Design Decision-Making for Construction Waste Minimisation: A Systematic Literature Review
Abstract
:1. Introduction
- (i).
- To identify and explore the key areas that can support CW minimisation strategies during the design decision-making process of building projects,
- (ii).
- To determine the potential areas for further research in the field of study.
2. Background
2.1. Origins of CW and the Building Design Stage
2.2. Building Design Process and Decision-Making
3. Research Methods
4. Results from the Descriptive Analysis
Literature Development
5. Findings from the Content Analysis
5.1. Estimation/Quantification of CW Generation
5.2. Human Factors in CW Diversion Practice
5.3. Emerging Technologies, Concepts, and Management Practices
5.4. Design Stage Decision-Making and CW Minimisation
5.5. Stages of Design Stage Decision-Making towards Minimising CW
5.6. Factors Affecting Design Stage Waste Minimisation Practices: Integrated Supply Chain, Stakeholder Collaboration, and Information Sharing
5.7. Requirement of an Effective Design Decision-Making Process towards CW Minimisation
6. Conceptual Framework
7. Further Research Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salman, S.; Tayyab, M.; Peter, W.; Malik, K.; Rebecca, Y. Green Construction and Construction and Demolition Waste Management in Australia. In Proceedings of the 43rd AUBEA Conference: Built to Thrive: Creating Buildings and Cities That Support Individual Well-Being and Community Prosperity, Noosa, Australia, 6–8 November 2019; pp. 1–9. [Google Scholar]
- Ghafourian, K.; Mohamed, Z.; Ismail, S.; Malakute, R.; Abolghasemi, M. Current status of the research on construction and demolition waste management. Indian J. Sci. Technol. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. The circular economy in the construction and demolition waste sector—A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- Bølviken, T.; Koskela, L. Why Hasn’t Waste Reduction Conquered Construction? In Proceedings of the 24th Annual Conference of the International Group for Lean Construction, Boston, MA, USA, 18–24 July 2016. [Google Scholar]
- Osmani, M. Construction Waste Minimization in the UK: Current Pressures for Change and Approaches. Procedia—Soc. Behav. Sci. 2012, 40, 37–40. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Akinade, O.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Kadiri, K.O. Attributes of design for construction waste minimization: A case study of waste-to-energy project. Renew. Sustain. Energy Rev. 2017, 73, 1333–1341. [Google Scholar] [CrossRef]
- Innes, S. Developing tools for designing out waste pre-site and on-site. In Proceedings of the Minimising Construction Waste Conference: Developing Resource Efficiency and Waste Minimisation in Design and Construction; New Civil Engineer: London, UK, 2004. [Google Scholar]
- Ajayi, S.O.; Oyedele, L.O. Critical design factors for minimising waste in construction projects: A structural equation modelling approach. Resour. Conserv. Recycl. 2018, 137, 302–313. [Google Scholar] [CrossRef]
- Jin, R.; Zou, Y.; Gidado, K.; Ashton, P.; Painting, N. Scientometric analysis of BIM-based research in construction engineering and management. Eng. Constr. Archit. Manag. 2019, 26, 1750–1776. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Tam, V.W.Y. Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China. Resour. Conserv. Recycl. 2014, 82, 1–7. [Google Scholar] [CrossRef]
- Osmani, M.; Glass, J.; Price, A.D.F. Architects’ perspectives on construction waste reduction by design. Waste Manag. 2008, 28, 1147–1158. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; El Gamal, M.M.; Hameedi, S.M.; Paleologos, E.K. Chapter 1—Emerging carbon-based waste management sustainable practices. In Sustainable Utilization of Carbon Dioxide in Waste Management; Mohamed, A.-M.O., El Gamal, M.M., Hameedi, S.M., Paleologos, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–66. Available online: https://www.sciencedirect.com/science/article/pii/B9780128234181000159 (accessed on 1 January 2023).
- Coventry, S.; Shorter, B.; Kingsley, M. Demonstrating Waste Minimisation Benefits in Construction; Construction Industry Research and Information Association: London, UK, 2001. [Google Scholar]
- Osmani, M.; Villoria-Sáez, P. Current and Emerging Construction Waste Management Status, Trends and Approaches. In Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 365–380. [Google Scholar]
- Ekanayake, L.L.; Ofori, G. Building waste assessment score: Design-based tool. Build. Environ. 2004, 39, 851–861. [Google Scholar] [CrossRef]
- Silva, R.V.; de Brito, J.; Dhir, R.K. Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. J. Clean. Prod. 2017, 143, 598–614. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85008158197&doi=10.1016%2Fj.jclepro.2016.12.070&partnerID=40&md5=5b68ec360dc339f1036d56af9a0c4bdf (accessed on 5 December 2022). [CrossRef]
- Osmani, M.; Glass, J.; Price, A.D.F. An investigation of design waste causes in construction. WIT Trans. Ecol. Environ. 2008, 109, 491–498. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58849139680&doi=10.2495%2FWM080501&partnerID=40&md5=ce3d63a0f676a93924c51ed3d8b40dc8 (accessed on 2 February 2023).
- Soto-Paz, J.; Arroyo, O.; Torres-Guevara, L.E.; Parra-Orobio, B.A.; Casallas-Ojeda, M. The circular economy in the construction and demolition waste management: A comparative analysis in emerging and developed countries. J. Build. Eng. 2023, 78, 107724. [Google Scholar] [CrossRef]
- Spišáková, M.; Mandičák, T.; Mésároš, P.; Špak, M. Waste Management in a Sustainable Circular Economy as a Part of Design of Construction. Appl. Sci. 2022, 12, 4553. [Google Scholar] [CrossRef]
- Nikmehr, B.; Hosseini, M.R.; Oraee, M.; Chileshe, N. Major Factors Affecting Waste Generation on Construction Sites in Iran. In Proceedings of the 6th International Conference on Engineering, Project, and Production Management, Gold Coast, Australia, 2–4 September 2015; pp. 528–536. [Google Scholar]
- Luangcharoenrat, C.; Intrachooto, S.; Peansupap, V.; Sutthinarakorn, W. Factors influencing construction waste generation in building construction: Thailand’s perspective. Sustainability 2019, 11, 3638. [Google Scholar] [CrossRef]
- Chen, X.F.; Jiao, C.J. A photocatalytic mortar prepared by tourmaline and TiO2 treated recycled aggregates and its air-purifying performance. Case Stud. Constr. Mater. 2022, 16, e01073. [Google Scholar] [CrossRef]
- Greeno, R. An Overview of the Building Delivery Process. In Principles of Construction; Birkhäuser: Basel, Switzerland, 2014; pp. 1–31. [Google Scholar]
- Baldwin, A.N.; Shen, L.Y.; Poon, C.S.; Austin, S.A.; Wong, I. Modelling design information to evaluate pre-fabricated and pre-cast design solutions for reducing construction waste in high rise residential buildings. Autom. Constr. 2008, 17, 333–341. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-37549009171&doi=10.1016%2Fj.autcon.2007.05.013&partnerID=40&md5=826e6ca6632ec9afef4bfc11380722b6 (accessed on 11 March 2023). [CrossRef]
- Osmani, M. Design waste mapping: A project life cycle approach. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2013, 166, 114–127. [Google Scholar] [CrossRef]
- Osmani, M. Integration of Waste Minimisation Strategies into the Design Process of Buildings. 2015. Available online: https://dspace.lboro.ac.uk/2134/21775 (accessed on 11 September 2022).
- State Library New South Wales Understanding the Building Design and Construction Phases. Available online: https://www.sl.nsw.gov.au/public-library-services/people-places/understanding-building-design-and-construction-phases (accessed on 24 April 2023).
- Oluleye, B.I.; Chan, D.W.M.; Olawumi, T.O.; Saka, A.B. Assessment of symmetries and asymmetries on barriers to circular economy adoption in the construction industry towards zero waste: A survey of international experts. Build. Environ. 2023, 228, 109885. [Google Scholar] [CrossRef]
- Wynn, D.C.; Clarkson, P.J. Process models in design and development. Res. Eng. Des. 2018, 29, 161–202. [Google Scholar] [CrossRef]
- Doust, K.; Battista, G.; Rundle, P. Front-end construction waste minimization strategies. Aust. J. Civ. Eng. 2020, 19, 1–11. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.M.; Shihab, S.R.; Skitmore, M.; Nepal, M.P. Nonconformity Assessment in Building Construction Projects: A Fuzzy Group Decision-Making Approach. J. Perform. Constr. Facil. 2023, 37, 04022075. [Google Scholar] [CrossRef]
- Olanrewaju, S.D.; Ogunmakinde, O.E. Waste minimisation strategies at the design phase: Architects’ response. Waste Manag. 2020, 118, 323–330. [Google Scholar] [CrossRef]
- Alshboul, A.A.; Ghazaleh, S.A. Consequences of design decisions on material waste during construction survey of architects’ point of view, The case of Jordan. Jordan J. Civ. Eng. 2014, 8, 363–374. [Google Scholar]
- Udawatta, N.; Zuo, J.; Chiveralls, K.; Zillante, G. Improving waste management in construction projects: An Australian study. Resour. Conserv. Recycl. 2015, 101, 73–83. [Google Scholar] [CrossRef]
- de Magalhães, R.F.; Danilevicz, Â.d.M.F.; Saurin, T.A. Reducing construction waste: A study of urban infrastructure projects. Waste Manag. 2017, 67, 265–277. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Estarli, M.; Barrera, E.S.A.; et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Rev. Esp. Nutr. Humana y Diet. 2016, 20, 148–160. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Olawumi, T.O. Barriers to circular economy adoption and concomitant implementation strategies in building construction and demolition waste management: A PRISMA and interpretive structural modeling approach. Habitat Int. 2022, 126, 102615. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Radzi, A.R.; Rahman, R.A.; Doh, S.I. Decision making in highway construction: A systematic review and future directions. J. Eng. Des. Technol. 2021, 21, 1083–1106. [Google Scholar] [CrossRef]
- Vaismoradi, M.; Jones, J.; Turunen, H.; Snelgrove, S. Theme development in qualitative content analysis and thematic analysis. J. Nurs. Educ. Pract. 2016, 6, 100–110. [Google Scholar] [CrossRef]
- Jin, R.; Yuan, H.; Chen, Q. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resour. Conserv. Recycl. 2019, 140, 175–188. [Google Scholar] [CrossRef]
- Ali, A.; Mahfouz, A.; Arisha, A. Analysing supply chain resilience: Integrating the constructs in a concept mapping framework via a systematic literature review. Supply Chain Manag. Int. J. 2017, 22, 16–39. [Google Scholar] [CrossRef]
- Elmualim, A.; Mostafa, S.; Chileshe, N.; Rameezdeen, R. Construction and the Circular Economy: Smart and Industrialised Prefabrication. In Unmaking Waste in Production and Consumption: Towards the Circular Economy; Crocker, R., Saint, C., Chen, G., Tong, Y., Eds.; Emerald Publishing Limited: Bingley, UK, 2018; pp. 323–336. [Google Scholar] [CrossRef]
- Aghaei Chadegani, A.; Salehi, H.; Md Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ale Ebrahim, N. A comparison between two main academic literature collections: Web of science and scopus databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Kabirifar, K.; Mojtahedi, M.; Wang, C.C. A Systematic Review of Construction and Demolition Waste Management in Australia: Current Practices and Challenges. Recycling 2021, 6, 34. Available online: https://www.mdpi.com/2313-4321/6/2/34 (accessed on 10 January 2023). [CrossRef]
- Wu, H.; Zuo, J.; Yuan, H.; Zillante, G.; Wang, J. A review of performance assessment methods for construction and demolition waste management. Resour. Conserv. Recycl. 2019, 150, 104407. [Google Scholar] [CrossRef]
- Wijewickrama, M.K.C.S.; Chileshe, N.; Rameezdeen, R.; Ochoa, J.J. Quality assurance in reverse logistics supply chain of demolition waste: A systematic literature review. Waste Manag. Res. 2021, 39, 3–24. [Google Scholar] [CrossRef]
- Wijewickrama, M.K.C.S.; Chileshe, N.; Rameezdeen, R.; Ochoa, J.J. Information sharing in reverse logistics supply chain of demolition waste: A systematic literature review. J. Clean. Prod. 2021, 280, 124359. [Google Scholar] [CrossRef]
- Yin, X.; Liu, H.; Chen, Y.; Al-Hussein, M. Building information modelling for off-site construction: Review and future directions. Autom. Constr. 2019, 101, 72–91. [Google Scholar] [CrossRef]
- Stone, J.M.; Gardiner, T.A.; Teuben, P.; Hawley, J.F.; Simon, J.B. Athena: A New Code for Astrophysical MHD. Astrophys. J. Suppl. Ser. 2008, 178, 137–177. [Google Scholar] [CrossRef]
- Fereday, J.; Muir-Cochrane, E. Demonstrating rigor using thematic analysis: A hybrid approach of inductive and deductive coding and theme development. Int. J. Qual. Methods 2006, 5, 80–92. [Google Scholar] [CrossRef]
- Llatas, C. A model for quantifying construction waste in projects according to the European waste list. Waste Manag. 2011, 31, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Yates, J.K. Sustainable methods for waste minimisation in construction. Constr. Innov. 2013, 13, 281–301. [Google Scholar] [CrossRef]
- Jayamathan, J.; Rameezdeen, R. Influence of labour arrangement on construction material waste generation. Struct. Surv. 2014, 32, 76–88. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Akinade, O.O.; Ajayi, S.O.; Alaka, H.A.; Owolabi, H.A. Analysis of critical features and evaluation of BIM software: Towards a plug-in for construction waste minimization using big data. Int. J. Sustain. Build. Technol. Urban Dev. 2015, 6, 211–228. [Google Scholar] [CrossRef]
- Olofsson Hallén, K.; Forsman, M.; Eriksson, A. Interactions between Human, Technology and Organization in Building Information Modelling (BIM)—A scoping review of critical factors for the individual user. Int. J. Ind. Ergon. 2023, 97, 103480. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Ajayi, S.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Arawomo, O.O. Designing out construction waste using BIM technology: Stakeholders’ expectations for industry deployment. J. Clean. Prod. 2018, 180, 375–385. [Google Scholar] [CrossRef]
- Murtagh, N.; Scott, L.; Fan, J. Sustainable and resilient construction: Current status and future challenges. J. Clean. Prod. 2020, 268, 122264. [Google Scholar] [CrossRef]
- Haruna, A.; Shafiq, N.; Montasir, O.A. Building information modelling application for developing sustainable building (Multi criteria decision making approach). Ain Shams Eng. J. 2021, 12, 293–302. [Google Scholar] [CrossRef]
- Zoghi, M.; Kim, S. Dynamic modeling for life cycle cost analysis of BIM-based construction waste management. Sustainability 2020, 12, 2483. [Google Scholar] [CrossRef]
- Won, J.; Cheng, J.C.P.; Lee, G. Quantification of construction waste prevented by BIM-based design validation: Case studies in South Korea. Waste Manag. 2016, 49, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.J.; Livesey, P.; Wang, J.; Huang, S.; He, X.; Zhang, C. Deconstruction waste management through 3d reconstruction and bim: A case study. Vis. Eng. 2017, 5, 13. [Google Scholar] [CrossRef]
- Liu, Z.; Osmani, M.; Demian, P.; Baldwin, A. A BIM-aided construction waste minimisation framework. Autom. Constr. 2015, 59, 1–23. [Google Scholar] [CrossRef]
- Akbari, M.; Ha, N. Impact of additive manufacturing on the Vietnamese transportation industry: An exploratory study. Asian J. Shipp. Logist. 2020, 36, 78–88. [Google Scholar] [CrossRef]
- Akbarieh, A.; Jayasinghe, L.B.; Waldmann, D.; Teferle, F.N. BIM-based end-of-lifecycle decision making and digital deconstruction: Literature review. Sustainability 2020, 12, 2670. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083586987&doi=10.3390%2Fsu12072670&partnerID=40&md5=5ed311256e00c1ac9530d42c97d8c201 (accessed on 12 December 2022). [CrossRef]
- Bosch-Sijtsema, P.; Buser, M. Construction and demolition waste management on the building site: A literature review. In Proceedings of the Association of Researchers in Construction Management ARCOM—33rd Annual ARCOM Conference 2017, Cambridge, UK, 4–6 September 2017; pp. 269–278. [Google Scholar]
- Chanki, N.M.; Pitroda, J. A Critical Literature Review on Construction Waste Management. Int. J. Adv. Eng. Res. Dev. 2018, 5, 434–439. [Google Scholar]
- Parisi Kern, A.; Ferreira Dias, M.; Piva Kulakowski, M.; Paulo Gomes, L. Waste generated in high-rise buildings construction: A quantification model based on statistical multiple regression. Waste Manag. 2015, 39, 35–44. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O. Integrating construction supply chains within a circular economy: An ANFIS-based waste analytics system (A-WAS). J. Clean. Prod. 2019, 229, 863–873. [Google Scholar] [CrossRef]
- Angulo, S.C.; Gulo, T.; Quattrone, M. Building design and construction process influence in construction waste generation. Key Eng. Mater. 2016, 668, 297–303. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, R.; Wang, Y.; Tam, V.W.; Ma, M. An agent-based model approach for urban demolition waste quantification and a management framework for stakeholders. J. Clean. Prod. 2021, 285, 124897. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Qadir, J.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A.; Pasha, M. Big Data in the construction industry: A review of present status, opportunities, and future trends. Adv. Eng. Inform. 2016, 30, 500–521. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978529080&doi=10.1016%2Fj.aei.2016.07.001&partnerID=40&md5=2e3c4aa24b24f44b04d3ef411258aa75 (accessed on 15 January 2023). [CrossRef]
- Llatas, C.; Osmani, M. Development and validation of a building design waste reduction model. Waste Manag. 2016, 56, 318–336. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Shen, L. Trend of the research on construction and demolition waste management. Waste Manag. 2011, 31, 670–679. [Google Scholar] [CrossRef]
- Begum, R.A.; Siwar, C.; Pereira, J.J.; Jaafar, A.H. Implementation of waste management and minimisation in the construction industry of Malaysia. Resour. Conserv. Recycl. 2007, 51, 190–202. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. Challenges and Opportunities in Transforming a City into a “Zero Waste City”. Challenges 2011, 2, 73–93. [Google Scholar] [CrossRef]
- Wu, H.; Zuo, J.; Zillante, G.; Wang, J.; Yuan, H. Status quo and future directions of construction and demolition waste research: A critical review. J. Clean. Prod. 2019, 240, 118163. [Google Scholar] [CrossRef]
- Lam, T.T.; Mahdjoubi, L.; Mason, J. A framework to assist in the analysis of risks and rewards of adopting BIM for SMEs in the UK. J. Civ. Eng. Manag. 2017, 23, 740–752. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85019174694&doi=10.3846%2F13923730.2017.1281840&partnerID=40&md5=3e2cef4a7ba279ed73af8f97e2176c0d (accessed on 19 January 2023). [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Kadiri, K.O.; Akinade, O.O.; Bilal, M.; Owolabi, H.A.; Alaka, H.A. Competency-based measures for designing out construction waste: Task and contextual attributes. Eng. Constr. Archit. Manag. 2016, 23, 464–490. [Google Scholar] [CrossRef]
- Çavuşoğlu, Ö.H.; Çağdaş, G. Enhancing decision making processes in early design stages: Opportunities of bim to achieve energy efficient design solutions. A/Z ITU J. Fac. Archit. 2018, 15, 53–64. [Google Scholar] [CrossRef]
- Baldwin, A.; Poon, C.-S.; Shen, L.-Y.; Austin, S.; Wong, I. Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction. Renew. Energy 2009, 34, 2067–2073. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A. Critical management practices influencing on-site waste minimization in construction projects. Waste Manag. 2017, 59, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Schade, J.; Olofsson, T.; Schreyer, M. Decision-making in a model-based design process. Constr. Manag. Econ. 2011, 29, 371–382. [Google Scholar] [CrossRef]
- Laovisutthichai, V.; Lu, W.; Bao, Z. Design for construction waste minimization: Guidelines and practice. Archit. Eng. Des. Manag. 2020, 18, 279–298. [Google Scholar] [CrossRef]
- Ghose, A.; Pizzol, M.; McLaren, S.J. Consequential LCA modelling of building refurbishment in New Zealand- an evaluation of resource and waste management scenarios. J. Clean. Prod. 2017, 165, 119–133. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028356604&doi=10.1016%2Fj.jclepro.2017.07.099&partnerID=40&md5=c6b31b8133757ac0d3c32a2c3e24cd6f (accessed on 21 January 2023). [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Munir, K.; Bilal, M.; Ajayi, S.O.; Owolabi, H.A.; Alaka, H.A.; Bello, S.A. Evaluation criteria for construction waste management tools: Towards a holistic BIM framework. Int. J. Sustain. Build. Technol. Urban Dev. 2016, 7, 3–21. [Google Scholar] [CrossRef]
- Othman, A.A.E.; Abdelrahim, S.M. Achieving sustainability through reducing construction waste during the design process: A value management perspective. J. Eng. Des. Technol. 2019, 18, 362–377. [Google Scholar] [CrossRef]
- Liu, J.; Yi, Y.; Wang, X. Exploring factors influencing construction waste reduction: A structural equation modeling approach. J. Clean. Prod. 2020, 276, 123185. [Google Scholar] [CrossRef]
- Hossain, M.U.; Wu, Z.; Poon, C.S. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. Waste Manag. 2017, 69, 325–335. [Google Scholar] [CrossRef]
- Arif, M.; Bendi, D.; Toma-Sabbagh, T.; Sutrisna, M. Construction waste management in India: An exploratory study. Constr. Innov. 2012, 12, 133–155. [Google Scholar] [CrossRef]
- Liu, H.; Sydora, C.; Altaf, M.S.; Han, S.H.; Al-Hussein, M. Towards sustainable construction: BIM-enabled design and planning of roof sheathing installation for prefabricated buildings. J. Clean. Prod. 2019, 235, 1189–1201. [Google Scholar] [CrossRef]
- Pirzadeh, P.; Lingard, H.; Blismas, N. Effective communication in the context of safe design decision making. Saf. Sci. 2020, 131, 104913. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, A.T.W.; Shen, L.; Liu, G. Quantifying construction and demolition waste: An analytical review. Waste Manag. 2014, 34, 1683–1692. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84905591201&doi=10.1016%2Fj.wasman.2014.05.010&partnerID=40&md5=ecd3d219e4b614f1f3ec3c0d010d0b53 (accessed on 22 January 2023). [CrossRef]
- Hassanain, M.A.; Adewale, B.; Al-Hammad, A.M.; Sanni-Anibire, M.O. Factors affecting building services’ coordination during the design development and review stages. Built Environ. Proj. Asset Manag. 2018, 8, 64–77. [Google Scholar] [CrossRef]
- Akdag, H.C.; Beldek, T. Waste management in green building operations using GSCM. Int. J. Supply Chain Manag. 2017, 6, 174–180. [Google Scholar]
- Nakandala, D.; Samaranayake, P.; Lau, H.; Ramanathan, K. Modelling information flow and sharing matrix for fresh food supply chains. Bus. Process Manag. J. 2017, 23, 108–129. [Google Scholar] [CrossRef]
- Olorunniwo, F.O.; Li, X. Information sharing and collaboration practices in reverse logistics. Supply Chain Manag. Int. J. 2010, 15, 454–462. [Google Scholar] [CrossRef]
- Lotfi, S.; Deja, J.; Rem, P.; Mróz, R.; van Roekel, E.; van der Stelt, H. Mechanical recycling of EOL concrete into high-grade aggregates. Resour. Conserv. Recycl. 2014, 87, 117–125. Available online: https://www.sciencedirect.com/science/article/pii/S0921344914000688 (accessed on 11 January 2023). [CrossRef]
- Domingo, N. Assessment of the impact of complex healthcare features on construction waste generation. Buildings 2015, 5, 860–879. [Google Scholar] [CrossRef]
- Hossain, M.U.; Ng, S.T.; Antwi-Afari, P.; Amor, B. Circular economy and the construction industry: Existing trends, challenges and prospective framework for sustainable construction. Renew. Sustain. Energy Rev. 2020, 130, 109948. [Google Scholar] [CrossRef]
- Bilal, M.; Oyedele, L.O.; Munir, K.; Ajayi, S.O.; Akinade, O.O.; Owolabi, H.A.; Alaka, H.A. The application of web of data technologies in building materials information modelling for construction waste analytics. Sustain. Mater. Technol. 2017, 11, 28–37. [Google Scholar] [CrossRef]
- Alwan, Z.; Jones, P.; Holgate, P. Strategic sustainable development in the UK construction industry, through the framework for strategic sustainable development, using Building Information Modelling. J. Clean. Prod. 2017, 140, 349–358. [Google Scholar] [CrossRef]
- Passey, D. Theories, theoretical and conceptual frameworks, models and constructs: Limiting research outcomes through misconceptions and misunderstandings. Stud. Technol. Enhanc. Learn. 2020, 1, 95–114. [Google Scholar] [CrossRef]
- Nagapan, S.; Rahman, I.A.; Asmi, A.; Memon, A.H.; Latif, I. Issues on construction waste: The need for sustainable waste management. In Proceedings of the CHUSER 2012—2012 IEEE Colloquium on Humanities, Science and Engineering, Kota Kinabalu, Malaysia, 3–4 December 2012; pp. 325–330. [Google Scholar]
- Punith Maharshi, Y.R.; Guptha, C.K.N. Importance of Information Sharing in Construction Supply Chain Management: A Review. In Proceedings of the Tenth AIMS International Conference on Management, Bangalore, India, 6–9 January 2013; pp. 3719–3722. [Google Scholar]
- Won, J.; Cheng, J.C.P. Identifying potential opportunities of building information modeling for construction and demolition waste management and minimization. Autom. Constr. 2017, 79, 3–18. [Google Scholar] [CrossRef]
Group ‘A’ | Group ‘B’ | Group ‘C’ | Group ‘D’ | Group ‘E’ | Group ‘F’ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | Building OR Building project? AND | B1 | Design OR Design stage OR Initial stage OR Early stage OR Design Process AND | C1 | Decision making OR Decision? AND | D1 | “Construction Waste” OR CW AND | E1 | Reduc* OR Minimis* OR Prevent* OR Avoid* OR Eliminat* AND | F1 | Technolog* OR Tool* OR measure* |
F2 | Database* OR Prototype* | ||||||||||
F3 | Model* OR Framework* OR Strateg* | ||||||||||
F4 | Architecture OR Platform | ||||||||||
F5 | Practic* OR Method? OR Approach* | ||||||||||
F6 | System? OR way? | ||||||||||
F7 | Overview OR Review | ||||||||||
F8 | Perspective? |
Current Research Approaches | Supportive Sources | Research Areas | Future Research Directions Identified in Analysed Literature on Design Stage Decision-Making |
---|---|---|---|
Quantifying/estimating waste at the design stage. Reuse and recycling plans for materials to reduce waste based on waste estimation models. Design, modelling, simulation, and validation of waste generation. | [69,70,71,72] | CW quantification and planning for waste diversion. | Developing models with the data and information from waste estimations and quantifications, to make informed decisions towards enhancing the collaboration among stakeholders and improving the supply chain. |
Behaviour/perceptions and attitudes of construction employees/professionals for waste minimisation. | [24,34,75] | Human factors in CW management and minimisation. | Identification and investigation of decision-making mechanisms to assist design team members in collaborative efforts, with the goal of minimising CW. Quantitatively analysing behaviour/perceptions and attitudes of design team members towards CW at the building design stage. |
BIM/digital construction/industry 4.0/artificial intelligence relating to the project design process for waste minimisation. Prefabrication/offsite construction and modular construction. System thinking/automation of design and waste minimisation. Lean concepts for waste reduction at the design stage/reverse logistics/disaster management. Reducing CW during the design process with management concepts. Construction stage onsite waste minimisation. | [56,81,107] | BIM/emerging technologies- or concepts-based CW minimisation. Designing out waste. Management practices. | The integration of emerging technologies, such as BIM and big data, VM, and lean concepts, aiming to improve information sharing among design team members and contribute to decision-making during the design stage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahinkanda, M.M.M.P.; Ochoa Paniagua, J.J.; Rameezdeen, R.; Chileshe, N.; Gu, N. Design Decision-Making for Construction Waste Minimisation: A Systematic Literature Review. Buildings 2023, 13, 2763. https://doi.org/10.3390/buildings13112763
Mahinkanda MMMP, Ochoa Paniagua JJ, Rameezdeen R, Chileshe N, Gu N. Design Decision-Making for Construction Waste Minimisation: A Systematic Literature Review. Buildings. 2023; 13(11):2763. https://doi.org/10.3390/buildings13112763
Chicago/Turabian StyleMahinkanda, Mahinkanda Magalage Madhavee Pradeepika, Jose Jorge Ochoa Paniagua, Rameez Rameezdeen, Nicholas Chileshe, and Ning Gu. 2023. "Design Decision-Making for Construction Waste Minimisation: A Systematic Literature Review" Buildings 13, no. 11: 2763. https://doi.org/10.3390/buildings13112763
APA StyleMahinkanda, M. M. M. P., Ochoa Paniagua, J. J., Rameezdeen, R., Chileshe, N., & Gu, N. (2023). Design Decision-Making for Construction Waste Minimisation: A Systematic Literature Review. Buildings, 13(11), 2763. https://doi.org/10.3390/buildings13112763