Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Sample Preparation
2.3. Test Method
3. Results
3.1. Analysis of the Effect of Dry Density on Permeability and Strength Characteristics of Sandy Soil
3.2. Analysis of the Effect Caused by the Cementation Number on Permeability and Strength Characteristics of Sandy Soil
3.3. Analysis of the Effect of Standing Time on Permeability and Strength Characteristics of Sandy Soil
3.4. Analysis of the Effect of Perfusion Methods on Permeability and Strength Characteristics of Sandy Soil
3.5. Analysis of the Relationship of Permeability Coefficient and UCS with the CaCO3 Generation
4. Conclusions
- (1)
- The permeability coefficient of the solidified sandy soil decreases but the UCS presents an increasing trend by increasing the initial dry density and cementation number.
- (2)
- The permeability coefficient of the solidified sandy soil shows a gradually decreasing trend but the UCS presents an increasing trend by increasing the standing time.
- (3)
- When the two-stage perfusion method is applied, the initial dry density is 1.65 g/cm3, the cementation number is 6, and the standing time is 5 days, the permeability coefficient of the solidified sandy soil is 6.25 × 10−4 cm/s and the UCS reaches 1646.94 kPa, which constitute the optimal condition for the EICP-solidified standard sand.
- (4)
- The permeability coefficient of the sample decreases with the CaCO3 generation, showing a negative correlation; the UCS increases by increasing the CaCO3 generation, showing a positive correlation.
- (5)
- Combined with practical engineering, EICP technology could be used to repair earth–rock dams, playing a role in anti-seepage and reinforcement. More research may be needed for practical engineering applications, and subsequent research will be more closely aligned with actual engineering based on this foundation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nemati, M.; Voordouw, G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme Microb. Technol. 2003, 33, 635–642. [Google Scholar] [CrossRef]
- Yasuhara, H.; Neupane, D.; Hayashi, K.; Okamura, M. Experiments and predictions of physical properties of sand cemented by enzymatically induced carbonate precipitation. Soils Found. 2012, 52, 539–549. [Google Scholar] [CrossRef]
- Arab, M.G.; Alsodi, R.; Almajed, A.; Yasuhara, H.; Zeiada, W.; Shahin, M.A. State-of-the-art review of enzyme-induced calcite precipitation (EICP) for ground improvement: Applications and prospects. Geosciences 2021, 11, 492. [Google Scholar] [CrossRef]
- Sharma, M.; Satyam, N.; Reddy, K.R. State of the art review of emerging and biogeotechnical methods for liquefaction mitigation in sands. J. Hazard. Toxic Radioact. Waste 2021, 25, 03120002. [Google Scholar] [CrossRef]
- Hu, W.; Cheng, W.C.; Wen, S.; Yuan, K. Revealing the enhancement and degradation mechanisms affecting the performance of carbonate precipitation in EICP process. Front. Bioeng. Biotech. 2021, 9, 750258. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.A.; Grouting Committee of the Geo-Institute. Glossary of grouting terminology. J. Geotech. Geoenviron. Eng. 2005, 131, 1534–1542. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, T.; Dong, M.; Gao, J.; Peng, X.; Guo, Y.; Wang, Z.; Liang, C. Field studies on the effects of three geotextiles on runoff and erosion of road slope in Beijing. Catena 2013, 109, 150–156. [Google Scholar] [CrossRef]
- Álvarez-Mozos, J.; Abad, E.; Giménez, R.; Campo, M.A.; Goñi, M.; Arive, M.; Casalí, J.; Díez, J.; Diego, I. Evaluation of erosion control geotextiles on steep slopes. Part 1: Effects on runoff and soil loss. Catena 2014, 118, 168–178. [Google Scholar] [CrossRef]
- Gao, Y.; He, J.; Tang, X.; Chu, J. Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil. Soils Found. 2019, 59, 1631–1637. [Google Scholar] [CrossRef]
- Hoang, T.; Alleman, J.; Cetin, B.; Choi, S.G. Engineering properties of biocementation coarse-and fine-grained sand catalyzed by bacterial cells and bacterial enzyme. J. Mater. Civ. Eng. 2020, 32, 04020030. [Google Scholar] [CrossRef]
- Wang, H.X.; Miao, L.C.; Sun, X.H.; Wu, L.Y.; Fan, G.C. Experimental study on sand solidification and optimization of EICP in different temperature environments. J. Southeast Univ. Nat. Sci. Ed. 2022, 52, 712–719. [Google Scholar]
- Tian, W.; Li, T.; Jia, N.; He, L.; Zhang, X.K.; Zhang, X.D. Properties of subgrade loess solidified by calcium lignosulfonate-EICP solution. Mater. Rep. 2022, 36, 78–85. [Google Scholar]
- Yuan, H.; Ren, G.; Liu, K.; Zheng, W.; Zhao, Z. Experimental Study of EICP Combined with Organic Materials for Silt Improvement in the Yellow River Flood Area. Appl. Sci. 2020, 10, 7678. [Google Scholar] [CrossRef]
- Iamchaturapatr, J.; Piriyakul, K.; Petcherdchoo, A. Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers. Case Stud. Constr. Mater. 2022, 16, e00871. [Google Scholar] [CrossRef]
- Cui, M.J.; Lai, H.J.; Hoang, T.; Chu, J. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement. Acta Geotech. 2021, 16, 481–489. [Google Scholar] [CrossRef]
- Meng, H.; Shu, S.; Gao, Y.F.; Yan, B.Y.; He, J. Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement. Eng. Geol. 2021, 294, 106374. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, W.M.; Liu, Z.R.; Wang, Q.; Chen, Y.G. Influence of injection methods on calcareous sand cementation by EICP technique. Constr. Build. Mater. 2023, 363, 129724. [Google Scholar] [CrossRef]
- Alotaibi, E.; Arab, M.G.; Abdallah, M.; Nassif, N.; Omar, M. Life cycle assessment of biocemented sands using enzyme induced carbonate precipitation (EICP) for soil stabilization applications. Sci. Rep. 2022, 12, 6032. [Google Scholar] [CrossRef] [PubMed]
- van Paassen, L.A.; Ghose, R.; van der Linden, T.J.; van der Star, W.R.; van Loosdrecht, M.C. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- GB/T 17671-1999; Method of Testing Cements-Determination of Strength. National Bureau of Quality and Technical Supervision: Beijing, China, 1999.
- GB/T 50123-2019; Standard for Geotechnical Testing Method. Construction Ministry of PRC: Beijing, China, 2019.
- Cheng, L.; Cord-Ruwisch, R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol. Eng. 2012, 42, 64–72. [Google Scholar] [CrossRef]
- Tobler, J.D.; Maclachlan, E.; Phoenix, R.V. Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecol. Eng. 2012, 42, 270–278. [Google Scholar] [CrossRef]
- Cheng, L.; Shahin, M.A.; Chu, J. Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech. 2019, 5, 615–626. [Google Scholar] [CrossRef]
- Harkes, M.P.; Van Paassen, A.L.; Booster, J.L.; Whiffin, V.S.; van Loosdrecht, M.C. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcemen. Ecol. Eng. 2010, 36, 112–117. [Google Scholar] [CrossRef]
- Shan, Z.; Zhang, P.; Kou, H. Mechanical and engineering behavior of MICP-treated coarse siliceous sands. KSCE J. Civ. Eng. 2022, 26, 79–87. [Google Scholar] [CrossRef]
- Li, J.; Zhu, F.Q.; Wu, F.S.; Chen, Y.X.; Richards, J.; Li, T.X.; Li, P.; Shang, D.J.; Yu, J.; Viles, H.; et al. Impact of soil density on biomineralization using EICP and MICP techniques for earthen sites consolidation. J. Environ. Manag. 2024, 363, 121410. [Google Scholar] [CrossRef] [PubMed]
- Shu, S.; Yan, B.Y.; Meng, H.; Bian, X. Comparative study of EICP treatment methods on the mechanical properties of sandy soil. Soils Found. 2022, 62, 101246. [Google Scholar] [CrossRef]
- Arab, M.G.; Rohy, H.; Zeiada, W.; Almajed, A.; Omar, M. One-phase EICP biotreatment of sand exposed to various environmental conditions. J. Mater. Civ. Eng. 2021, 33, 04020489. [Google Scholar] [CrossRef]
- Tian, K.L.; Wang, X.D.; Zhang, S.C.; Zhang, H.L.; Zhang, F.; Yang, A.Q. Effect of reactant injection rate on solidifying aeolian sand via microbially induced calcite precipitation. J. Mater. 2020, 32, 04020291. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Q.; Yuan, M.N.; Chen, X.; Xiao, Z.Y.; Hao, X.H.; Zhang, J.; Tang, Q. The effect of MICP on physical and mechanical properties of silt with different fine particle content and pore ratio. Appl. Sci. 2021, 12, 139. [Google Scholar] [CrossRef]
- Wang, L.; Liu, S.H. Mechanism of sand cementation with an efficient method of microbial-induced calcite precipitation. Materials 2021, 14, 5631. [Google Scholar] [CrossRef]
GS | ρdmax (g/cm3) | ρdmin (g/cm3) | d10 (mm) | d30 (mm) | d60 (mm) | Cu | Cc |
---|---|---|---|---|---|---|---|
2.650 | 1.810 | 1.480 | 0.136 | 0.300 | 0.660 | 4.853 | 1.003 |
ρd (g/cm3) | n | t (d) | Perfusion Methods |
---|---|---|---|
1.55, 1.60, 1.65 | 2, 4, 6 | 1, 3, 5 | MP |
1.55, 1.60, 1.65 | 2, 4, 6 | 1, 3, 5 | SP |
1.55, 1.60, 1.65 | 2, 4, 6 | 1, 3, 5 | TP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Li, G.; Liu, J.; Wang, P.; Liu, C.; Zhang, J. Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). Buildings 2024, 14, 1977. https://doi.org/10.3390/buildings14071977
Yuan L, Li G, Liu J, Wang P, Liu C, Zhang J. Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). Buildings. 2024; 14(7):1977. https://doi.org/10.3390/buildings14071977
Chicago/Turabian StyleYuan, Lujing, Gang Li, Jia Liu, Pengzhou Wang, Cong Liu, and Jinli Zhang. 2024. "Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)" Buildings 14, no. 7: 1977. https://doi.org/10.3390/buildings14071977
APA StyleYuan, L., Li, G., Liu, J., Wang, P., Liu, C., & Zhang, J. (2024). Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP). Buildings, 14(7), 1977. https://doi.org/10.3390/buildings14071977