The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis
Abstract
:1. Introduction
2. Maternal Stress and Birth Outcomes
3. Paternal Stress and Birth Outcomes
4. Microbial Dysbiosis in NEC
5. Maternal Stress-Induced Changes in Microbiota Composition
6. Gene Expression Profiling in NEC
Reference | Technology | Tissue | Sample Size | DEGs | Key Genes | Key Pathways |
---|---|---|---|---|---|---|
Kathy Yuen Yee Chan et al. [71] | Microarray | Intestinal tissue from NEC preterm infants | NEC n = 5 Ctrl n = 4 | ↑ 857 ↓ 1285 | TLR2, TLR4, TREM1, NFkb, AP-1,H1F1A | Angiogenesis, Arginine metabolism, cell adhesion, chemotaxis, extracellular matrix remodeling, hypoxia and oxidative stress, inflammation and muscle contraction. |
Guanglin Chen et al. [72] | Microarray | Small bowel specimens from NEC preterm infants | NEC n = 5 Ctrl n = 4 | ↑ 367 ↓ 2262 | AGT, IL-8, KNG1, ACACB and CAT | Tryptophan, fatty acid, and arachidonic acid metabolism |
Colin Martin | Microarray | Paraffin embedded tissue blocks of NEC samples | NEC n = 6 Ctrl n = 6 | ↑ 47 ↓ 37 | PLA2G2A, H19, AGR2, S100A8, B2M, LOC100132488, CEBPB, LOC643358, LOC100130980, GUCA2A, RARRES1, LOC400963, RPS29, LOC647361, RPS15A, S100A10, LOC100129902, XAF1, TIMP1, SCTR, SERPINA3, LOC389342, EVPL, IFITM2, LOC728937, IFITM3, CEBPD, CLDN15, PPP1R14A, AQP10, REG3G, TUBA1B, REG1B, LOC392437, CREB3L3, C10orf116, ENO1 | Signal transducer and activator of transcription 3 (STAT3), prolactin (PRL), interlukin-1 beta (IL-1β), signal transducer and activator of transcription 1(STAT1), and interferon gamma (IFNγ) |
Eric Tremblay et al. [79] | RNASeq | Intestinal tissue from NEC preterm infants | NEC n = 9 Ctrl n = 6 | ↑ 383 ↓ 421 | CXCL10, TLR4, TLR10, REG3A, DEF5A, DEF6A, LCN2, TFF1, CXCL8, TFF3, BHA2, HBG2 | Altered T and B cell signaling, B cell development, pattern recognition receptors for bacteria and viruses. |
Md. Rabiul Auwul et al. [87] | RNASeq | NEC tissues from preterm infants | NEC n = 9 Ctrl n = 5 | ↑ 398 ↓ 568 | HBB, HBM, HBZ, ALAS2, HBA1, HBG1, HBA2, ASHP, HBQ1, HBD, IGJ, REG3A, POU2AF1, DEFA5, NEB, TNNT3, TNN11, TNNT1, MYL1 | Metabolic processes, regulation of immune response, cell communication, and complement cascade. |
Zhuojun Xie et al. [84] | RNASeq | NEC tissues, NEC-SC-diagnosed NEC with clinical resection, NOR derived from normal part of ileum in NEC-SC patients | NEC n = 4 NEC-SC n = 3 Ctrl NOR n = 5 | NEC vs. NEC-SC ↑ 37 ↓ 7 NEC vs. NOR ↑ 3465 ↓ 2499 NEC-SC vs. NOR ↑ 846 ↓ 613 | HBG2, CCN4, IGF2, SOX11, CYP3A4, TEME54, SCIN, PTK6, XIRP1, MMP12, GSTM1, BOLA2B, KDM5D, UTY, AOPB, RPS4Y1, CEMIP, SLC4A1, KRT19, PIGR, and FAM3D | Toll-like receptor signaling pathways, Th17 cell differentiation and cytokine–cytokine receptor interactions. |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tanner, S.M.; Berryhill, T.F.; Ellenburg, J.L.; Jilling, T.; Cleveland, D.S.; Lorenz, R.G.; Martin, C.A. Pathogenesis of necrotizing enterocolitis: Modeling the innate immune response. Am. J. Pathol. 2015, 85, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Neu, J.; Walker, W.A. Necrotizing enterocolitis. N. Engl. J. Med. 2011, 364, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Afzal, B.; Elberson, V.; McLaughlin, C.; Kumar, V. Early onset necrotizing enterocolitis (NEC) in premature twins. J. Neonatal-Perinat. Med. 2017, 10, 109–112. [Google Scholar] [CrossRef]
- Santulli, T.V.; Schullinger, J.N.; Heird, W.C.; Gongaware, R.D.; Wigger, J.; Barlow, B.; Blanc, W.A.; Berdon, W.E. Acute necrotizing enterocolitis in infancy: A review of 64 cases. Pediatrics 1975, 55, 376–387. [Google Scholar] [CrossRef]
- Niño, D.F.; Sodhi, C.P.; Hackam, D.J. Necrotizing enterocolitis: New insights into pathogenesis and mechanisms. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 590–600. [Google Scholar] [CrossRef]
- Singh, D.K.; Miller, C.M.; Orgel, K.A.; Dave, M.; Mackay, S.; Good, M. Necrotizing enterocolitis: Bench to bedside approaches and advancing our understanding of disease pathogenesis. Front. Pediatr. 2023, 10, 1107404. [Google Scholar] [CrossRef]
- Nicolas, C.T.; Carter, S.R.; Martin, C.A. Impact of maternal factors, environmental factors, and race on necrotizing en-terocolitis. Semin. Perinatol. 2023, 47, 151688. [Google Scholar] [CrossRef]
- Cheddadi, R.; Khandekar, N.N.; Yeramilli, V.; Martin, C. The impact of maternal stress on the development of necrotizing enterocolitis: A comprehensive review. Semin. Pediatr. Surg. 2023, 32, 151324. [Google Scholar] [CrossRef]
- Austin, M.-P.; Leader, L. Maternal stress and obstetric and infant outcomes: Epidemiological findings and neuroendocrine mechanisms. Aust. N. Z. J. Obstet. Gynaecol. 2000, 40, 331–337. [Google Scholar] [CrossRef]
- Garcia-Flores, V.; Romero, R.; Furcron, A.-E.; Levenson, D.; Galaz, J.; Zou, C.; Hassan, S.S.; Hsu, C.-D.; Olson, D.; Metz, G.A.S.; et al. Prenatal Maternal Stress Causes Preterm Birth and Affects Neonatal Adaptive Immunity in Mice. Front. Immunol. 2020, 11, 254. [Google Scholar] [CrossRef]
- Veru, F.; Laplante, D.P.; Luheshi, G.; King, S. Prenatal maternal stress exposure and immune function in the offspring. Stress 2014, 17, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, F.C.R.; Yao, Y.; Ward, I.D.; Ilnytskyy, Y.; Olson, D.M.; Benzies, K.; Kovalchuk, I.; Kovalchuk, O.; Metz, G.A.S. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE 2013, 8, e56967. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.O.; Kamilaris, T.C.; Chrousos, G.P.; Gold, P.W. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci. Biobehav. Rev. 1992, 16, 115–130. [Google Scholar] [CrossRef]
- Plotsky, P.M.; Cunningham, E.T., Jr.; Widmaier, E.P. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 1989, 10, 437–458. [Google Scholar] [CrossRef]
- Sandman, C.A.; Glynn, L.; Schetter, C.D.; Wadhwa, P.; Garite, T.; Chicz-DeMet, A.; Hobel, C. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): Priming the placental clock. Peptides 2006, 27, 1457–1463. [Google Scholar] [CrossRef]
- Johnston, R.C.; Faulkner, M.; Carpenter, P.M.; Nael, A.; Haydel, D.; Sandman, C.A.; Wing, D.A.; Davis, E.P. Associations Between Placental Corticotropin-Releasing Hormone, Maternal Cortisol, and Birth Out-comes, Based on Placental Histopathology. Reprod. Sci. 2020, 27, 1803–1811. [Google Scholar] [CrossRef]
- Herrera, C.L.; Maiti, K.; Smith, R. Preterm Birth and Corticotrophin-Releasing Hormone as a Placental Clock. Endocrinology 2022, 164, bqac206. [Google Scholar] [CrossRef]
- Newnham, J.; Marshall, C.; Padbury, J.; Lam, R.; Hobel, C.; Fisher, D. Fetal catecholamine release with preterm delivery. Am. J. Obstet. Gynecol. 1984, 149, 888–893. [Google Scholar] [CrossRef]
- Hobel, C.J.; Dunkel-Schetter, C.; Roesch, S.C.; Castro, L.C.; Arora, C.P. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am. J. Obstet. Gynecol. 1999, 180, S257–S263. [Google Scholar] [CrossRef]
- Avalos, L.A.; Chen, H.; Li, D.K. Antidepressant medication use, depression, and the risk of preeclampsia. CNS Spectr. 2015, 20, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Li, Y.; Zhang, Z.; Yan, W. Antenatal Depressive Symptoms and the Risk of Preeclampsia or Operative Deliveries: A Meta-Analysis. PLoS ONE 2015, 10, e0119018. [Google Scholar] [CrossRef] [PubMed]
- Kurki, T.; Hiilesmaa, V.; Raitasalo, R.; Mattila, H.; Ylikorkala, O. Depression and anxiety in early pregnancy and risk for preeclampsia. Obstet. Gynecol. 2000, 95, 487–490. [Google Scholar] [PubMed]
- Neugebauer, R.; Kline, J.; Stein, Z.; Shrout, P.; Warburton, D.; Susser, M. Association of Stressful Life Events with Chromosomally Normal Spontaneous Abortion. Am. J. Epidemiol. 1996, 143, 588–596. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Ozkan, H.; Koksal, N. Maternal preeclampsia is associated with increased risk of necrotizing enterocolitis in preterm infants. Early Hum. Dev. 2012, 88, 893–898. [Google Scholar] [CrossRef]
- Lesage, J.; Del-Favero, F.; Leonhardt, M.; Louvart, H.; Maccari, S.; Vieau, D.; Darnaudery, M. Prenatal stress induces intrauterine growth restriction and programmes glucose intolerance and feeding be-haviour disturbances in the aged rat. J. Endocrinol. 2004, 181, 291–296. [Google Scholar] [CrossRef]
- Duci, M.; Frigo, A.C.; Visentin, S.; Verlato, G.; Gamba, P.; Fascetti-Leon, F. Maternal and placental risk factors associated with the development of necrotizing enterocolitis (NEC) and its severity. J. Pediatr. Surg. 2019, 54, 2099–2102. [Google Scholar] [CrossRef]
- Cetinkaya, M.; Ozkan, H.; Köksal, N.; Karali, Z.; Ozgür, T. Neonatal outcomes of premature infants born to preeclamptic mothers. J. Matern. Fetal Neonatal Med. 2010, 23, 425–430. [Google Scholar] [CrossRef]
- Xu, X.; Miao, Z.; Sun, M.; Wan, B. Epigenetic Mechanisms of Paternal Stress in Offspring Development and Diseases. Int. J. Genom. 2021, 2021, 6632719. [Google Scholar] [CrossRef]
- Lind, M.I.; Spagopoulou, F. Evolutionary consequences of epigenetic inheritance. Heredity 2018, 121, 205–209. [Google Scholar] [CrossRef]
- Rodgers, A.B.; Morgan, C.P.; Bronson, S.L.; Revello, S.; Bale, T.L. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 2013, 33, 9003–9012. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.-H.; Peng, H.; Zhang, X.; Zhang, Y.; et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016, 351, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Bygren, L.O.; Kaati, G.; Edvinsson, S. Longevity determined by paternal ancestors’ nutrition during their slow growth period. Acta Biotheor. 2001, 49, 53–59. [Google Scholar] [CrossRef]
- Keinan-Boker, L. The mothers have eaten unripe grapes and the children’s teeth are set on edge”: The potential in-ter-generational effects of the Holocaust on chronic morbidity in Holocaust survivors’ offspring. Isr. J. Health Policy Res. 2014, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, R.; Daskalakis, N.P.; Lehrner, A.; Desarnaud, F.; Bader, H.N.; Makotkine, I.; Flory, J.D.; Bierer, L.M.; Meaney, M.J.; Provençal, N.; et al. Influences of Maternal and Paternal PTSD on Epigenetic Regulation of the Glucocorticoid Receptor Gene in Holocaust Survivor Offspring. Am. J. Psychiatry 2014, 171, 872–880. [Google Scholar] [CrossRef]
- Franklin, T.B.; Russig, H.; Weiss, I.C.; Gräff, J.; Linder, N.; Michalon, A.; Vizi, S.; Mansuy, I.M. Faculty Opinions recommendation of Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 2010, 68, 408–415. [Google Scholar] [CrossRef]
- Hannan, A.J. Stressing the Seminal Role of Paternal Experience in Transgenerational ‘Epigenopathy’ Affecting Offspring Health and Disease Susceptibility. Neuroscience 2018, 388, 472–473. [Google Scholar] [CrossRef]
- Bohacek, J.; Farinelli, M.; Mirante, O.; Steiner, G.; Gapp, K.; Coiret, G.; Ebeling, M.; Durán-Pacheco, G.; Iniguez, A.L.; Manuella, F.; et al. Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol. Psychiatry 2014, 20, 621–631. [Google Scholar] [CrossRef]
- Mardanpour, M.; Ghavidel, N.; Asadi, S.; Khodagholi, F. Paternal stress in rats increased oxytocin, oxytocin receptor, and arginine vasopressin gene expression in the male offspring amygdala with no effect on their social interaction behaviors. Neuroreport 2021, 33, 48–54. [Google Scholar] [CrossRef]
- Vagnerová, K.; Vodička, M.; Hermanová, P.; Ergang, P.; Šrůtková, D.; Klusoňová, P.; Balounová, K.; Hudcovic, T.; Pácha, J. Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypo-thalamic-Pituitary-Adrenal Axis and the Intestine of Male Mice. Front. Immunol. 2019, 10, 2655. [Google Scholar] [CrossRef]
- Walker, W.A. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr. Res. 2017, 82, 387–395. [Google Scholar] [CrossRef]
- Brawner, K.M.; Yeramilli, V.A.; Kennedy, B.A.; Patel, R.K.; Martin, C.A. Prenatal stress increases IgA coating of offspring microbiota and exacerbates necrotizing enterocolitis-like injury in a sex-dependent manner. Brain Behav. Immun. 2020, 89, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Yeramilli, V.A.; Brawner, K.M.; Crossman, D.K.; Barnum, S.R.; Martin, C.A. RNASeq analysis reveals upregulation of complement C3 in the offspring gut following prenatal stress in mice. Immunobiology 2020, 225, 151983. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef]
- Stewart, C.J.; Ajami, N.J.; O’brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.S.; Warner, B.B.; Zhou, Y.; Weinstock, G.M.; Sodergren, E.; Hall-Moore, C.M.; Stevens, H.J.; Bennett, W.E., Jr.; Shaikh, N.; Linneman, L.A.; et al. Patterned progression of bacterial populations in the premature infant gut. Proc. Natl. Acad. Sci. USA 2014, 111, 12522–12527. [Google Scholar] [CrossRef]
- Gibson, M.K.; Wang, B.; Ahmadi, S.; Burnham, C.-A.D.; Tarr, P.I.; Warner, B.B.; Dantas, G. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 2016, 1, 16024. [Google Scholar] [CrossRef]
- Gasparrini, A.J.; Wang, B.; Sun, X.; Kennedy, E.A.; Hernandez-Leyva, A.; Ndao, I.M.; Tarr, P.I.; Warner, B.B.; Dantas, G. Persistent metagenomic signatures of early-life hospitalization and antibiotic treatment in the infant gut microbiota and resistome. Nat. Microbiol. 2019, 4, 2285–2297. [Google Scholar] [CrossRef]
- Stewart, C.J.; Skeath, T.; Nelson, A.; Fernstad, S.J.; Marrs, E.C.L.; Perry, J.D.; Cummings, S.P.; Berrington, J.E.; Embleton, N.D. Preterm gut microbiota and metabolome following discharge from intensive care. Sci. Rep. 2015, 5, 17141. [Google Scholar] [CrossRef]
- Moles, L.; Gómez, M.; Jiménez, E.; Fernández, L.; Bustos, G.; Chaves, F.; Cantón, R.; Rodríguez, J.; del Campo, R. Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin. Microbiol. Infect. 2015, 21, 936.e1–936.e10. [Google Scholar] [CrossRef]
- Claud, E.C.; Walker, W.A. Hypothesis: Inappropriate colonization of the premature intestine can cause neonatal necrotizing enterocolitis. FASEB J. 2001, 15, 1398–1403. [Google Scholar] [CrossRef]
- Brower-Sinning, R.; Zhong, D.; Good, M.; Firek, B.; Baker, R.; Sodhi, C.P.; Hackam, D.J.; Morowitz, M.J. Mucosa-associated bacterial diversity in necrotizing enterocolitis. PLoS ONE 2014, 9, e105046. [Google Scholar] [CrossRef] [PubMed]
- Warner, B.B.; Deych, E.; Zhou, Y.; Hall-Moore, C.; Weinstock, G.M.; Sodergren, E.; Shaikh, N.; Hoffmann, J.A.; Linneman, L.A.; Hamvas, A.; et al. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: A prospective case-control study. Lancet 2016, 387, 1928–1936. [Google Scholar] [CrossRef] [PubMed]
- Dobbler, P.T.; Procianoy, R.S.; Mai, V.; Silveira, R.C.; Corso, A.L.; Rojas, B.S.; Roesch, L.F.W. Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Front. Microbiol. 2017, 8, 2243. [Google Scholar] [CrossRef]
- Pammi, M.; Cope, J.; Tarr, P.I.; Warner, B.B.; Morrow, A.L.; Mai, V.; Gregory, K.E.; Kroll, J.S.; McMurtry, V.; Ferris, M.J.; et al. Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: A systematic review and meta-analysis. Microbiome 2017, 5, 31. [Google Scholar] [CrossRef]
- Ji, Y.-C.; Sun, Q.; Fu, C.Y.; She, X.; Liu, X.C.; He, Y.; Ai, Q.; Li, L.Q.; Wang, Z.L. Exogenous Autoinducer-2 Rescues Intestinal Dysbiosis and Intestinal Inflammation in a Neonatal Mouse Necrotizing Enterocolitis Model. Front. Cell. Infect. Microbiol. 2021, 11, 694395. [Google Scholar] [CrossRef]
- Pérez-Reytor, D.; Puebla, C.; Karahanian, E.; García, K. Use of Short-Chain Fatty Acids for the Recovery of the Intestinal Epithelial Barrier Affected by Bacterial Toxins. Front. Physiol. 2021, 12, 650313. [Google Scholar] [CrossRef]
- Wang, K.; Tao, G.-Z.; Salimi-Jazi, F.; Lin, P.-Y.; Sun, Z.; Liu, B.; Sinclair, T.; Mostaghimi, M.; Dunn, J.; Sylvester, K.G. Butyrate induces development-dependent necrotizing enterocolitis-like intestinal epithelial injury via necroptosis. Pediatr. Res. 2022, 93, 801–809. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, H.; Li, B.; Lee, C.; Alganabi, M.; Zheng, S.; Pierro, A. Beneficial effects of butyrate in intestinal injury. J. Pediatr. Surg. 2020, 55, 1088–1093. [Google Scholar] [CrossRef]
- Laudadio, I.; Fulci, V.; Palone, F.; Stronati, L.; Cucchiara, S.; Carissimi, C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS A J. Integr. Biol. 2018, 22, 248–254. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Morrison, K.; Misic, A.; Weinkopff, T.; Scott, P.; Hunter, C.; Beiting, D.; Bale, T.L. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 2018, 21, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Gur, T.L.; Palkar, A.V.; Rajasekera, T.; Allen, J.; Niraula, A.; Godbout, J.; Bailey, M.T. Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behav. Brain Res. 2018, 359, 886–894. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Misic, A.M.; Beiting, D.P.; Bale, T.L. Stress during pregnancy alters temporal and spatial dynamics of the maternal and offspring microbiome in a sex-specific manner. Sci. Rep. 2017, 7, 44182. [Google Scholar] [CrossRef] [PubMed]
- Zijlmans, M.A.; Korpela, K.; Riksen-Walraven, J.M.; de Vos, W.M.; de Weerth, C. Maternal prenatal stress is associated with the infant intestinal microbiota. Psychoneuroendocrinology 2015, 53, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-M.; Lee, K.E.; Lee, H.J.; Kim, D.H. Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Sci. Rep. 2018, 8, 13897. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.T. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Microb. Endocrinol. 2014, 817, 255–276. [Google Scholar] [CrossRef]
- Galley, J.D.; Nelson, M.C.; Yu, Z.; E Dowd, S.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, K.; Funabashi, H.; Matsuoka, H.; Saito, M. Potential use of Lactobacillus cell density in feces as a non-invasive bio-indicator for evaluating environ-mental stress during mouse breeding. Biocontrol Sci. 2013, 18, 101–104. [Google Scholar] [CrossRef] [PubMed]
- De Palma, G.; Blennerhassett, P.; Lu, J.; Deng, Y.; Park, A.J.; Green, W.; Denou, E.; Silva, M.A.; Santacruz, A.; Sanz, Y.; et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat. Commun. 2015, 6, 7735. [Google Scholar] [CrossRef]
- Yang, H.; Yuan, P.-Q.; Wang, L.; Taché, Y. Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Neuroscience 1999, 95, 773–779. [Google Scholar] [CrossRef]
- Messmer, B.; Zimmerman, F.G.; Lenz, H.J. Regulation of exocrine pancreatic secretion by cerebral TRH and CGRP: Role of VIP, muscarinic, and adrenergic pathways. Am. J. Physiol. Liver Physiol. 1993, 264, G237–G242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yin, J.; Wang, L.; Chen, J.D.Z. Diffused and sustained inhibitory effects of intestinal electrical stimulation on intestinal motility mediated via sympathetic pathway. Neuromodulation Technol. Neural Interface 2013, 17, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Reyna-Garfias, H.; Miliar, A.; Jarillo-Luna, A.; Rivera-Aguilar, V.; Pacheco-Yepez, J.; Baeza, I.; Campos-Rodríguez, R. Repeated restraint stress increases IgA concentration in rat small intestine. Brain Behav. Immun. 2010, 24, 110–118. [Google Scholar] [CrossRef]
- Kim, J.H.; Sampath, V.; Canvasser, J. Challenges in diagnosing necrotizing enterocolitis. Pediatr. Res. 2020, 88, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Leung, K.T.; Tam, Y.H.; Lam, H.S.; Cheung, H.M.; Ma, T.P.; Lee, K.H.; To, K.F.; Li, K.; Ng, P.C. Genome-wide expression profiles of necrotizing enterocolitis versus spontaneous intestinal perforation in human intestinal tissues: Dysregulation of functional pathways. Ann. Surg. 2014, 260, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Su, Y.; Zhou, L.; Zhang, H.; Shen, Q.; Du, C.; Li, H.; Wen, Z.; Xia, Y.; et al. Identification of candidate genes for necrotizing enterocolitis based on microarray data. Gene 2018, 661, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Weitkamp, J.-H.; Koyama, T.; Rock, M.T.; Correa, H.; Goettel, J.A.; Matta, P.; Oswald-Richter, K.; Rosen, M.J.; Engelhardt, B.G.; Moore, D.J.; et al. Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 2013, 62, 73–82. [Google Scholar] [CrossRef]
- Abu-Elheiga, L.; Matzuk, M.M.; Abo-Hashema, K.A.; Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291, 2613–2616. [Google Scholar] [CrossRef]
- Wakil, S.J.; Abu-Elheiga, L.A. Fatty acid metabolism: Target for metabolic syndrome. J. Lipid Res. 2009, 50, S138–S143. [Google Scholar] [CrossRef]
- Oh, W.; Abu-Elheiga, L.; Kordari, P.; Gu, Z.; Shaikenov, T.; Chirala, S.S.; Wakil, S.J. Glucose and fat metabolism in adipose tissue of acetyl-CoA carboxylase 2 knockout mice. Proc. Natl. Acad. Sci. USA 2005, 102, 1384–1389. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Zamocky, M.; Sandoval, J.M.; Verrax, J.; Calderon, P.B. Regulation of catalase expression in healthy and cancerous cells. Free Radic. Biol. Med. 2015, 87, 84–97. [Google Scholar] [CrossRef]
- Smeekens, S.P.; Huttenhower, C.; Riza, A.; van de Veerdonk, F.L.; Zeeuwen, P.L.; Schalkwijk, J.; van der Meer, J.W.; Xavier, R.J.; Netea, M.G.; Gevers, D. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J. Innate Immun. 2014, 6, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Luzardo-Ocampo, I.; Ocampo-Ruiz, A.L.; Dena-Beltrán, J.L.; de la Escalera, G.M.; Clapp, C.; Macotela, Y. The Diversity of Gut Microbiota at Weaning Is Altered in Prolactin Receptor-Null Mice. Nutrients 2023, 15, 3447. [Google Scholar] [CrossRef]
- Tremblay, É.; Thibault, M.-P.; Ferretti, E.; Babakissa, C.; Bertelle, V.; Bettolli, M.; Burghardt, K.M.; Colombani, J.-F.; Grynspan, D.; Levy, E.; et al. Gene expression profiling in necrotizing enterocolitis reveals pathways common to those reported in Crohn’s disease. BMC Med. Genom. 2015, 9, 6. [Google Scholar] [CrossRef]
- Nanthakumar, N.; Meng, D.; Goldstein, A.M.; Zhu, W.; Lu, L.; Uauy, R.; Llanos, A.; Claud, E.C.; Walker, W.A. The mechanism of excessive intestinal inflammation in necrotizing enterocolitis: An immature innate immune response. PLoS ONE 2011, 6, e17776. [Google Scholar] [CrossRef]
- Maheshwari, A.; Schelonka, R.L.; Dimmitt, R.A.; Carlo, W.A.; Munoz-Hernandez, B.; Das, A.; McDonald, S.A.; Thorsen, P.; Skogstrand, K.; Hougaard, D.M.; et al. Cytokines associated with necrotizing enterocolitis in extremely-low-birth-weight infants. Pediatr. Res. 2014, 76, 100–108. [Google Scholar] [CrossRef]
- Baumgart, D.C.; Sandborn, W.J. Crohn’s disease. Lancet 2012, 380, 1590–1605. [Google Scholar] [CrossRef]
- Ng, P.C.; Chan, K.Y.; Leung, K.T.; Tam, Y.H.; Ma, T.P.; Lam, H.S.; Cheung, H.M.; Lee, K.H.; To, K.F.; Li, K. Comparative MiRNA Expressional Profiles and Molecular Networks in Human Small Bowel Tissues of Ne-crotizing Enterocolitis and Spontaneous Intestinal Perforation. PLoS ONE 2015, 10, e0135737. [Google Scholar] [CrossRef]
- Xie, Z.; Kang, Q.; Shi, Y.; Du, J.; Jiang, H. A transcriptomic landscape analysis of human necrotizing enterocolitis: Important roles of immune infiltration. Pediatr. Discov. 2023, 1, e1. [Google Scholar] [CrossRef]
- Hackam, D.J.; Sodhi, C.P. Toll-Like Receptor-Mediated Intestinal Inflammatory Imbalance in the Pathogenesis of Ne-crotizing Enterocolitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 229–238.e1. [Google Scholar] [CrossRef] [PubMed]
- Gomart, A.; Vallée, A.; Lecarpentier, Y. Necrotizing Enterocolitis: LPS/TLR4-Induced Crosstalk Between Canonical TGF-β/Wnt/β-Catenin Pathways and PPARγ. Front. Pediat. 2021, 9, 713344. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Li, Y.; Su, Y.; Zhou, L.; Zhang, H.; Shen, Q.; Du, C.; Li, H.; Wen, Z.; Xia, Y.; et al. Identification of specific gene modules and candidate signatures in necrotizing enterocolitis disease: Networkbased gene co-expression approach. Biointerface Res. Appl. Chem. 2021, 11, 12901–12915. [Google Scholar]
- Johnston, R.B.; Altenburger, K.M.; Atkinson, A.W.; Curry, R.H. Complement in the newborn infant. Pediatrics 1979, 64 Pt 5, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Høgåsen, A.K.M.; Øverlie, I.; Hansen, T.W.R.; Abrahamsen, T.G.; Finne, P.H.; Høgåsen, K. The analysis of the complement activation product SC5 b-9 is applicable in neonates in spite of their profound C9 deficiency. J. Perinat. Med. 2000, 28, 39–48. [Google Scholar] [CrossRef]
- Tayman, C.; Tonbul, A.; Kahveci, H.; Uysal, S.; Koseoğlu, B.; Tatli, M.M.; Dilmen, U. C5a, a complement activation product, is a useful marker in predicting the severity of necrotizing enterocolitis. Tohoku J. Exp. Med. 2011, 224, 143–150. [Google Scholar] [CrossRef]
- Falck-Hansen, M.; Kassiteridi, C.; Monaco, C. Toll-Like Receptors in Atherosclerosis. Int. J. Mol. Sci. 2013, 14, 14008–14023. [Google Scholar] [CrossRef]
- Li, M.; Russell, S.K.; Lumsden, J.S.; Leatherland, J.F. The influence of oocyte cortisol on the early ontogeny of intelectin and TLR-5, and changes in lysozyme activity in rainbow trout (Oncorhynchus mykiss) embryos. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 160, 159–165. [Google Scholar] [CrossRef]
- Lutgendorf, S.K.; Zia, S.; Luo, Y.; O’Donnell, M.; van Bokhoven, A.; Bradley, C.S.; Gallup, R.; Pierce, J.; Taple, B.J.; Naliboff, B.D.; et al. Early and recent exposure to adversity, TLR-4 stimulated inflammation, and diurnal cortisol in women with interstitial cystitis/bladder pain syndrome: A MAPP research network study. Brain Behav. Immun. 2023, 111, 116–123. [Google Scholar] [CrossRef]
- Schrepf, A.; Bradley, C.S.; O’donnell, M.; Luo, Y.; Harte, S.E.; Kreder, K.; Lutgendorf, S. Toll-like Receptor 4 and comorbid pain in Interstitial Cystitis/Bladder Pain Syndrome: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain research network study. Brain Behav. Immun. 2015, 49, 66–74. [Google Scholar] [CrossRef]
- Hunter, C.J.; Upperman, J.S.; Ford, H.R.; Camerini, V. Understanding the Susceptibility of the Premature Infant to Necrotizing Enterocolitis (NEC). Pediatr. Res. 2008, 63, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.J.; Fatemizadeh, R.; Parsons, P.; Lamb, C.A.; Shady, D.A.; Petrosino, J.F.; Hair, A.B. Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiol. 2019, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Shickh, S.; Mighton, C.; Uleryk, E.; Pechlivanoglou, P.; Bombard, Y. The clinical utility of exome and genome sequencing across clinical indications: A systematic review. Hum. Genet. 2021, 140, 1403–1416. [Google Scholar] [CrossRef]
Stressors |
---|
Life changes |
Drug, alcohol, and substance abuse |
Emotional stresses such as grief, anxiety, depression, or other mental illness |
Socioeconomic status |
Natural disasters |
Nutritional stress (starvation and over-eating) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeramilli, V.; Cheddadi, R.; Benjamin, H.; Martin, C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms 2023, 11, 2206. https://doi.org/10.3390/microorganisms11092206
Yeramilli V, Cheddadi R, Benjamin H, Martin C. The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms. 2023; 11(9):2206. https://doi.org/10.3390/microorganisms11092206
Chicago/Turabian StyleYeramilli, Venkata, Riadh Cheddadi, Heather Benjamin, and Colin Martin. 2023. "The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis" Microorganisms 11, no. 9: 2206. https://doi.org/10.3390/microorganisms11092206
APA StyleYeramilli, V., Cheddadi, R., Benjamin, H., & Martin, C. (2023). The Impact of Stress, Microbial Dysbiosis, and Inflammation on Necrotizing Enterocolitis. Microorganisms, 11(9), 2206. https://doi.org/10.3390/microorganisms11092206