatibility and reproducibility of CEST experiments using an open-source sequence standard. Magn. Reson. Med. 2021, 86, 1845–1858. [Google Scholar] [CrossRef]
- Lu, H.; She, Y.; Tie, J.; Xu, S. Half-UNet: A Simplified U-Net Architecture for Medical Image Segmentation. Front. Neuroinform. 2022, 16, 911679. [Google Scholar] [CrossRef]
- Medennikov, I.; Bulusheva, A. LSTM-Based Language Models for Spontaneous Speech Recognition. In Proceedings of the Speech and Computer: 18th International Conference, SPECOM 2016, Budapest, Hungary, 23–27 August 2016; Volume 9811, pp. 469–475. [Google Scholar] [CrossRef]
- Lu, S.; Wang, S.-H.; Zhang, Y.-D. Detection of abnormal brain in MRI via improved AlexNet and ELM optimized by chaotic bat algorithm. Neural Comput. Applic. 2021, 33, 10799–10811. [Google Scholar] [CrossRef]
- Lu, S.; Zhu, Z.; Gorriz, J.M.; Wang, S.-H.; Zhang, Y.-D. NAGNN: Classification of COVID-19 based on neighboring aware representation from deep graph neural network. Int. J. Intell. Sys. 2022, 37, 1572–1598. [Google Scholar] [CrossRef]
- Debnath, A.; Gupta, R.K.; Reddy, R.; Singh, A. Effect of offset-frequency step size and interpolation methods on chemical exchange saturation transfer MRI computation in human brain. NMR Biomed. 2021, 34, e4468. [Google Scholar] [CrossRef]
- Pépin, J.; Francelle, L.; Carrillo-de Sauvage, M.-A.; de Longprez, L.; Gipchtein, P.; Cambon, K.; Valette, J.; Brouillet, E.; Flament, J. In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington’s disease. Neuroimage 2016, 139, 53–64. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; Bie, C.; Wang, X.; He, X.; Song, X. Hierarchical K-means clustering method for accelerated Lorentzian estimation (KALE) in chemical exchange saturation transfer-magnetic resonance imaging quantification. Quant. Imaging Med. Surg. 2023, 13, 4350–4364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, I.Y.; Wang, E.; Cheung, J.S.; Zhang, X.; Fulci, G.; Sun, P.Z. Quantitative chemical exchange saturation transfer (CEST) MRI of glioma using Image Downsampling Expedited Adaptive Least-squares (IDEAL) fitting. Sci. Rep. 2017, 7, 84. [Google Scholar] [CrossRef] [PubMed]
Exchange Parameters | Sequence Parameters | |||
---|---|---|---|---|
Water (Pool 1) | T1 (s) | 0.5–2.5 | Δω (ppm) | 4–6 |
T2 (ms) | 40–500 | N | 8–40 | |
Δ (ppm) | 0 | Tp (ms) | 20–100 | |
Metabolites (Pool 2–5) | T1 (s) | 0.5–2.5 | DC | 0.5 |
T2 (ms) | 1–20 | TE (ms) | 2–40 | |
Exchange rate k (Hz) | 50–4000 | TR (ms) | 11–60 | |
Fractional concentration (mM) | 0–800 | Dyn | 50 | |
Δ (ppm) | 0.5–5.0 |
In Vitro CEST | In Vivo CEST | |
---|---|---|
TE (ms) | 5.76 | 3.50 |
TR (ms) | 11 * | 2500 |
Flip Angle (°) | 10 | 15 |
Slices | 1 | 1 |
Slice Thickness (mm) | 10.0 and 1.5 | 6.0 |
FoV (mm × mm) | 128 × 128 | 200 × 200 |
Pixel Size (mm × mm) | 1.0 × 1.0 | 1.6 × 1.6 |
B1 (µT) | 0.4 | 0.9 |
tp (ms) | 50 | 100 |
td (ms) | 50 | 100 |
DC | 0.5 | 0.5 |
n | 15 | 40 |
Duration (min:s) | 3:37 | 12:05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radke, K.L.; Kamp, B.; Adriaenssens, V.; Stabinska, J.; Gallinnis, P.; Wittsack, H.-J.; Antoch, G.; Müller-Lutz, A. Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging. Diagnostics 2023, 13, 3326. https://doi.org/10.3390/diagnostics13213326
Radke KL, Kamp B, Adriaenssens V, Stabinska J, Gallinnis P, Wittsack H-J, Antoch G, Müller-Lutz A. Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging. Diagnostics. 2023; 13(21):3326. https://doi.org/10.3390/diagnostics13213326
Chicago/Turabian StyleRadke, Karl Ludger, Benedikt Kamp, Vibhu Adriaenssens, Julia Stabinska, Patrik Gallinnis, Hans-Jörg Wittsack, Gerald Antoch, and Anja Müller-Lutz. 2023. "Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging" Diagnostics 13, no. 21: 3326. https://doi.org/10.3390/diagnostics13213326
APA StyleRadke, K. L., Kamp, B., Adriaenssens, V., Stabinska, J., Gallinnis, P., Wittsack, H. -J., Antoch, G., & Müller-Lutz, A. (2023). Deep Learning-Based Denoising of CEST MR Data: A Feasibility Study on Applying Synthetic Phantoms in Medical Imaging. Diagnostics, 13(21), 3326. https://doi.org/10.3390/diagnostics13213326