Renal Findings in Patients with Thalassemia at Abdominal Ultrasound: Should We Still Talk about “Incidentalomas”? Results of a Long-Term Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Assessment of Renal Stones, Cysts, and Tumors
2.3. Laboratory Investigations
2.4. Iron Overload Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Renal Stones
3.2.1. Development of Renal Stones
3.2.2. Comparison of Baseline Data between Patients without and with Renal Stones
3.2.3. Prediction of Renal Stones
3.3. Renal Cysts
3.3.1. Development of Renal Cysts
3.3.2. Comparison of Baseline Data between Patients without and with Renal Cysts
3.3.3. Prediction of Renal Cysts
3.3.4. Evolution of Renal Cysts
- –
- Twenty-six (65.0%) patients: no change in cyst size or grading and no newly developed cysts;
- –
- Six (15.0%) patients: increase in cyst size and no newly developed cysts;
- –
- Two (5.0%) patients: increase in cyst size and grading (from Bosniak I to Bosniak III for one patient and from Bosniak I to Bosniak II for the other patient) and no newly developed cysts;
- –
- Three (7.5%) patients: increase in cyst size and newly developed cysts;
- –
- Two (5.0%) patients: increase in cyst grading (from Bosniak I to Bosniak II) and newly developed cysts;
- –
- One (2.5%) patient: increase in cyst size and grading (from Bosniak I to Boniak II) and newly developed cysts.
3.4. Renal-Cell Carcinoma
3.4.1. RCC: Prevalence and Incidence
3.4.2. Characteristics of Patients Diagnosed with RCC
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Angastiniotis, M.; Vives Corrons, J.L.; Soteriades, E.S.; Eleftheriou, A. The impact of migrations on the health services for rare diseases in Europe: The example of haemoglobin disorders. Sci. World J. 2013, 2013, 727905. [Google Scholar] [CrossRef]
- Muncie, H.L., Jr.; Campbell, J. Alpha and beta thalassemia. Am. Fam. Physician 2009, 80, 339–344. [Google Scholar]
- Weatherall, D.J.; Clegg, J.B. The Thalassemia Syndromes; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Galanello, R.; Origa, R. Beta-thalassemia. Orphanet J. Rare Dis. 2010, 5, 11. [Google Scholar] [CrossRef]
- Forni, G.L.; Puntoni, M.; Boeri, E.; Terenzani, L.; Balocco, M. The influence of treatment in specialized centers on survival of patients with thalassemia major. Am. J. Hematol. 2009, 84, 317–318. [Google Scholar] [CrossRef]
- Spasiano, A.; Meloni, A.; Costantini, S.; Quaia, E.; Cademartiri, F.; Cinque, P.; Pepe, A.; Ricchi, P. Setting for “Normal” Serum Ferritin Levels in Patients with Transfusion-Dependent Thalassemia: Our Current Strategy. J. Clin. Med. 2021, 10, 5985. [Google Scholar] [CrossRef]
- El-Beshlawy, A.; Dewedar, H.; Hindawi, S.; Alkindi, S.; Tantawy, A.A.; Yassin, M.A.; Taher, A.T. Management of transfusion-dependent β-thalassemia (TDT): Expert insights and practical overview from the Middle East. Blood Rev. 2024, 63, 101138. [Google Scholar] [CrossRef]
- Demosthenous, C.; Vlachaki, E.; Apostolou, C.; Eleftheriou, P.; Kotsiafti, A.; Vetsiou, E.; Mandala, E.; Perifanis, V.; Sarafidis, P. Beta-thalassemia: Renal complications and mechanisms: A narrative review. Hematology 2019, 24, 426–438. [Google Scholar] [CrossRef]
- Romadhon, P.Z.; Ashariati, A.; Bintoro, S.U.Y.; Thaha, M.; Suryantoro, S.D.; Windradi, C.; Mahdi, B.A.; Novendrianto, D.; Widiyastuti, K.N.; Martani, O.S.; et al. Markers of Renal Complications in Beta Thalassemia Patients with Iron Overload Receiving Chelation Agent Therapy: A Systematic Review. J. Blood Med. 2022, 13, 725–738. [Google Scholar] [CrossRef]
- Pinto, V.M.; Poggi, M.; Russo, R.; Giusti, A.; Forni, G.L. Management of the aging beta-thalassemia transfusion-dependent population–The Italian experience. Blood Rev. 2019, 38, 100594. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Antonelli, G.; Nuti, R. Anemia in Cardio-Renal Syndrome: Clinical impact and pathophysiologic mechanisms. Heart Fail. Rev. 2011, 16, 603–607. [Google Scholar] [CrossRef]
- Davis, L.E.; Hohimer, A.R. Hemodynamics and organ blood flow in fetal sheep subjected to chronic anemia. Am. J. Physiol. 1991, 261, R1542–R1548. [Google Scholar] [CrossRef]
- Nolph, K.D. Continuous ambulatory peritoneal dialysis as long-term treatment for end-stage renal disease. Am. J. Kidney Dis. 1991, 17, 154–157. [Google Scholar] [CrossRef]
- Habas, E., Sr.; Al Adab, A.; Arryes, M.; Alfitori, G.; Farfar, K.; Habas, A.M.; Akbar, R.A.; Rayani, A.; Habas, E.; Elzouki, A. Anemia and Hypoxia Impact on Chronic Kidney Disease Onset and Progression: Review and Updates. Cureus 2023, 15, e46737. [Google Scholar] [CrossRef]
- Nagababu, E.; Gulyani, S.; Earley, C.J.; Cutler, R.G.; Mattson, M.P.; Rifkind, J.M. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic. Res. 2008, 42, 824–829. [Google Scholar] [CrossRef]
- Mallat, N.S.; Mallat, S.G.; Musallam, K.M.; Taher, A.T. Potential mechanisms for renal damage in beta-thalassemia. J. Nephrol. 2013, 26, 821–828. [Google Scholar] [CrossRef]
- Yatmark, P.; Morales, N.P.; Chaisri, U.; Wichaiyo, S.; Hemstapat, W.; Srichairatanakool, S.; Svasti, S.; Fucharoen, S. Iron distribution and histopathological study of the effects of deferoxamine and deferiprone in the kidneys of iron overloaded β-thalassemic mice. Exp. Toxicol. Pathol. 2016, 68, 427–434. [Google Scholar] [CrossRef]
- Zager, R.A.; Johnson, A.C.; Hanson, S.Y. Parenteral iron nephrotoxicity: Potential mechanisms and consequences. Kidney Int. 2004, 66, 144–156. [Google Scholar] [CrossRef]
- Zager, R.A.; Johnson, A.C.; Hanson, S.Y. Proximal tubular cytochrome c efflux: Determinant, and potential marker, of mitochondrial injury. Kidney Int. 2004, 65, 2123–2134. [Google Scholar] [CrossRef]
- Zhou, X.J.; Laszik, Z.; Wang, X.Q.; Silva, F.G.; Vaziri, N.D. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab. Investig. 2000, 80, 1905–1914. [Google Scholar] [CrossRef]
- Hisakawa, N.; Nishiya, K.; Tahara, K.; Matsumori, A.; Hashimoto, K. Down regulation by iron of prostaglandin E2 production by human synovial fibroblasts. Ann. Rheum. Dis. 1998, 57, 742–746. [Google Scholar] [CrossRef]
- Aldudak, B.; Bayazit, A.K.; Noyan, A.; Ozel, A.; Anarat, A.; Sasmaz, I.; Kilinç, Y.; Gali, E.; Anarat, R.; Dikmen, N. Renal function in pediatric patients with β-thalassemia major. Pediatr. Nephrol. 2000, 15, 109–112. [Google Scholar] [CrossRef]
- Sumboonnanonda, A.; Malasit, P.; Tanphaichitr, V.S.; Ong-ajyooth, S.; Sunthornchart, S.; Pattanakitsakul, S.; Petrarat, S.; Assateerawatt, A.; Vongjirad, A. Renal tubular function in beta-thalassemia. Pediatr. Nephrol. 1998, 12, 280–283. [Google Scholar] [CrossRef]
- Capolongo, G.; Zacchia, M.; Beneduci, A.; Costantini, S.; Cinque, P.; Spasiano, A.; De Luca, G.; Di Pietro, M.E.; Ricchi, P.; Trepiccione, F.; et al. Urinary Metabolic Profile of Patients with Transfusion-Dependent β-Thalassemia Major Undergoing Deferasirox Therapy. Kidney Blood Press. Res. 2020, 45, 455–466. [Google Scholar] [CrossRef]
- Wong, P.; Fuller, P.J.; Gillespie, M.T.; Kartsogiannis, V.; Strauss, B.J.; Bowden, D.; Milat, F. Thalassemia bone disease: The association between nephrolithiasis, bone mineral density and fractures. Osteoporos. Int. 2013, 24, 1965–1971. [Google Scholar] [CrossRef]
- Ricchi, P.; Ammirabile, M.; Costantini, S.; Spasiano, A.; Di Matola, T.; Cinque, P.; Casale, M.; Filosa, A.; Prossomariti, L. Nephrolithiasis in patients exposed to deferasirox and desferioxamine: Probably an age-linked event with different effects on some renal parameters. Ann. Hematol. 2014, 93, 525–527. [Google Scholar] [CrossRef]
- Ricchi, P.; Costantini, S.; Spasiano, A.; Cinque, P.; Esposito, S.; Filosa, A. Hepatocellular carcinoma in patients with thalassemia in the post-DAA era: Not a disappearing entity. Ann. Hematol. 2021, 100, 1907–1910. [Google Scholar] [CrossRef]
- Moukhadder, H.M.; Halawi, R.; Cappellini, M.D.; Taher, A.T. Hepatocellular carcinoma as an emerging morbidity in the thalassemia syndromes: A comprehensive review. Cancer 2017, 123, 751–758. [Google Scholar] [CrossRef]
- Ricchi, P.; Ammirabile, M.; Spasiano, A.; Costantini, S.; Di Matola, T.; Carteni, G.; Filosa, A.; Cinque, P. Renal cell carcinoma in adult patients with thalassaemia major: A description of three cases. Br. J. Haematol. 2014, 165, 887–888. [Google Scholar] [CrossRef]
- Ascenti, G.; Mazziotti, S.; Zimbaro, G.; Settineri, N.; Magno, C.; Melloni, D.; Caruso, R.; Scribano, E. Complex cystic renal masses: Characterization with contrast-enhanced US. Radiology 2007, 243, 158–165. [Google Scholar] [CrossRef]
- Zbroja, M.; Kuczyńska, M.; Drelich, K.; Mikos, E.; Zarajczyk, A.; Cheda, M.; Dąbrowska, I.; Drelich-Zbroja, A. Contrast-Enhanced Ultrasound in the Diagnosis of Solid Renal Lesions. J. Clin. Med. 2024, 13, 3821. [Google Scholar] [CrossRef]
- Agnello, F.; Albano, D.; Micci, G.; Di Buono, G.; Agrusa, A.; Salvaggio, G.; Pardo, S.; Sparacia, G.; Bartolotta, T.V.; Midiri, M.; et al. CT and MR imaging of cystic renal lesions. Insights Imaging 2020, 11, 5. [Google Scholar] [CrossRef]
- Porter, J.B. Practical management of iron overload. Br. J. Haematol. 2001, 115, 239–252. [Google Scholar] [CrossRef]
- Zhu, Y.; Pandya, B.J.; Choi, H.K. Prevalence of gout and hyperuricemia in the US general population: The National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011, 63, 3136–3141. [Google Scholar] [CrossRef]
- Reeder, S.B.; Yokoo, T.; Franca, M.; Hernando, D.; Alberich-Bayarri, A.; Alustiza, J.M.; Gandon, Y.; Henninger, B.; Hillenbrand, C.; Jhaveri, K.; et al. Quantification of Liver Iron Overload with MRI: Review and Guidelines from the ESGAR and SAR. Radiology 2023, 307, e221856. [Google Scholar] [CrossRef]
- Meloni, A.; Luciani, A.; Positano, V.; De Marchi, D.; Valeri, G.; Restaino, G.; Cracolici, E.; Caruso, V.; Dell′Amico, M.C.; Favilli, B.; et al. Single region of interest versus multislice T2* MRI approach for the quantification of hepatic iron overload. J. Magn. Reson. Imaging 2011, 33, 348–355. [Google Scholar] [CrossRef]
- Wood, J.C.; Enriquez, C.; Ghugre, N.; Tyzka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005, 106, 1460–1465. [Google Scholar] [CrossRef]
- Angelucci, E.; Brittenham, G.M.; McLaren, C.E.; Ripalti, M.; Baronciani, D.; Giardini, C.; Galimberti, M.; Polchi, P.; Lucarelli, G. Hepatic iron concentration and total body iron stores in thalassemia major. N. Engl. J. Med. 2000, 343, 327–331. [Google Scholar] [CrossRef]
- Ricchi, P.; Meloni, A.; Grigoratos, C.; Toia, P.; Fina, P.; Pistoia, L.; Costantini, S.; Borsellino, Z.; Lisi, R.; Rocca, M.; et al. Prevalence of extramedullary hematopoiesis, renal cysts, splenic and hepatic lesions, and vertebral hemangiomas among thalassemic patients: A retrospective study from the Myocardial Iron Overload in Thalassemia (MIOT) network. Ann. Hematol. 2019, 98, 1333–1339. [Google Scholar] [CrossRef]
- Quinn, C.T.; Johnson, V.L.; Kim, H.-Y.; Trachtenberg, F.; Vogiatzi, M.G.; Kwiatkowski, J.L.; Neufeld, E.J.; Fung, E.; Oliveri, N.; Kirby, M.; et al. Renal dysfunction in patients with thalassaemia. Br. J. Haematol. 2011, 153, 111–117. [Google Scholar] [CrossRef]
- Chaloemwong, J.; Tantiworawit, A.; Rattanathammethee, T.; Chai-Adisaksopha, C.; Rattarittamrong, E.; Norasetthada, L.; Charoenkwan, P.; Louthrenoo, W. Hyperuricemia, urine uric excretion, and associated complications in thalassemia patients. Ann. Hematol. 2019, 98, 1101–1110. [Google Scholar] [CrossRef]
- Sayani, F.A.; Lal, A.; Tasian, G.E.; Al Mukaddam, M.; Killilea, D.W.; Fung, E.B. Kidney stones in transfusion-dependent thalassemia: Prevalence and risk factors. Open J. Urol. 2022, 12, 209–227. [Google Scholar] [CrossRef]
- Ricchi, P.; Ammirabile, M.; Costantini, S.; Di Matola, T.; Spasiano, A.; Genna, M.L.; Cinque, P.; Prossomariti, L. Splenectomy is a risk factor for developing hyperuricemia and nephrolithiasis in patients with thalassemia intermedia: A retrospective study. Blood Cells Mol. Dis. 2012, 49, 133–135. [Google Scholar] [CrossRef]
- Ricchi, P.; Meloni, A.; Pistoia, L.; Spasiano, A.; Rita Gamberini, M.; Maggio, A.; Gerardi, C.; Messina, G.; Campisi, S.; Allo, M.; et al. Longitudinal follow-up of patients with thalassaemia intermedia who started transfusion therapy in adulthood: A cohort study. Br. J. Haematol. 2020, 191, 107–114. [Google Scholar] [CrossRef]
- Vlachaki, E.; Perifanis, V.; Kondou, A.; Neokleous, N.; Teli, A.; Oikonomou, M. Serum Uric Acid As a Predictor Factor of the Response to Deferasirox Therapy for Patients with b-Thalassemia Major. Blood 2011, 118, 5306. [Google Scholar] [CrossRef]
- Taher, A.T.; Musallam, K.M.; Karimi, M.; El-Beshlawy, A.; Belhoul, K.; Daar, S.; Saned, M.; Cesaretti, C.; Cappellini, M.D. Splenectomy and thrombosis: The case of thalassemia intermedia. J. Thromb. Haemost. 2010, 8, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- de Dreuzy, E.; Bhukhai, K.; Leboulch, P.; Payen, E. Current and future alternative therapies for beta-thalassemia major. Biomed. J. 2016, 39, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mathew, M.E.; Puri, L. Splenectomy for people with thalassaemia major or intermedia. Cochrane Database Syst. Rev. 2016, 14, CD010517. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Qin, L.; Shang, H.; Li, P.; Xiao, B.; Ye, Y.; Xu, X.; Zhang, X.; Wang, L. Analysis of Hematological Indices and Splenectomy Rates in 2,130 Patients with Hemoglobin H Diseases or β-Thalassemia. Acta Haematol. 2023, 146, 458–464. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.S. Natural 10-year history of simple renal cysts. Korean J. Urol. 2015, 56, 351–356. [Google Scholar] [CrossRef]
- Liu, J.M.; Chuang, C.K.; Chang, Y.H.; Ng, K.F.; Wang, L.J.; Chuang, K.L.; Chuang, H.C.; Pang, S.T. A simple renal cyst invaded by infiltrating urothelial carcinoma mimicking a Bosniak Class IV renal cyst. Clin. Nephrol. 2011, 76, 412–416. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, J.; Feng, N. Evolution of renal cyst to renal carcinoma: A case report and review of literature. Int. J. Clin. Exp. Pathol. 2021, 14, 463–468. [Google Scholar] [PubMed]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Origa, R.; Gianesin, B.; Longo, F.; Di Maggio, R.; Cassinerio, E.; Gamberini, M.R.; Pinto, V.M.; Quarta, A.; Casale, M.; La Nasa, G.; et al. Incidence of cancer and related deaths in hemoglobinopathies: A follow-up of 4631 patients between 1970 and 2021. Cancer 2023, 129, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Regione Campania. Campania Region Tumor Registry. Available online: https://www.regione.campania.it/regione/it/tematiche/registro-regionale-tumori (accessed on 15 May 2024).
- Gansler, T.; Fedewa, S.; Amin, M.B.; Lin, C.C.; Jemal, A. Trends in reporting histological subtyping of renal cell carcinoma: Association with cancer center type. Hum. Pathol. 2018, 74, 99–108. [Google Scholar] [CrossRef]
- Theis, R.P.; Dolwick Grieb, S.M.; Burr, D.; Siddiqui, T.; Asal, N.R. Smoking, environmental tobacco smoke, and risk of renal cell cancer: A population-based case-control study. BMC Cancer 2008, 8, 387. [Google Scholar] [CrossRef]
- Kabaria, R.; Klaassen, Z.; Terris, M.K. Renal cell carcinoma: Links and risks. Int. J. Nephrol. Renov. Dis. 2016, 9, 45–52. [Google Scholar] [CrossRef]
- Kim, C.S.; Han, K.-D.; Choi, H.S.; Bae, E.H.; Ma, S.K.; Kim, S.W. Association of Hypertension and Blood Pressure With Kidney Cancer Risk. Hypertension 2020, 75, 1439–1446. [Google Scholar] [CrossRef]
- Johansson, M.; Carreras-Torres, R.; Scelo, G.; Purdue, M.P.; Mariosa, D.; Muller, D.C.; Timpson, N.J.; Haycock, P.C.; Brown, K.M.; Wang, Z.; et al. The influence of obesity-related factors in the etiology of renal cell carcinoma—A mendelian randomization study. PLoS Med. 2019, 16, e1002724. [Google Scholar] [CrossRef]
- Meloni, A.; Pistoia, L.; Gamberini, M.R.; Spasiano, A.; Cuccia, L.; Allò, M.; Messina, G.; Cecinati, V.; Geraradi, C.; Rosso, R.; et al. The impact of HCV chronic positivity and clearance on extrahepatic morbidity in thalassemia major patients: An observational study from MIOT Network. Eur. J. Intern. Med. 2023, 114, 93–100. [Google Scholar] [CrossRef]
- Songtanin, B.; Nugent, K. Burden, Outcome, and Comorbidities of Extrahepatic Manifestations in Hepatitis C Virus Infection. Biology 2023, 12, 23. [Google Scholar]
- Origa, R. Hepatitis C and Thalassemia: A Story with (Almost) a Happy Ending. Pathogens 2023, 12, 683. [Google Scholar] [CrossRef] [PubMed]
- Fabrizi, F.; Verdesca, S.; Messa, P.; Martin, P. Hepatitis C Virus Infection Increases the Risk of Developing Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2015, 60, 3801–3813. [Google Scholar] [CrossRef] [PubMed]
- Amin, J.; Dore, G.J.; O’Connell, D.L.; Bartlett, M.; Tracey, E.; Kaldor, J.M.; Law, M.G. Cancer incidence in people with hepatitis B or C infection: A large community-based linkage study. J. Hepatol. 2006, 45, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.C.; Moonka, D.; Brown, K.A.; Rogers, C.; Huang, M.A.Y.; Bhatt, N.; Lamerato, L. Risk for Renal Cell Carcinoma in Chronic Hepatitis C Infection. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1066–1073. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Nissaisorakarn, P.; Sornprom, S.; Thongprayoon, C.; Thamcharoen, N.; Maneenil, K.; Podboy, A.J.; Cheungpasitporn, W. Hepatitis C infection and renal cell carcinoma: A systematic review and meta-analysis. World J. Gastrointest. Pathophysiol. 2016, 7, 314–319. [Google Scholar] [CrossRef]
All Patients (N = 231) | No Renal Stones (N = 196) | Renal Stones (N = 35) | p-Value | |
---|---|---|---|---|
Female sex, N (%) | 132 (57.1) | 112 (57.1) | 20 (57.1) | 1.000 |
Age (years) | 36.18 ± 13.84 | 35.67 ± 14.31 | 39.03 ± 10.53 | 0.215 |
TM, N (%) | 112 (48.5) | 88 (44.9) | 24 (68.6) | 0.010 |
Annual blood consumption (mg/k die) | 0.25 ± 0.53 | 0.19 ± 0.19 | 0.51 ± 1.24 | 0.005 |
Splenectomy, N (%) | 95 (41.1) | 73 (37.2) | 22 (62.9) | 0.005 |
Active or past HCV infection, N (%) | 99 (42.9) | 81 (41.3) | 18 (51.4) | 0.266 |
Hypertension, N (%) | 16 (6.9) | 14 (7.1) | 2 (5.7) | 0.759 |
Diabetes, N (%) | 8 (3.5) | 6 (3.1) | 2 (5.7) | 0.348 |
Body mass index (kg/m2) | 23.19 ± 3.67 | 23.15 ± 3.81 | 23.45 ± 2.81 | 0.649 |
Serum ferritin (ng/mL) | 1178.61 ± 1426.83 | 1185.39 ± 1497.15 | 1140.86 ± 959.63 | 0.327 |
Serum hemoglobin (g/dL) | 9.67 ± 0.86 | 9.68 ± 0.84 | 9.60 ± 0.98 | 0.567 |
Serum transferrin receptor-1 (mg/L) | 5.34 ± 2.95 | 5.51 ± 3.02 | 4.39 ± 2.32 | 0.021 |
Serum creatinine (mg/dL) | 0.69 ± 0.31 | 0.69 ± 0.33 | 0.73 ± 0.15 | 0.014 |
Uric acid (mg/dL) | 4.46 ± 1.27 | 4.45 ± 1.28 | 4.51 ± 1.24 | 0.726 |
Proteinuria (mg/dL) | 17.21 ± 42.70 | 13.42 ± 23.15 | 38.12 ± 92.83 | 0.003 |
MRI LIC (mg/g dw) | 6.01 ± 6.39 | 6.28 ± 6.62 | 5.73 ± 5.12 | 0.328 |
Univariate Analysis | ||
---|---|---|
HR (95% CI) | p-Value | |
Female sex | 0.96 (0.49–1.88) | 0.913 |
Age | 1.02 (0.99–1.04) | 0.137 |
TM | 2.26 (1.11–4.62) | 0.025 |
Annual blood consumption | 2.24 (1.53–3.27) | <0.0001 |
Splenectomy | 2.57 (1.29–5.09) | 0.007 |
Active or past HCV infection | 1.37 (0.71–2.66) | 0.351 |
Hypertension | 0.87 (0.21–3.62) | 0.845 |
Diabetes | 1.73 (0.41–7.19) | 0.453 |
Body mass index | 1.02 (0.93–1.11) | 0.745 |
Serum ferritin | 1.00 (1.00–1.00) | 0.818 |
Serum hemoglobin | 0.89 (0.60–1.32) | 0.566 |
Serum transferrin receptor-1 | 0.86 (0.74–1.00) | 0.055 |
Serum creatinine | 1.33 (0.66–2.68) | 0.420 |
Uric acid | 1.06 (0.82–1.37) | 0.662 |
Proteinuria | 1.01 (1.00–1.01) | 0.004 |
MRI LIC | 0.95 (0.89–1.03) | 0.212 |
All Patients (N = 217) | No Renal Cysts (N = 177) | Renal Cysts (N = 40) | p-Value | |
---|---|---|---|---|
Female sex, N (%) | 127 (58.5) | 101 (57.1) | 26 (65.0) | 0.357 |
Age (years) | 35.17 ± 13.39 | 33.95 ± 13.35 | 40.55 ± 12.39 | 0.006 |
TM, N (%) | 106 (48.8) | 85 (48.0) | 21 (52.5) | 0.609 |
Annual blood consumption (mg/k die) | 0.25 ± 0.54 | 0.21 ± 0.20 | 0.39 ± 1.18 | 0.845 |
Splenectomy, N (%) | 82 (37.8) | 62 (35.0) | 20 (50.0) | 0.078 |
Active or past HCV infection, N (%) | 84 (38.7) | 65 (36.7) | 19 (47.5) | 0.206 |
Hypertension, N (%) | 10 (4.6) | 6 (3.4) | 4 (10.0) | 0.072 |
Diabetes, N (%) | 6 (2.8) | 5 (2.8) | 1 (2.5) | 0.910 |
Body mass index (kg/m2) | 23.03 ± 3.59 | 22.78 ± 3.64 | 24.16 ± 3.19 | 0.011 |
Serum ferritin (ng/mL) | 1175.43 ± 1444.44 | 1225.41 ± 1524.97 | 955.51 ± 1002.96 | 0.741 |
Serum hemoglobin (g/dL) | 9.64 ± 0.89 | 9.65 ± 0.93 | 9.61 ± 0.74 | 0.838 |
Serum transferrin receptor-1 (mg/L) | 5.36 ± 2.91 | 5.38 ± 3.01 | 5.29 ± 2.40 | 0.711 |
Serum creatinine (mg/dL) | 0.69 ± 0.31 | 0.69 ± 0.34 | 0.73 ± 0.18 | 0.034 |
Uric acid (mg/dL) | 4.54 ± 1.28 | 4.55 ± 1.29 | 4.49 ± 1.25 | 0.810 |
Proteinuria (mg/dL) | 17.49 ± 43.89 | 16.55 ± 47.13 | 21.60 ± 25.46 | 0.017 |
MRI LIC (mg/g dw) | 6.28 ± 6.56 | 6.38 ± 6.72 | 5.89 ± 5.98 | 0.661 |
Univariate Analysis | ||
---|---|---|
HR (95% CI) | p-Value | |
Female sex | 1.36 (0.71–2.60) | 0.355 |
Age | 1.04 (1.02–1.07) | 0.001 |
TM | 0.94 (0.50–1.74) | 0.837 |
Annual blood consumption | 1.26 (0.96–1.67) | 0.102 |
Splenectomy | 1.72 (0.92–3.19) | 0.087 |
Active or past HCV infection | 1.46 (0.78–2.71) | 0.235 |
Hypertension | 3.56 (1.26–10.05) | 0.016 |
Diabetes | 0.90 (0.12–6.57) | 0.919 |
Body mass index | 1.09 (1.01–1.18) | 0.031 |
Serum ferritin | 1.00 (1.00–1.00) | 0.287 |
Serum hemoglobin | 0.95 (0.67–1.34) | 0.761 |
Serum transferrin receptor-1 | 1.00 (0.89–1.13) | 0.959 |
Serum creatinine | 1.27 (0.64–2.51) | 0.490 |
Uric acid | 0.98 (0.77–1.24) | 0.844 |
Proteinuria | 1.00 (0.99–1.01) | 0.562 |
MRI LIC | 0.99 (0.93–1.05) | 0.684 |
Pt 1 | Pt 2 | Pt 3 | Pt 4 | Pt 5 | Pt 6 | Pt 7 | Pt 8 | Pt 9 | Pt 10 | |
---|---|---|---|---|---|---|---|---|---|---|
RCC subtype | clear-cell | mucinous tubular and spindle-cell | clear-cell | clear-cell | clear-cell | clear-cell | chromophobe | clear-cell | clear-cell | clear-cell |
RCC staging | T1a NX | T1b N0 | T3b | T2 N1 | not available | T3a | T1 N0 | not available | T1a | not available |
RCC stage group | I | not available | 3 | 2 | 1 | not available | 1 | not available | II | not available |
RCC site | right kidney | right kidney | right kidney | right kidney | right kidney | right kidney | right kidney | right kidney | left kidney | left kidney |
Canceration of a previous renal cyst | no | yes | yes | no | no | no | no | no | no | yes |
Symptoms | no | no | no | no | no | no | no | no | no | no |
Co-presence of hepatic cell carcinoma | yes | no | no | no | no | yes | no | no | no | no |
Disease | TI regularly transfused | TI non-transfused | TM | TM | TM | TM | TM | TM | TM | TM |
Genotype (Phenotype) | CD39/IVS-1,6 (β0 β+) | CD39/IVS-1,6 (β0 β+) | IVS-1,6/IVS-1,110 (β+ β+) | CD39/IVS-1,6 (β0 β+) | IVS-1,110/IVS-1,110 (β+ β+) | CD39/IVS-1,1 (β0 β0) | IVS-1,6/IVS-1,6 (β+ β+) | CD6/IVS-2,1 (β0 β0) | IVS-1,1/IVS-1,1 (β0 β0) | CD39/IVS-1,110 (β0 β0) |
Sex | female | female | female | male | female | male | female | male | female | male |
Age at diagnosis (years) | 60.4 | 54.3 | 39.0 | 44.6 | 53.1 | 44.9 | 53.9 | 50.7 | 41.5 | 42.0 |
Splenectomy | yes | yes | yes | yes | yes | no | yes | yes | yes | yes |
Anti-HCV | positive | positive | positive | positive | positive | positive | positive | positive | positive | positive |
HCV RNA | negativized after antiviral therapy | negative | negative | positive | negativized after antiviral therapy | negative | negativized after antiviral therapy | negative | negativized after antiviral therapy | negative |
Smoking | never | never | never | never | never | never | never | yes | yes | never |
Serum ferritin (ng/mL) | 396.0 | 519.0 | 180.0 | 4020.0 | 1283.0 | 419.0 | 750.0 | 3800.0 | 803.0 | 250.0 |
Serum hemoglobin (g/dL) | 10.8 | 8.6 | 9.5 | 10.3 | 8.8 | 9.5 | 10.4 | 9.7 | 9.8 | 10.5 |
Serum transferrin receptor-1 (mg/L) | 3.8 | 8.3 | not available | 3.4 | 2.3 | 7.0 | 4.5 | 5.2 | 3.0 | 2.8 |
Serum creatinine (mg/dL) | 0.7 | 0.6 | not available | 1.1 | 0.8 | 0.6 | 0.5 | 0.5 | 0.6 | 0.8 |
Uric acid (mg/dL) | 3.0 | 6.4 | not available | 6.6 | 4.4 | 6.0 | 4.1 | 5.0 | 3.5 | 3.8 |
Proteinuria (mg/dL) | 0.0 | 12.4 | not available | 7.8 | 7.7 | 8.5 | 0.0 | 0.0 | 22.2 | 35.9 |
MRI LIC (mg/g dw) | 1.9 | 8.3 | not available | 4.9 | 9.9 | 3.3 | 1.1 | 11.3 | 5.9 | 14.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatigati, C.; Meloni, A.; Costantini, S.; Spasiano, A.; Ascione, F.; Cademartiri, F.; Ricchi, P. Renal Findings in Patients with Thalassemia at Abdominal Ultrasound: Should We Still Talk about “Incidentalomas”? Results of a Long-Term Follow-Up. Diagnostics 2024, 14, 2047. https://doi.org/10.3390/diagnostics14182047
Fatigati C, Meloni A, Costantini S, Spasiano A, Ascione F, Cademartiri F, Ricchi P. Renal Findings in Patients with Thalassemia at Abdominal Ultrasound: Should We Still Talk about “Incidentalomas”? Results of a Long-Term Follow-Up. Diagnostics. 2024; 14(18):2047. https://doi.org/10.3390/diagnostics14182047
Chicago/Turabian StyleFatigati, Carmina, Antonella Meloni, Silvia Costantini, Anna Spasiano, Flora Ascione, Filippo Cademartiri, and Paolo Ricchi. 2024. "Renal Findings in Patients with Thalassemia at Abdominal Ultrasound: Should We Still Talk about “Incidentalomas”? Results of a Long-Term Follow-Up" Diagnostics 14, no. 18: 2047. https://doi.org/10.3390/diagnostics14182047