The Use of Long-Read Sequencing Technologies in Infection Control: Horizontal Transfer of a blaCTX-M-27 Containing lncFII Plasmid in a Patient Screening Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain Collection
2.2. Identification of Bacteria and Antimicrobial Susceptibility Testing
2.3. Whole Genome Sequencing (WGS) and Data Analysis
3. Results
3.1. Species Identification and Antimicrobial Susceptibility Testing
3.2. Detection of ARG by WGS Data Analysis
3.3. Characterisation and Comparison of MDR Plasmids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Novais, A.; Viana, D.; Baquero, F.; Martinez-Botas, J.; Canton, R.; Coque, T.M. Contribution of IncFII and broad-host IncA/C and IncN plasmids to the local expansion and diversification of phylogroup B2 Escherichia coli ST131 clones carrying blaCTX-M-15 and qnrS1 genes. Antimicrob. Agents Chemother. 2012, 56, 2763–2766. [Google Scholar] [CrossRef] [Green Version]
- Patino-Navarrete, R.; Rosinski-Chupin, I.; Cabanel, N.; Zongo, P.D.; Hery, M.; Oueslati, S.; Girlich, D.; Dortet, L.; Bonnin, R.A.; Naas, T.; et al. Specificities and Commonalities of Carbapenemase-Producing Escherichia coli Isolated in France from 2012 to 2015. mSystems 2022, 7, e01169-21. [Google Scholar] [CrossRef]
- Zautner, A.E.; Bunk, B.; Pfeifer, Y.; Sproer, C.; Reichard, U.; Eiffert, H.; Scheithauer, S.; Gross, U.; Overmann, J.; Bohne, W. Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing. J. Antimicrob. Chemother. 2017, 72, 2737–2744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, A.E.; Stoesser, N.; Wilson, D.J.; Sebra, R.; Kasarskis, A.; Anson, L.W.; Giess, A.; Pankhurst, L.J.; Vaughan, A.; Grim, C.J.; et al. Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob. Agents Chemother. 2016, 60, 3767–3778. [Google Scholar] [CrossRef] [Green Version]
- Effelsberg, N.; Kobusch, I.; Linnemann, S.; Hofmann, F.; Schollenbruch, H.; Mellmann, A.; Boelhauve, M.; Kock, R.; Cuny, C. Prevalence and zoonotic transmission of colistin-resistant and carbapenemase-producing Enterobacterales on German pig farms. One Health 2021, 13, 100354. [Google Scholar] [CrossRef]
- Junemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013, 31, 294–296. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [Green Version]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Yang, Y.; Xu, X.; Brinda, K.; Polz, M.F.; Hanage, W.P.; Zhang, T. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl. Acad. Sci. USA 2021, 118, e2008731118. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alikhan, N.F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Virolle, C.; Goldlust, K.; Djermoun, S.; Bigot, S.; Lesterlin, C. Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes 2020, 11, 1239. [Google Scholar] [CrossRef]
- Moser, A.I.; Keller, P.M.; Campos-Madueno, E.I.; Poirel, L.; Nordmann, P.; Endimiani, A. A Patient with Multiple Carbapenemase Producers Including an Unusual Citrobacter sedlakii Hosting an IncC bla NDM-1- and armA-carrying Plasmid. Pathog. Immun. 2021, 6, 119–134. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Ortiz de la Rosa, J.M.; Goncalves, M.L.; Costa, A.; Nordmann, P.; Poirel, L. Occurrence of NDM-1-producing Morganella morganii and Proteus mirabilis in a single patient in Portugal: Probable in vivo transfer by conjugation. J. Antimicrob. Chemother. 2020, 75, 903–906. [Google Scholar] [CrossRef]
- Mathers, A.J.; Crook, D.; Vaughan, A.; Barry, K.E.; Vegesana, K.; Stoesser, N.; Parikh, H.I.; Sebra, R.; Kotay, S.; Walker, A.S.; et al. Klebsiella quasipneumoniae Provides a Window into Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions with the Hospital Environment. Antimicrob. Agents Chemother. 2019, 63, e02513-18. [Google Scholar] [CrossRef] [Green Version]
- Galani, I.; Panagea, T.; Chryssouli, Z.; Giamarellou, H.; Souli, M. In vivo transmission of a plasmid containing the KPC-2 gene in a single patient. J. Glob. Antimicrob. Resist. 2013, 1, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Blake, K.S.; Choi, J.; Dantas, G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Cell. Mol. Life Sci. 2021, 78, 2585–2606. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.F.; Weber, R.E.; Weig, M.; Werner, G.; Pfeifer, Y. Ultra-deep long-read sequencing detects IS-mediated gene duplications as a potential trigger to generate arrays of resistance genes and a mechanism to induce novel gene variants such as blaCTX-M-243. J. Antimicrob. Chemother. 2022, 77, 381–390. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Classification by EUCAST | MIC (mg/L) | ||
---|---|---|---|---|
E.coli (1) | K. quasipneumoniae (2) | 1 | 2 | |
Ampicillin | R | R | >=32 | >=32 |
Amoxicillin | R | R | - | - |
Amoxicillin/Sulbactam | R | R | 16 | 16 |
Piperacillin/Tazobactam | S | S | <=4 | <=4 |
Cefuroxime | R | R | >=64 | >=64 |
Cefotaxime | R | R | >32 | >32 |
Cefpodoxime | R | R | >=8 | >=8 |
Ceftazidime | R | I | 12 | 1.5 |
Ertapenem | S | S | <=0.5 | <=0.5 |
Imipenem | S | S | <=0.25 | <=0.25 |
Meropenem | S | S | <=0.25 | <=0 25 |
Gentamicin | R | R | <=1 | <=1 |
Ciprofloxacin | R | R | 3 | 0.38 |
Levofloxacin | R | R | - | - |
Moxifloxacin | R | R | >=8 | 2 |
Tigecyclin | S | <=0.5 | - | |
Trimethoprim/Sulfa | S | R | <=20 | >=320 |
Class | Gene Symbol | Aligned Overlap (%) | Location |
---|---|---|---|
K. quasipneumoniae | |||
BETA-LACTAM | blaOKP-B-2 | 100 | KqP_chromosome |
FOSFOMYCIN | fosA | 100 | KqP_chromosome |
PHENICOL/QUINOLONE | oqxB | 100 | KqP_chromosome |
PHENICOL/QUINOLONE | oqxA | 100 | KqP_chromosome |
BETA-LACTAM | blaTEM-1 | 100 | KqP_plasmid2 |
SULFONAMIDE | sul2 | 100 | KqP_plasmid2 |
TETRACYCLINE | tet(D) | 100 | KqP_plasmid2 |
TRIMETHOPRIM | dfrA26 | 100 | KqP_plasmid2 |
BETA-LACTAM | blaLAP-2 | 100 | KqP_plasmid3 |
BETA-LACTAM | blaCTX-M-27 | 100 | KqP_plasmid3 |
QUINOLONE | qnrS1 | 100 | KqP_plasmid3 |
E. coli | |||
FOSFOMYCIN | uhpT_E350Q | 100 | EC_chromosome |
FOSMIDOMYCIN | cyaA_S352T | 100 | EC_chromosome |
QUINOLONE | gyrA_S83L | 99.6 | EC_chromosome |
AMINOGLYCOSIDE | aph(3’)-Ia | 100 | EC_plasmid1 |
AMINOGLYCOSIDE | aph(6)-Id | 100 | EC_plasmid1 |
AMINOGLYCOSIDE | aph(3’’)-Ib | 100 | EC_plasmid1 |
BETA-LACTAM | blaTEM-1 | 100 | EC_plasmid1 |
SULFONAMIDE | sul2 | 100 | EC_plasmid1 |
TETRACYCLINE | tet(B) | 100 | EC_plasmid1 |
BETA-LACTAM | blaLAP-2 | 100 | EC_plasmid2 |
BETA-LACTAM | blaLAP-2 | 100 | EC_plasmid2 |
BETA-LACTAM | blaLAP-2 | 100 | EC_plasmid2 |
BETA-LACTAM | blaCTX-M-27 | 100 | EC_plasmid2 |
BETA-LACTAM | blaCTX-M-27 | 100 | EC_plasmid2 |
BETA-LACTAM | blaCTX-M-27 | 100 | EC_plasmid2 |
QUINOLONE | qnrS1 | 100 | EC_plasmid2 |
QUINOLONE | qnrS1 | 100 | EC_plasmid2 |
QUINOLONE | qnrS1 | 100 | EC_plasmid2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Almsick, V.; Schuler, F.; Mellmann, A.; Schwierzeck, V. The Use of Long-Read Sequencing Technologies in Infection Control: Horizontal Transfer of a blaCTX-M-27 Containing lncFII Plasmid in a Patient Screening Sample. Microorganisms 2022, 10, 491. https://doi.org/10.3390/microorganisms10030491
van Almsick V, Schuler F, Mellmann A, Schwierzeck V. The Use of Long-Read Sequencing Technologies in Infection Control: Horizontal Transfer of a blaCTX-M-27 Containing lncFII Plasmid in a Patient Screening Sample. Microorganisms. 2022; 10(3):491. https://doi.org/10.3390/microorganisms10030491
Chicago/Turabian Stylevan Almsick, Vincent, Franziska Schuler, Alexander Mellmann, and Vera Schwierzeck. 2022. "The Use of Long-Read Sequencing Technologies in Infection Control: Horizontal Transfer of a blaCTX-M-27 Containing lncFII Plasmid in a Patient Screening Sample" Microorganisms 10, no. 3: 491. https://doi.org/10.3390/microorganisms10030491
APA Stylevan Almsick, V., Schuler, F., Mellmann, A., & Schwierzeck, V. (2022). The Use of Long-Read Sequencing Technologies in Infection Control: Horizontal Transfer of a blaCTX-M-27 Containing lncFII Plasmid in a Patient Screening Sample. Microorganisms, 10(3), 491. https://doi.org/10.3390/microorganisms10030491