The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome
Abstract
:1. Introduction
2. L. lactis Core Genome and Proteome
3. Transcriptome and Proteome Profiles of L. lactis in Response to Natural Stresses
4. Transcriptome and Proteome Profiles of L. lactis in Response to Plasmid DNA and Recombinant Protein Production
4.1. Effect of the Overexpression of Membrane and Soluble Proteins in the L. lactis Transcriptome and Proteome
4.2. Effect of the Growth Rate in the Proteome of L. lactis
4.3. Effect of Plasmid Copy Number in the Proteome of L. lactis
4.4. Insights from E. coli and B. subtilis Studies
4.5. Effect of Different Stresses in the L. lactis Transcriptome and Proteome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wood, B.J.B.; Holzapfel, W.H. The Genera of Lactic Acid Bacteria; Springer: Boston, MA, USA, 1995. [Google Scholar]
- Bolotin, A.; Wincker, P.; Mauger, S.; Jaillon, O.; Malarme, K.; Weissenbach, J.; Ehrlich, S.D.; Sorokin, A. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001, 11, 731–753. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-HumaránL, G.; Kharrat, P.; Chatel, J.-M.; Langella, P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb. Cell Factories 2011, 10, S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Souza, R.; Pandeya, D.R.; Hong, S.T. Lactococcus lactis: An efficient gram positive cell factory for the production and secretion of recombinant protein. Biomed. Res. 2012, 23, 1. [Google Scholar]
- Le Loir, Y.; Azevedo, V.; Oliveira, S.C.; Freitas, D.A.; Miyoshi, A.; Bermúdez-Humaran, L.G.B.; Nouaille, S.; Ribeiro, A.L.; Leclercq, S.; Gabriel, E.J.; et al. Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb. Cell Factories 2005, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gram, G.J.; Fomsgaard, A.; Thorn, M.; Madsen, S.M.; Glenting, J. Immunological analysis of a Lactococcus lactis-based DNA vaccine expressing HIV gp120. Genet. Vaccines Ther. 2007, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.L.; Arrived, K.R.; Johansen, E. Genetic analysis of the minimal replicon of the Lactococcus lactis subsp. lactis biovar diacetylactis citrate plasmid. Mol. Genet. Genom. 1994, 244, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.B.; Turk, M.Z.; Saraiva, T.D.L.; De Castro, C.P.; Souza, B.M.; Agresti, P.M.; Lima, F.A.; Pfeiffer, V.N.; de Azevedo, M.S.P.; Rocha, C.S.; et al. DNA Vaccines Approach: From Concepts to Applications. World J. Vaccines 2014, 4, 50–71. [Google Scholar] [CrossRef] [Green Version]
- SilvaI, N.; Duarte, S.; Moreira, L.M.; Monteiro, G.A. Draft Genome Sequence of the Plasmid-Free Lactococcus lactis subsp. lactis Strain LMG 19460. Genome Announc. 2017, 5, e00210-17. [Google Scholar] [CrossRef] [Green Version]
- Ideker, T.; Galitski, T.; Hood, L. A new approach to decoding life: Systems Biology. Annu. Rev. Genom. Hum. Genet. 2001, 2, 343–372. [Google Scholar] [CrossRef]
- Kitano, H. Systems Biology: A Brief Overview. Science 2002, 295, 1662–1664. [Google Scholar] [CrossRef] [Green Version]
- Rathore, A.S.; Chauhan, A. Transcriptomics and the production of recombinant therapeutics. Biopharm Int. 2018, 31, 22–28. [Google Scholar]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelleher, P.; Bottacini, F.; Mahony, J.; Kilcawley, K.N.; Van Sinderen, U. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation. BMC Genom. 2017, 18, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, W.M.; Sousa, C.; Oliveira, L.D.C.; Soares, S.C.; Souza, G.H.M.F.; Tavares, G.C.; Resende, C.P.; Folador, E.L.; Pereira, F.L.; Figueiredo, H.; et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactisthrough label-free quantitative proteomics. Microb. Biotechnol. 2019, 12, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Wels, M.; Siezen, R.; Van Hijum, S.; Kelly, W.J.; Bachmann, H. Comparative Genome Analysis of Lactococcus lactis Indicates Niche Adaptation and Resolves Genotype/Phenotype Disparity. Front. Microbiol. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hols, P.; Kleerebezem, M.; Schanck, A.N.; Ferain, T.; Hugenholtz, J.; Delcour, J.; De Vos, W.M. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Nat. Biotechnol. 1999, 17, 588–592. [Google Scholar] [CrossRef]
- Hugenholtz, J.; Kleerebezem, M.; Starrenburg, M.; Delcour, J.; de Vos, W.; Hols, P. Lactococcus lactis as a Cell Factory for High-Level Diacetyl Production. Appl. Environ. Microbiol. 2000, 66, 4112–4114. [Google Scholar] [CrossRef] [Green Version]
- Sybesma, W.; Starrenburg, M.; Kleerebezem, M.; Mierau, I.; de Vos, W.M.; Hugenholtz, J. Increased Production of Folate by Metabolic Engineering of Lactococcus lactis. Appl. Environ. Microbiol. 2003, 69, 3069–3076. [Google Scholar] [CrossRef] [Green Version]
- Sybesma, W.; Born, E.V.D.; Starrenburg, M.; Mierau, I.; Kleerebezem, M.; de Vos, W.M.; Hugenholtz, J. Controlled Modulation of Folate Polyglutamyl Tail Length by Metabolic Engineeringof Lactococcuslactis. Appl. Environ. Microbiol. 2003, 69, 7101–7107. [Google Scholar] [CrossRef] [Green Version]
- Sybesma, W.; Burgess, C.; Starrenburg, M.; van Sinderen, D.; Hugenholtz, J. Multivitamin production in Lactococcus lactis using metabolic engineering. Metab. Eng. 2003, 6, 109–115. [Google Scholar] [CrossRef]
- Badri, A.; Raman, K.; Jayaraman, G. Uncovering Novel Pathways for Enhancing Hyaluronan Synthesis in Recombinant Lactococcus lactis: Genome-Scale Metabolic Modeling and Experimental Validation. Processes 2019, 7, 343. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Fu, Y.; Liu, F.; Xu, H.; Saris, P.E.J.; Qiao, M. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000. Microb. Cell Factories 2017, 16, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Zhao, Y.; Du, Y.; Miao, S.; Liu, J.; Li, Y.; Caiyin, Q.; Qiao, J. Quantitative proteomics of Lactococcus lactis F44 under cross-stress of low pH and lactate. J. Dairy Sci. 2018, 101, 6872–6884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Liu, J.; Miao, S.; Zhao, Y.; Zhu, H.; Qiao, M.; Saris, P.E.J.; Qiao, J. Contribution of YthA, a PspC Family Transcriptional Regulator of Lactococcus lactis F44 Acid Tolerance and Nisin Yield: A Transcriptomic Approach. Appl. Environ. Microbiol. 2018, 84, e02483-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Yang, P.; Wu, Z.; Zhang, J.; Du, G. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches. J. Ind. Microbiol. Biotechnol. 2019, 46, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Bron, P.A.; van Bokhorst-van de Veen, H.; Wels, M.; Kleerebezem, M. Stress Responses of Lactic Acid Bacteria; Tsakalidou, E., Papadimitriou, K., Eds.; Springer: Boston, MA, USA, 2011; Chapter 16; p. 369. [Google Scholar]
- Van Tilburg, A.Y.; Cao, H.; van der Meulen, S.B.; Solopova, A.; Kuipers, O.P. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories. Curr. Opin. Biotechnol. 2019, 59, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Jin, Y.; An, H.J.; Kim, J. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host. J. Microbiol. Biotechnol. 2017, 27, 1345–1358. [Google Scholar] [CrossRef] [Green Version]
- Marreddy, R.K.R.; Pinto, J.P.C.; Wolters, J.C.; Geertsma, E.R.; Fusetti, F.; Permentier, H.P.; Kuipers, O.P.; Kok, J.; Poolman, B. The Response of Lactococcus lactis to Membrane Protein Production. PLoS ONE 2011, 6, e24060. [Google Scholar] [CrossRef] [Green Version]
- Teusink, B.; Bachmann, H.; Molenaar, D. Systems biology of lactic acid bacteria: A critical review. Microb. Cell Factories 2011, 10, S11. [Google Scholar] [CrossRef] [Green Version]
- Mairhofer, J.; Scharl, T.; Marisch, K.; Cserjan-Puschmann, M.; Striedner, G. Comparative Transcription Profiling and In-Depth Characterization of Plasmid-Based and Plasmid-Free Escherichia coli Expression Systems under Production Conditions. Appl. Environ. Microbiol. 2013, 79, 3802–3812. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, S.; Bailey, J.E. Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli. Biotechnol. Bioeng. 1991, 37, 736–745. [Google Scholar] [CrossRef] [PubMed]
- Neidhardt, I.C.; Ingraham, J.L.; Schaechter, M. Physiology of the Bacterial Cell—A Molecular Approach; Sinauer Associates Inc.: Sunderland, MA, USA, 1990. [Google Scholar]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A Genomic Perspective on Protein Families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG database: An updated version includes eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Wallin, E.; Von Heijne, G. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 1998, 7, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Drews, J. Drug Discovery: A Historical Perspective. Science 2000, 287, 1960–1964. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.P.C.; Kuipers, O.P.; Marreddy, R.K.R.; Poolman, B.; Kok, J. Efficient Overproduction of Membrane Proteins in Lactococcus lactis Requires the Cell Envelope Stress Sensor/Regulator Couple CesSR. PLoS ONE 2011, 6, e21873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dressaire, C.; Gitton, C.; Loubière, P.; Monnet, V.; Queinnec, I.; Cocaign-Bousquet, M. Transcriptome and Proteome Exploration to Model Translation Efficiency and Protein Stability in Lactococcus lactis. PLoS Comput. Biol. 2009, 5, e1000606. [Google Scholar] [CrossRef] [Green Version]
- Dressaire, C.; Redon, E.; Milhem, H.; Besse, P.; Loubière, P.; Cocaign-Bousquet, M. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genom. 2008, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Mata, J.; Marguerat, S.; Bähler, J. Post-transcriptional control of gene expression: A genome-wide perspective. Trends Biochem. Sci. 2005, 30, 506–514. [Google Scholar] [CrossRef]
- Wu, G.; Nie, L.; Zhang, W. Integrative Analyses of Posttranscriptional Regulation in the Yeast Saccharomyces cerevisiae Using Transcriptomic and Proteomic Data. Curr. Microbiol. 2008, 57, 18–22. [Google Scholar] [CrossRef]
- Nie, L.; Wu, G.; Brockman, F.J.; Zhang, W. Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: Zero-inflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics 2006, 22, 1641–1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, L.; Wu, G.; Zhang, W. Correlation of mRNA Expression and Protein Abundance Affected by Multiple Sequence Features Related to Translational Efficiency in Desulfovibrio vulgaris: A Quantitative Analysis. Genetics 2006, 174, 2229–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-H.; Mills, D.A. Improvement of a nisin-inducible expression vector for use in lactic acid bacteria. Plasmid 2007, 58, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Jürgen, B.; Hanschke, R.; Sarvas, M.; Hecker, M.; Schweder, T. Proteome and transcriptome based analysis of Bacillus subtilis cells overproducing an insoluble heterologous protein. Appl. Microbiol. Biotechnol. 2001, 55, 326–332. [Google Scholar] [CrossRef]
- Aldor, I.S.; Krawitz, D.C.; Forrest, W.; Chen, C.; Nishihara, J.C.; Joly, J.C.; Champion, K.M. Proteomic Profiling of Recombinant Escherichia coli in High-Cell-Density Fermentations for Improved Production of an Antibody Fragment Biopharmaceutical. Appl. Environ. Microbiol. 2005, 71, 1717–1728. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.-H.; Lee, W.-C. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins. Microb. Cell Factories 2010, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Marciniak, B.C.; Trip, H.; Veek, P.J.V.-D.; Kuipers, O.P. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins. Microb. Cell Factories 2012, 11, 66. [Google Scholar] [CrossRef] [Green Version]
- Morello, E.; Humaran, L.G.B.; Llull, D.; Solé-Jamault, V.; Miraglio, N.; Langella, P.; Poquet, I. Lactococcus lactis, an Efficient Cell Factory for Recombinant Protein Production and Secretion. J. Mol. Microbiol. Biotechnol. 2007, 14, 48–58. [Google Scholar] [CrossRef]
- Poquet, I.; Bolotin, A.; Gruss, A. Optimising the production of heterologous exported proteins in Lactococcus lactis by inactivation of HtrA, the unique house-keeping surface protease. Lait 2001, 81, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Van der Meulen, S.B.; de Jong, A.; Kok, J. Early Transcriptome Response of Lactococcus lactis to Environmental Stresses Reveals Differentially Expressed Small Regulatory RNAs and tRNAs. Front. Microbiol. 2017, 8, 1704. [Google Scholar] [CrossRef] [Green Version]
- Marreddy, R.K.R.; Geertsma, E.R.; Permentier, H.P.; Pinto, J.P.C.; Kok, J.; Poolman, B. Amino Acid Accumulation Limits the Overexpression of Proteins in Lactococcus lactis. PLoS ONE 2010, 5, e10317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ma, A.; McDermaid, A.; Zhang, H.; Liu, C.; Cao, H.; Ma, Q. RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis. Genes 2018, 9, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, G.A.; Duarte, S.O.D. The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome. Microorganisms 2022, 10, 267. https://doi.org/10.3390/microorganisms10020267
Monteiro GA, Duarte SOD. The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome. Microorganisms. 2022; 10(2):267. https://doi.org/10.3390/microorganisms10020267
Chicago/Turabian StyleMonteiro, Gabriel A., and Sofia O. D. Duarte. 2022. "The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome" Microorganisms 10, no. 2: 267. https://doi.org/10.3390/microorganisms10020267
APA StyleMonteiro, G. A., & Duarte, S. O. D. (2022). The Effect of Recombinant Protein Production in Lactococcus lactis Transcriptome and Proteome. Microorganisms, 10(2), 267. https://doi.org/10.3390/microorganisms10020267